
CSC321 Winter 2017 Homework 4

Homework 4

Submission: This homework is not to be handed in for a mark. However, it is not optional, in
the sense that you are still responsible for the content. We will release solutions, but you will get
more out of it if you attempt the problems yourself first.

1. Gradient descent. We can get quite a bit of insight into the behavior of gradient descent
by looking at how it behaves on quadratic functions. Suppose we are trying to optimize a
quadratic function

C(θ) =
a1
2

(θ1 − r1)2 + · · ·+ aN
2

(θN − rN )2,

with each ai > 0. We can exactly solve for the dynamics of gradient descent. In other words,

we can find an exact formula for θ
(t)
i , where t is the number of gradient descent updates.

(a) Derive the gradient descent update rule for each θi with learning rate α. It should have
the form

θ
(t+1)
i = · · · ,

where the right-hand side is some function of the previous value θ
(t)
i , as well as ri, ai,

and α. (It’s an interesting and useful fact that the different θi’s evolve independently,
so we can analyze a single coordinate at a time.)

(b) Now let’s introduce the error e
(t)
i = θ

(t)
i − ri. Take your update rule from the previous

part, and write a recurrence for the errors. It should have the form

e
(t+1)
i = · · · ,

where the right-hand side is some function of e
(t)
i , ri, ai, and α.

(c) Solve this recurrence to obtain an explicit formula for e
(t)
i in terms of the initial error

e
(0)
i . For what values of α is the procedure stable (the errors decay over time), and

for what values is it unstable (the errors grow over time)? You should find that large
learning rates are more unstable than small ones, and that high curvature dimensions
are more unstable than low curvature ones.

(d) Using your answer for the previous part, write an explicit formula for the cost C(θ(t)) as
a function of the initial values θ(0). (You can write it as a summation over indices; you
don’t need to vectorize it.) As t→∞, which term comes to dominate? You’ll find that
the asymptotic behavior for optimal α roughly depends on the condition number

κ =
maxi ai
mini ai

.

This supports the claim that narrow ravines are problematic for gradient descent.

(e) [Optional, and advanced] This part is optional, but you may find it interesting. We’ll
make use of eigendecompositions of symmetric matrices; see MIT OpenCourseware for
a refresher:

https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/positive-definite-matrices-and-applications/

symmetric-matrices-and-positive-definiteness/

1

https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/positive-definite-matrices-and-applications/symmetric-matrices-and-positive-definiteness/
https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/positive-definite-matrices-and-applications/symmetric-matrices-and-positive-definiteness/


CSC321 Winter 2017 Homework 4

It turns out we’ve actually just analyzed the fully general quadratic case. I.e., suppose
we try to minimize a cost function of the form

C(θ) =
1

2
(θ − r)TA(θ − r),

where A is a symmetric positive definite matrix, i.e. a symmetric matrix with all positive
eigenvalues. (This is the general form for a quadratic function which curves upwards.)
Determine the gradient descent update for θ in vectorized form. Then write a recurrence
for the error vector e = θ − r, similarly to Part (1c). It will have the form

e(t+1) = Be(t),

where B is a symmetric matrix. Determine the eigenvectors and eigenvalues of B in
terms of the eigenvectors and eigenvalues of A, and use this to find an explicit form for
e(t) and for C(θ(t)) in terms of θ(0). The result will be closely related to your answer
from Part (1d).

2. In preparation for the second programming assignment, please read through the Autograd
tutorial:

https://github.com/HIPS/autograd/blob/master/docs/tutorial.md

and the code for the multilayer perceptron example:

https://github.com/HIPS/autograd/blob/master/examples/neural_net.py

2

https://github.com/HIPS/autograd/blob/master/docs/tutorial.md
https://github.com/HIPS/autograd/blob/master/examples/neural_net.py

