
CSC321 Winter 2017 Homework 5

Homework 5

Deadline: Monday, Feb. 13, at 11:59pm.

Submission: You must submit your solutions as a PDF file through MarkUs1. You can produce
the file however you like (e.g. LaTeX, Microsoft Word, scanner), as long as it is readable.

Late Submission: MarkUs will remain open until 2 days after the deadline; until that time, you
should submit through MarkUs. If you want to submit the assignment more than 2 days late,
please e-mail it to csc321ta@cs.toronto.edu. The reason for this is that MarkUs won’t let us
collect the homeworks until the late period has ended, and we want to be able to return them to
you in a timely manner.

Weekly homeworks are individual work. See the Course Information handout2 for detailed policies.

1. Regularized linear regression. Consider a univariate linear regression problem with no
bias term. This means the model predictions are given by

y = wx.

As usual, we’ll use squared error loss, so the cost is given by:

E =
1

2N

∑
i

(y(i) − t(i))2 =
1

2N

∑
i

(wx(i) − t(i))2,

where N is the number of training examples. In your calculations and/or answer, you may
need to write (x(i))2 for the ith input squared.

(a) [1pts] Find an expression for the weight w which minimizes the L2-regularized loss

EL2 = E +
λ

2
w2.

(b) [2pts] Find an expression for the weight w which minimizes the L1-regularized loss

EL1 = E + λ|w|.

Note that the minimum will occur either at a point where dEL1/dw = 0 or at a point
where EL1 is nondifferentiable. You need to consider both cases. Your answer will have
the form

w =


· · · (some condition involving the x(i)’s, t(i)’s, and λ)

· · · (some condition involving the x(i)’s, t(i)’s, and λ)

· · · (some condition involving the x(i)’s, t(i)’s, and λ)

2. Dropout. [4pts] Dropout has an interesting interpretation in the case of linear regression.
Recall that the predictions are made stochastically as:

y =
∑
j

mjwjxj ,

1https://markus.teach.cs.toronto.edu/csc321-2017-01
2http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/syllabus.pdf
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where the mj ’s are all i.i.d. (independnet and identically distributed) Bernoulli random vari-
ables with expectation 1/2. (I.e., they are indepdendent for every input dimension and every
data point.) We would like to minimize the cost

E =
1

2N

N∑
i=1

E[(y(i) − t(i))2], (1)

where the expectation is with respect to the m
(i)
j ’s.

Now we show that this is equivalent to a regularized linear regression problem:

(a) Find expressions for E[y] and Var[y] for a given x and w.

(b) Determine w̃j as a function of wj such that

E[y] = ỹ =
∑
j

w̃jxj .

Here, ỹ can be thought of as (deterministic) predictions made by a different model.

(c) Using the model from the previous section, show that the cost E (Eqn. 1) can be written
as

E =
1

2N

N∑
i=1

(ỹ(i) − t(i))2 + R(w̃1, . . . , w̃D),

where R is a function of the w̃D’s which does not involve an expectation. (Note that R
will depend on the data, so we call it a “data-dependent regularizer.”)

Hint: write the cost in terms of the mean and variance formulas from part (a). For
inspiration, you may wish to refer to the derivation of the bias/variance decomposition
from Lecture 9.
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3. Neural language model. [3pts] In this part, we count the number of trainable parameters
in a neural language model. It receives as input 3 consecutive words, and its aim is to predict
a distribution over the next word (the target word). The model architecture is as follows:

The network consists of an input layer, embedding layer, hidden layer and output layer. The
input consists of a sequence of 3 consecutive words, given as integer valued indices. (I.e.,
the 250 words in our dictionary are arbitrarily assigned integer values from 0 to 249.) The
embedding layer maps each word to its corresponding vector representation. This layer has
3 × D units, where D is the embedding dimension, and it essentially functions as a lookup
table. We share the same lookup table between all 3 positions, i.e. we don’t learn a separate
word embedding for each context position. The embedding layer is connected to the hidden
layer, which uses a logistic nonlinearity. The hidden layer in turn is connected to the output
layer. The output layer is a softmax over the 250 words.

As above, assume we have 250 words in the dictionary and use the previous 3 words as inputs.
Suppose we use a 16-dimensional word embedding and a hidden layer with 128 units. The
trainable parameters of the model consist of 3 weight matrices and 2 bias vectors.

(a) What is the total number of trainable parameters in the model? Which layer has the
largest number of trainable parameters?

(b) How many add-multiply operations are needed to make predictions, assuming the first
layer is implemented using a lookup table?
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