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Motivation

Uncertainty arises through:

Noisy measurements

Variability between samples

Finite size of data sets

Probability provides a consistent framework for the quantification and
manipulation of uncertainty.
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Sample Space

Sample space Ω is the set of all possible outcomes of an
experiment.

Observations ω ∈ Ω are points in the space also called sample
outcomes, realizations, or elements.

Events E ⊂ Ω are subsets of the sample space.

In this experiment we flip a coin twice:

Sample space All outcomes Ω = {HH,HT, TH, TT}
Observation ω = HT valid sample since ω ∈ Ω

Event Both flips same E = {HH,TT} valid event since E ⊂ Ω

3 / 26



Probability

The probability of an event E, P (E), satisfies three axioms:

1: P (E) ≥ 0 for every E

2: P (Ω) = 1

3: If E1, E2, . . . are disjoint then

P (

∞⋃
i=1

Ei) =

∞∑
i=1

P (Ei)
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Joint and Conditional Probabilities

Joint Probability of A and B is denoted P (A,B).

Conditional Probability of A given B is denoted P (A|B).

𝐴 ∩ 𝐵𝐴 𝐵

Joint: 𝑝 𝐴, 𝐵 = 𝑝(𝐴 ∩ 𝐵)

Conditional: 𝑝 𝐴|𝐵 = *(+∩,)
*(,)

p(A,B) = p(A|B)p(B) = p(B|A)p(A)
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Conditional Example

Probability of passing the midterm is 60% and probability of passing
both the final and the midterm is 45%.
What is the probability of passing the final given the student passed
the midterm?

P (F |M) = P (M,F )/P (M)

= 0.45/0.60

= 0.75
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Independence

Events A and B are independent if P (A,B) = P (A)P (B).

Independent: A: first toss is HEAD; B: second toss is HEAD;

P (A,B) = 0.5× 0.5 = P (A)P (B)

Not Independent: A: first toss is HEAD; B: first toss is HEAD;

P (A,B) = 0.5 6= P (A)P (B)
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Independence

Events A and B are conditionally independent given C if

P (A,B|C) = P (B|C)P (A|C)

Consider two coins2: A regular coin and a coin which always outputs
heads.

A = The first toss is heads;
B = The second toss is heads;
C = The regular coin is used
D = The biased coin is used

Then A and B are conditionally independent given C and given D.

2www.probabilitycourse.com/chapter1/1_4_4_conditional_independence.

php
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Independence

Events A and B are conditionally independent given C if

P (A,B|C) = P (B|C)P (A|C)

Consider a coin which outputs heads if the first toss was heads, and
tails otherwise.

A = The first toss is heads;
B = The second toss is heads;
E = The eventually biased coin is used

Then A and B are conditionally dependent given E.
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Marginalization and Law of Total Probability

Law of Total Probability 3

P (A) =
∑
B

P (A,B) =
∑
B

P (A|B)P (B)

3www.probabilitycourse.com/chapter1/1_4_2_total_probability.php
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Bayes’ Rule

Bayes’ Rule:

P (A|B) =
P (B|A)P (A)

P (B)

P (θ|x) =
P (x|θ)P (θ)

P (x)

Posterior =
Likelihood ∗ Prior

Evidence
Posterior ∝ Likelihood× Prior

11 / 26



Bayes’ Example

Suppose you have tested positive for a disease. What is the probability
you actually have the disease?
This depends on the prior probability of the disease:

P (T = 1|D = 1) = 0.95 (likelihood)

P (T = 1|D = 0) = 0.10 (likelihood)

P (D = 1) = 0.1 (prior)

So P (D = 1|T = 1) =?
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Bayes’ Example

Suppose you have tested positive for a disease. What is the probability
you actually have the disease?

P (T = 1|D = 1) = 0.95 (true positive)

P (T = 1|D = 0) = 0.10 (false positive)

P (D = 1) = 0.1 (prior)

So P (D = 1|T = 1) =?
Use Bayes’ Rule:

P (T = 1) = P (T = 1|D = 1)P (D = 1) + P (T = 1|D = 0)P (D = 0)

= 0.95 ∗ 0.1 + 0.1 ∗ 0.90 = 0.185

P (D = 1|T = 1) =
P (T = 1|D = 1)P (D = 1)

P (T = 1)
=

0.95 ∗ 0.1

P (T = 1)
= 0.51
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Random Variable

How do we connect sample spaces and events to data?
A random variable is a mapping which assigns a real number X(ω) to
each observed outcome ω ∈ Ω

For example, let’s flip a coin 10 times. X(ω) counts the number of
Heads we observe in our sequence. If ω = HHTHTHHTHT then
X(ω) = 6. We often shorten this and refer to the random variable X.
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Expectations

From our example, we see that X does not have a fixed value, but
rather a distribution of values it can take. It is natural to ask questions
about this distribution, such as “What is the average number of heads
in 10 coin tosses?”
This average value is called the expectation and denoted as E[X]. It is
defined as

E[x] =
∑
a∈A

P [X = a]× a

where A represents the set of all possible values X(w) can take.
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Expectation Practice

What is the expected value of a fair die?

X = value of roll

E[X] =
∑

a∈{1,2,3,4,5,6}

1

6
a

=
1

6

6∑
a=1

a

=
21

6
=

7

2
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Linearity of expectations

There are two powerful properties regarding expectations.

1 E[X + Y ] = E[X] + E[Y ].
This holds even if the random variables are dependent.

2 E[cX] = cE[X], where c is a constant.

Note we cannot say anything in general about E[XY ].
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Expectation Practice

What is the expected value of the sum of two dice?
X1 = value of roll 1
X2 = value of roll 2

E[X1 +X2] = E[X1] + E[X2] =
7

2
+

7

2
= 7

(compare this to computing 2× 1
36 + 3× 2

36 + . . . )
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Expectation Practice 2

Suppose there are n students in class, and they each complete an
assignment. We hand back assignments randomly. What is the
expected number of students that receive the correct assignment?
When n = 3? In general?
X = Number of students that get their assignment back
Xi = Student i gets their assignment back

E[X] = E[X1 +X2 + . . .+Xn]

= E[X1] + E[X2] + . . .+ E[Xn]

=
1

n
× n = 1
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Variances

Knowing the expectation can only tell us so much. We have another
quantity used to describe how far off we are from the expected value.
It is defined as follows for a random variable X with E[X] = µ:

Var[x] = E[(X − µ)2]

The variance can be simplified as:

E[(X − µ)2] = E[X2 − 2µX + µ2]

= E[X2]− E[2µX] + E[µ2]

= E[X2]− 2µE[X] + E[µ2]

= E[X2]− µ2
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Variance Properties

Constants get squared:

Var[cX] = c2 Var[X]

For independent random variables X and Y , we have

E[XY ] = E[X]E[Y ]

and

Var[X + Y ] = Var[X] + Var[Y ]

The quantity we encounter during the proof E[XY ]− E[X]E[Y ] is
called the covariance. It is 0 when X and Y are independent. Q: can it
be 0 when X and Y are not independent?
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Variance Properties
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Variance Practice

Consider a particle that starts at position 0. At each time step, the
particle moves one step to the left or one step to the right with equal
probability. What is the variance of the particle at time step n?
X = X1 +X2 + . . .+Xn

Each Xi is 1 or -1 with equal probability.

Var(Xi) = 1

Var(X) =
∑

Var(Xi) = n

The expected squared distance from 0 is n.

23 / 26



Discrete and Continuous Random Variables

Discrete Random Variables

Takes countably many values, e.g., number of heads

Distribution defined by probability mass function (PMF)

Marginalization: p(x) =
∑

y p(x, y)

Continuous Random Variables

Takes uncountably many values, e.g., time to complete task

Distribution defined by probability density function (PDF)

Marginalization: p(x) =
∫
y p(x, y)dy
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I.I.D.

Random variables are said to be independent and identically
distributed (i.i.d.) if they are sampled from the same probability
distribution and are mutually independent.
This is a common assumption for observations. For example, coin flips
are assumed to be i.i.d.
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Probability Distribution Statistics

Mean: First Moment, µ

E[x] =

∞∑
i=1

xip(xi) (univariate discrete r.v.)

E[x] =

∫ ∞
−∞

xp(x)dx (univariate continuous r.v.)

Variance: Second (central) Moment, σ2

Var[x] =

∫ ∞
−∞

(x− µ)2p(x)dx

= E[(x− µ)2]

= E[x2]− E[x]2
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