CSC321 Lecture 20: Autoencoders J

Roger Grosse

CSC321 Lecture 20: Autoencoders 1/16

Overview

@ Latent variable models so far:

e mixture models
e Boltzmann machines

@ Both of these involve discrete latent variables. Now let’s talk about
continuous ones.

@ One use of continuous latent variables is dimensionality reduction

CSC321 Lecture 20: Autoencoders 2 /16

Autoencoders

@ An autoencoder is a feed-forward neural net whose job it is to take an
input x and predict x.

@ To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.

100 units

code vector
100 units encoder

CSC321 Lecture 20: Autoencoders 3/16

reconstruction

decoder

Autoencoders

Why autoencoders?

@ Map high-dimensional data to two dimensions for visualization
e Compression (i.e. reducing the file size)

o Note: autoencoders don't do this for free — it requires other ideas as
well.

@ Learn abstract features in an unsupervised way so you can apply them
to a supervised task

e Unlabled data can be much more plentiful than labeled data

CSC321 Lecture 20: Autoencoders 4 /16

Principal Component Analysis

@ The simplest kind of autoencoder has one

hidden layer, linear activations, and squared % ‘ D units ‘
error loss.)
U decoder
3 — <112
‘C(va) - ||X—X|| K units
A
@ This network computes X = UVx, which is a V encoder

linear function. ‘

X | D units
e If K> D, we can choose U and V such that
UV is the identity. This isn't very interesting.

o But suppose K < D:
e V maps x to a K-dimensional space, so it's doing dimensionality
reduction.
e The output must lie in a K-dimensional subspace, namely the column
space of U.

CSC321 Lecture 20: Autoencoders 5/ 16

Principal Component Analysis

@ We just saw that a linear autoencoder has to map D-dimensional
inputs to a K-dimensional subspace S.
@ Knowing this, what is the best possible mapping it can choose?

CSC321 Lecture 20: Autoencoders 6 /16

Principal Component Analysis

@ We just saw that a linear autoencoder has to map D-dimensional
inputs to a K-dimensional subspace S.
@ Knowing this, what is the best possible mapping it can choose?

e By definition, the projection of x onto S is the point in S which
minimizes the distance to x.

@ Fortunately, the linear autoencoder can represent projection onto S:
pick U=Q and V= QT, where Q is an orthonormal basis for S.

CSC321 Lecture 20: Autoencoders 6 /16

Principal Component Analysis

@ The autoencoder should learn to choose the subspace which minimizes the
squared distance from the data to the projections.

@ This is equivalent to the subspace which maximizes the variance of the

projections.
By the Pythagorean Theorem,

1on In, oy o
3 2 ED =l 5 > D = &2
i=1 i=1

projected variance reconstruction error

1<
= 5 2 Ix7 — ul?
i=1

constant

mean of
all data points

@ You wouldn't actually sove this problem by training a neural net. There's a
closed-form solution, which you learn about in CSC 411.

@ The algorithm is called principal component analysis (PCA).

CSC321 Lecture 20: Autoencoders 7 /16

Principal Component Analysis

PCA for faces (“Eigenfaces”)

Roger Grosse

F o & s
Bl T
HOEREEEN
IEECEES
AP R
ErEEEEEE
2518 O S S
S B

CSC321 Lecture 20: Autoencoders

8/16

Principal Component Analysis

PCA for digits

-a---
HEBEEHBE

----B
BEEBa

Roger Grosse CSC321 Lecture 20: Autoencoders 9 /16

Deep Autoencoders

@ Deep nonlinear autoencoders learn to project the data, not onto a
subspace, but onto a nonlinear manifold

@ This manifold is the image of the decoder.

@ This is a kind of nonlinear dimensionality reduction.

100 units

100 units

CSC321 Lecture 20: Autoencoders 10 / 16

Deep Autoencoders

@ Nonlinear autoencoders can learn more powerful codes for a given
dimensionality, compared with linear autoencoders (PCA)

real

D /&3 4s &b QR
B / a % LI S_ C’-?' d q Sg-el:;))auto

EEEEEREREEK]

CSC321 Lecture 20: Autoencoders 11/ 16

Layerwise Training

@ There's a neat connection between autoencoders and RBMs.

p(h=1|v)= o(Wh+b®) O O O O
o (W'v +by) W
h ”<WTX+b(1)) m
WIS W . "
|OOOO| |OOOO| (Wh + b,) OO0O0O

@ An RBM is like an autoencoder with tied weights, except that the
units are sampled stochastically.

CSC321 Lecture 20: Autoencoders 12 /16

Layerwise Training

o Suppose we've already trained an RBM with weights W(1).

@ Let’s compute its hidden features on the training set, and feed that in
as data to another RBM:

positive statistics negative statistics

o Note that now W) is held fixed, but W is being trained using
contrastive divergence.

CSC321 Lecture 20: Autoencoders 13 /16

Layerwise Training

@ A stack of two RBMs can be thought of as an autoencoder with three
hidden layers:

W(2>T§ %W@)
OO0 0] |00 O]
woT @ XE w

@ This gives a good initialization for the deep autoencoder. You can
then fine-tune the autoencoder weights using backprop.

@ This strategy is known as layerwise pre-training.

CSC321 Lecture 20: Autoencoders 14 / 16

@ Autoencoders are not a probabilistic model.

@ However, there is an autoencoder-like probabilistic model called a
variational autoencoder (VAE). These are beyond the scope of the
course, and require some more advanced math.

@ Check out David Duvenaud’s excellent course “Differentiable

Inference and Generative Models": https://www.cs.toronto.edu/
~duvenaud/courses/csc2541/index.html

CSC321 Lecture 20: Autoencoders 15 / 16

https://www.cs.toronto.edu/~duvenaud/courses/csc2541/index.html
https://www.cs.toronto.edu/~duvenaud/courses/csc2541/index.html

Deep Autoencoders

(Professor Hinton's slides)

CSC321 Lecture 20: Autoencoders 16 / 16

