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Overview

First, brief overview of Expectation-Maximization algorithm.
I In the lecture we were using Gaussian Mixture Model fitted with

Maximum Likelihood (ML) estimation.

Today, practice with the E-M algorithm in an image completion
task.

We will use Mixture of Bernoullis fitted with Maximum a
posteriori (MAP) estimation.

I Learning the parameters
I Posterior inference

Intro ML (UofT) CSC311-Tut 10 2 / 26



The Generative Model

We’ll be working with the following generative model for data D
Assume a datapoint x is generated as follows:

I Choose a cluster z from {1, . . . ,K} such that p(z = k) = ⇡k
I Given z, sample x from a probability distribution. (Earlier you saw

Guassian N (x|µz, I), now we will work with Bernoulli(✓z))

Can also be written:
p(z = k) = ⇡k

p(x|z = k) = N (x|µk, I)/Bernoulli(✓k)
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Maximum Likelihood with Latent Variables

How should we choose the parameters {⇡k,µk}Kk=1?

Maximum likelihood principle: choose parameters to maximize
likelihood of observed data

We don’t observe the cluster assignments z, we only see the data x

Given data D = {x(n)}Nn=1, choose parameters to maximize:

log p(D) =
NX

n=1

log p(x(n))

We can find p(x) by marginalizing out z:

p(x) =
KX

k=1

p(z = k,x) =
KX

k=1

p(z = k)p(x|z = k)

Intro ML (UofT) CSC311-Tut 10 4 / 26



Log-likelihood derivatives

@

@✓
log p(x) =

@
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log

X

z

p(x, z)

Intro ML (UofT) CSC311-Tut 10 5 / 26



Log-likelihood derivatives

@

@✓
log p(x) =

@

@✓
log

X

z

p(x, z)

=
@
@✓

P
z p(x, z)P

z0 p(x, z
0)

Intro ML (UofT) CSC311-Tut 10 6 / 26



Log-likelihood derivatives

@

@✓
log p(x) =

@

@✓
log

X

z

p(x, z)

=
@
@✓

P
z p(x, z)P

z0 p(x, z
0)

=

P
z

@
@✓p(x, z)P

z0 p(x, z
0)

Intro ML (UofT) CSC311-Tut 10 7 / 26
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Expectation-Maximization algorithm

The Expectation-Maximization algorithm alternates between two steps:

1. E-step: Compute the posterior probabilities r(n)k = p(z(n) = k|x(n))
given our current model - i.e. how much do we think a cluster is
responsible for generating a datapoint.

2. M-step: Use the equations on the last slide to update the

parameters, assuming r(n)k are held fixed- change the parameters of
each distribution to maximize the probability that it would generate
the data it is currently responsible for.

@
@✓

log p(D) =
@
@✓

NX

n=1

log
KX

k=1

p(z(n) = k,x(n))

=
NX

i=1

KX

k=1

p(z(n) = k|x(n))
@
@✓

log p(x(n), z(n))

=
NX

i=1

KX

k=1

r(i)k


@
@✓

log Pr(z(i) = k) +
@
@✓

log p(x(i) | z(i) = k)

�
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Image Completion using Mixture of Bernoullis
1

A probabilistic model for the task of image completion.

We observe the top half of an image of a handwritten digit, we would
like to predict whats in the bottom half.

Given these observations... ... you want to make these predictions

1Source
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http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/homeworks/hw4/hw4.pdf


Mixture of Bernoullis model

Our dataset is a set of 28⇥ 28 binary images represented as
784-dimensional binary vectors.

I N = 60,000, the number of training cases. The training cases are
indexed by i.

I D = 28⇥ 28 = 784, the dimension of each observation vector. The
dimensions are indexed by j.

Conditioned on the latent variable z = k, each pixel xj is an independent
Bernoulli random variable with parameter ✓k,j :

p(x(i) | z = k) =
DY

j=1

p(x(i)
j | z = k)

=
DY

j=1

✓
x(i)
j

k,j (1� ✓k,j)
1�x(i)

j
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The Generative Process

This can be written out as the following generative process:

Sample z from a multinomial distribution ⇡.

For j = 1, . . . , D:
Sample xj from a Bernoulli distribution with parameter ✓k,j , where
k is the value of z.

It can also be written mathematically as:

z ⇠ Multinomial(⇡)

xj | z = k ⇠ Bernoulli(✓k,j)
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Part 1: Learning the Parameters

In the first step, well learn the parameters of the model given the
responsibilities (M-step of the E-M algorithm).

We want to use the MAP criterion instead of maximum likelihood
(ML) to fit the Mixture of Bernoullis model.

I The only di↵erence is that we add a prior probability term to the
ML objective function in the M-step.

I ML objective function:

NX

i=1

KX

k=1

r(i)k

h
log Pr(z(i) = k) + log p(x(i) | z(i) = k)

i

I MAP objective function:

NX

i=1

KX

k=1

r(i)k

h
log Pr(z(i) = k) + log p(x(i) | z(i) = k)

i
+ log p(⇡)+log p(⇥)
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Part 1: Learning the Parameters (Prior Distribution)

Use Beta distribution as the prior for ⇥: Every entry is drawn
independently from a beta distribution with parameters a and b:

p(✓k,j) / ✓a�1
k,j (1� ✓k,j)

b�1

Use Dirichlet distribution as the prior over mixing proportions ⇡:

p(⇡) / ⇡a1�1
1 ⇡a2�1

2 · · ·⇡aK�1
K .
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Part 1: Learning the Parameters

Derive the M-step update rules for ⇥ and ⇡ by setting the partial
derivatives of the MAP objective function to zero.

J(✓,⇡) =
NX

i=1

KX

k=1

r(i)k

h
log Pr(z(i) = k) + log p(x(i) | z(i) = k)

i

+ log p(⇡) + log p(⇥)

⇡k  ...

✓k,j  ...
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Part 1: Learning the Parameters

J(⇥,⇡) =
NX

i=1

KX

k=1

r(i)k

h
log Pr(z(i) = k) + log p(x(i) | z(i) = k)

i
+ log p(⇡) + log p(⇥)

=
NX

i=1

KX

k=1

r(i)k

"
log ⇡k +

DX

j=1

x(i)
j log ✓k,j + (1� x(i)

j ) log(1� ✓k,j)

#

+
KX

k=1

(ak � 1) log ⇡k +
KX

k=1

DX

j=1

[(a� 1) log ✓k,j + (b� 1) log(1� ✓k,j)] + C
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Derivative wrt. ✓k,j

J(⇥,⇡) =
NX

i=1

KX

k=1

r(i)k

"
log ⇡k +

DX

j=1

x(i)
j log ✓k,j + (1� x(i)

j ) log(1� ✓k,j)

#

+
KX

k=1

(ak � 1) log ⇡k +
KX

k=1

DX

j=1

[(a� 1) log ✓k,j + (b� 1) log(1� ✓k,j)] + C

First we take derivative wrt. ✓k,j :

@J
@✓k,j

=
NX

i=1

r(i)k


x(i)
j

1
✓k,j

+ (1� x(i)
j )

1
✓k,j � 1

�
+ (a� 1)

1
✓k,j

+ (b� 1)
1

✓k,j � 1

=
1

✓k,j

 
NX

i=1

[r(i)k x(i)
j ] + (a� 1)

!
+

1
✓k,j � 1

 
NX

i=1

[r(i)k ]�
NX

i=1

[r(i)k x(i)
j ] + (b� 1)

!

Intro ML (UofT) CSC311-Tut 10 19 / 26



Derivative wrt. ✓k,j
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�
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!

Setting this to zero, and multiplying both sides by ✓k,j(✓k,j � 1) yields:

0 = (✓k,j � 1)

 
NX

i=1

[r(i)k x(i)
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!
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Derivative wrt. ✓k,j
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0 = (✓k,j � 1)

 
NX

i=1

[r(i)k x(i)
j ] + (a� 1)

!
+ ✓k,j

 
NX

i=1

[r(i)k ]�
NX
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[r(i)k x(i)
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!

This gives:

✓k,j =

PN
i=1[r

(i)
k x(i)

j ] + (a� 1)
PN

i=1[r
(i)
k x(i)

j ] + (a� 1) +
PN

i=1[r
(i)
k ]�

PN
i=1[r

(i)
k x(i)

j ] + (b� 1)

=

PN
i=1[r

(i)
k x(i)

j ] + a� 1
PN

i=1[r
(i)
k ] + a+ b� 2
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Derivative wrt. ⇡k

Now we take derivative wrt. ⇡k.

Note that it is a bit trickier because we need to account for the
condition

PK
k=1 ⇡k = 1.

This can be done with the use of a Lagrange multiplier.

Let J� = J + �(
PK

k=1[⇡k]� 1)

@J�

@⇡k
=

NX

i=1

r(i)k

1
⇡k

+ (ak � 1)
1
⇡k

+ �
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Derivative wrt. ⇡k

Now we take derivative wrt. ⇡k.
Note that it is a bit trickier because we need to account for the
condition

PK
k=1 ⇡k = 1.

This can be done with the use of a Lagrange multiplier.
Let J� = J + �(

PK
k=1[⇡k]� 1)

@J�

@⇡k
=

NX

i=1

r(i)k

1
⇡k

+ (ak � 1)
1
⇡k

+ �

Setting this to zero, we get:

⇡k =
(ak � 1) +

PN
i=1[r

(i)
k ]

�

Knowing that ⇡k sums to one, we obtain:

⇡k =
(ak � 1) +

PN
i=1[r

(i)
k ]

PK
k=1[(ak � 1) +

PN
i=1[r

(i)
k ]]

=
(ak � 1) +

PN
i=1[r

(i)
k ]

N +
PK

k=1(ak � 1)

(We used
PN

i=1

PK
k=1 r

(i)
k =

PN
i=1 1 = N)
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Part 2: Posterior inference

We represent partial observations in terms of variables m(i)
j , where

m(i)
j = 1 if the jth pixel of the ith image is observed, and 0

otherwise.

Derive the posterior probability distribution p(z |xobs), where xobs

denotes the subset of the pixels which are observed.

Using Bayes rule, we have:

p(z = k |x) = p(x | z = k)p(z = k)

p(x)

=
⇡k

QD
j=1 ✓

mjxj

k,j (1� ✓
mj(1�xj)
k,j )

PK
l=1 ⇡l

QD
j=1 ✓

mjxj

l,j (1� ✓
mj(1�xj)
l,j )
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Part 3: Posterior Predictive Mean

Computes the posterior predictive means of the missing pixels
given the observed ones.
The posterior predictive distribution is:

p(x2 |x1) =
X

z

p(z |x1)p(x2 | z, x1)

Assume that the xi values are conditionally independent given z.
For instance, the pixels in one half of an image are clearly not
independent of the pixels in the other half. But they are roughly
independent, conditioned on a detailed description of everything
going on in the image.
So we have:

E[p(xmis|xobs)] =
KX

k=1

rkp(xmis = 1 | z = k) =
KX

k=1

rkBernoulli(✓k,mis)

=
KX

k=1

rk✓k,mis
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Questions?

?
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