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Today

@ So far in the course we have adopted a modular perspective, in
which the model, loss function, optimizer, and regularizer are
specified separately.

o Today we begin putting together a probabilistic interpretation of
our model and loss, and introduce the concept of maximum
likelihood estimation.
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Probabilistic modeling of data
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A simple coin flip

o Let’s start with a simple biased coin example.

» You flip a coin N = 100 times and get outcomes {z1,...,zy} where
xz; € {0,1} and x; = 1 is interpreted as heads H.

» Suppose you had Ny = 55 heads and Np = 45 tails. We would like
to think of a model of this phenomena.

» A good model should help us answer questions such as: What is the
probability it will come up heads if we flip again?

» Let’s design a model for this scenario, fit the model. We can use the
fit model to predict the next outcome.
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Model?

@ The coin is possibly loaded. So, we can assume that one coin flip
outcome z is a Bernoulli random variable for some currently
unknown parameter 6 € [0, 1].

p(r=1/0) =60 and p(z=0/0)=1-6

1—x

or more succinctly p(z|f) = 6%(1 — 0)

e It’s sensible to assume that {x1,...,zn} are independent and
identically distributed (i.i.d.) Bernoullis.

e Thus the joint probability of the outcome {x1,...,xx} is

N
p(xlv 7:I:N|0) = Hexz(l - 9)1—;&
i=1
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Loss?

e We call the probability mass (or density for continuous) of the
observed data the likelihood function (as a function of the
parameters 6):

N
L(0) = [J o (1 — 0)'
1=1

o We usually work with log-likelihoods:
N
0(0) = wilogh + (1 — ) log(1 — 6)
i=1
e How can we choose 87 Good values of 6 should assign high
probability to the observed data. This motivates the maximum
likelihood criterion, that we should pick the parameters that
maximize the likelihood:

Onir, = arg max £(6)
0€l0,1]
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Maximum Likelihood Estimation for the Coin Example
o Remember how we found the optimal solution to linear regression

by setting derivatives to zero? We can do that again for the coin
example.

a_d (i\f:x’logﬁ + (1 — ;) log(1l — 9))
de do P

d
=% (Nglog @ + Nrlog(l—6))
_Nu Nt
0 1-9

where Ny =), x; and Ny =N — ) . ;.
e Setting this to zero gives the maximum likelihood estimate:

Ny

Ovt, = ———.
ML Ng + Nt
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Maximum Likelihood Estimation

e Notice, in the coin example we are actually minimizing
cross-entropies!

Oy, = arg max £(6)
0€[0,1]

= arg min —¢(0)
0€[0,1]

N
= arg minz —x;logl — (1 — x;)log(1 — 0)
0€f0,1] ;=

@ This is an example of maximum likelihood estimation.
» define a model that assigns a probability (or has a probability
density at) to a dataset
» maximize the likelihood (or minimize the neg. log-likelihood).
e Many examples we’ve considered fall in this framework! Let’s
consider classification again.

Intro ML (UofT) CSC311-Lec7

8/45



Strategies for classification
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Spam classification
@ If you are a large company that runs an email service, one of the

important predictive problems you may have is the automated detection
of spam email

%
2

Dear Karim,

Ao ~/, e 2 I think we should postpone the board meeting to be held

4 X after Thanksgiving.

Regards,
Anna

Dear Toby,

I have an incredible opportunity for mining 2 Bitcoin a day. Please
Contact me at the earliest at +1 123 321 1555. You won’t want to miss

out on this opportunity.

Regards,
Ark
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Discriminative Classifiers
@ Given inputs x and classes y we can do classification in several ways.
How?

@ Discriminative classifiers try to either:
» learn mappings directly from the space of inputs X to class labels

{0,1,2,..., K}
Features Class probability
z p(ylz)
\/ - postpone, board, meeting, Not spam
o N Thanksgiving
I
mining, Bitcoin, contact, Spam

opportunity
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Generative Classifiers

How about this approach: build a model of “what data for a class looks like”

@ Generative classifiers try to model p(x,y). If we know p(y) we can
easily compute p(x|y).

@ Classification via Bayes rule (thus also called Bayes classifiers)

Probability of feature given label Class label
\
p(zly) Y
= . )
TR \/ postpone, board, meeting, Not spam
/ Thanksgiving
J
- , ™)
/,/ mining, Bitcoin, contact, Spam
H# \ opportunity
J
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Generative vs Discriminative

Two approaches to classification:

e Discriminative approach: estimate parameters of decision
boundary/class separator directly from labeled examples.

» Model p(t|x) directly (logistic regression models)

» Learn mappings from inputs to classes (linear/logistic regression,
decision trees etc)

» Tries to solve: How do I separate the classes?

o Generative approach: model the distribution of inputs
characteristic of the class (Bayes classifier).

» Model p(x|t)
» Apply Bayes Rule to derive p(t|x).

» Tries to solve: What does each class ”look” like?

o Key difference: is there a distributional assumption over inputs?
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Naive Bayes
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A Generative Model: Bayes Classifier

e Aim to classify text into spam/not-spam (yes c=1; no ¢=0)

o Example: “You are one of the very few who have been selected as

a winners for the free $1000 Gift Card.”

o Use bag-of-words features, get binary vector x for each email

e Vocabulary:

>

vV VY Y Y VY VY VY VY

LLa’” : 1

“winner”: 1

“winter”: 0
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Bayes Classifier

T

e Given features x = [x1,x9, -+ ,xp|’ we want to compute class

probabilities using Bayes Rule:
Pr. words given class

_p(x,0) p(xc) p(c)
o) =5 T P(%)

Pr. class given words

e More formally

Class likelihood x prior

posterior = -
Evidence

e How can we compute p(x) for the two class case? (Do we need to?)
p(x) = p(x|e = 0)p(c = 0) + p(x|c = 1)p(c = 1)

e To compute p(c|x) we need: p(x|c) and p(c)
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Naive Bayes

o Assume we have two classes: spam and non-spam. We have a
dictionary of D words, and binary features x = [x1,...,zp] saying
whether each word appears in the e-mail.

o If we define a joint distribution p(c, x1,...,xp), this gives enough
information to determine p(c) and p(x|c).

e Problem: specifying a joint distribution over D + 1 binary
variables requires 2°+1 — 1 entries. This is computationally
prohibitive and would require an absurd amount of data to fit.

e We’d like to impose structure on the distribution such that:

» it can be compactly represented
» learning and inference are both tractable
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Naive Bayes

e Naive assumption: Naive Bayes assumes that the word features z;

are conditionally independent given the class c.
» This means x; and z; are independent under the conditional
distribution p(x|c).
» Note: this doesn’t mean they’re independent.
» Mathematically,

p(e;x1, .. xp) = ple)p(zifc) - - p(zple).

e Compact representation of the joint distribution
» Prior probability of class: p(c =1) =7 (e.g. spam email)
» Conditional probability of word feature given class:
p(z; = 1|c) = 8. (e.g. word "price” appearing in spam)
» 2D + 1 parameters total (before 2P+1 — 1)
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Bayes Nets

e We can represent this model using an directed graphical model, or
Bayesian network:

e This graph structure means the joint distribution factorizes as a
product of conditional distributions for each variable given its
parent(s).

@ Intuitively, you can think of the edges as reflecting a causal
structure. But mathematically, this doesn’t hold without
additional assumptions.

Intro ML (UofT) CSC311-Lec7 19 /45



Naive Bayes: Learning

e The parameters can be learned efficiently because the
log-likelihood decomposes into independent terms for each feature.

0(6) = logp(c" Zlog{p (D1 )p(e ™) }

= 3 tog {p(e) T 1)}

1=1 j=1

{logp —I-Zlogp (Z)|c )]

I
<M2

i=1 Jj=1
D N
= Zlogp(c(”) +37 > logp(al? [ )
i=1 j=1 i=1
Bernoulli log-likelihood Bernoulli log-likelihood
of labels for feature z;

e Each of these log-likelihood terms depends on different sets of
parameters, so they can be optimized independently.
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Naive Bayes: Learning

@ We can handle these terms separately. For the prior we maximize:
ity logp(et)

@ This is a minor variant of our coin flip example. Let p(c(i) —1)=m.
Note p(c) = 7 (1 — )L,
e Log-likelihood:

N
Zlogp( @) Zc 10g7r+2 (1—cP)log(1 — )
i=1

e Obtain MLEs by setting derivatives to zero:

S e = 1] _ # spams in dataset
N ~ total # samples

T =

Intro ML (UofT) CSC311-Lec7 21 /45



Naive Bayes: Learning

Each 0;.’s can be treated separately: maximize Zfil log p(:ngi)| c®)

This is (again) a minor variant of our coin flip example.

' ‘ P (0
Let 0j. = p(m‘y) =1|¢). Note p(xg.l) lc) = 9;33 (1- ejc)l—xj .
Log-likelihood:

N N
Zlogp(mg-” | = Z < {a:;” log0;1 + (1 — x;”) log(1 — Gjl)}
i=1 i=1

N
+ Z(l — ) {:U;Z) log 00 + (1 — I;”) log(1 — Hjo)}
i=1

Obtain MLEs by setting derivatives to zero:

5o > H[wg-i) =1& = c| for c=1 Fword j appears in spams
Je S e = ¢ N # spams in dataset
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Naive Bayes: Inference

e We predict the category by performing inference in the model.

Apply Bayes’ Rule:

plopx|e)  pTLplxle)

Pel) = S o)~ 3 pie) [ ey |

We need not compute the denominator if we’re simply trying to
determine the most likely c.

@ Shorthand notation:

)

(c]x) x p(c H (xjc)

For input x, predict by comparing the values of p(c) Hle p(zj|c)
for different ¢ (e.g. choose the largest).
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Naive Bayes

Naive Bayes is an amazingly cheap learning algorithm!

Training time: estimate parameters using maximum likelihood

» Compute co-occurrence counts of each feature with the labels.
» Requires only one pass through the data!

Test time: apply Bayes’ Rule
» Cheap because of the model structure. (For more general models,
Bayesian inference can be very expensive and/or complicated.)

We covered the Bernoulli case for simplicity. But our analysis
easily extends to other probability distributions.

e Unfortunately, it’s usually less accurate in practice compared to
discriminative models due to its “naive” independence assumption.
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Bayesian Parameter Estimation
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MLE issue: Data Sparsity

e Maximum likelihood has a pitfall: if you have too little data, it
can overfit.

e E.g., what if you flip the coin twice and get H both times?

Ny 2

= = :]_
Ng+Npr  2+0

O

@ Because it never observed T, it assigns this outcome probability 0.
This problem is known as data sparsity.
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Bayesian Parameter Estimation

e In maximum likelihood, the observations are treated as random
variables, but the parameters are not.

e The Bayesian approach treats the parameters as random variables
as well. 3 is the set of parameters in the prior distribution of 6.

o To define a Bayesian model, we need to specify two distributions:
» The prior distribution p(@), which encodes our beliefs about the
parameters before we observe the data
» The likelihood p(D|0), same as in maximum likelihood
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Bayesian Parameter Estimation

o When we update our beliefs based on the observations, we
compute the posterior distribution using Bayes’ Rule:

p(0)p(D|6)
[ p(6)p(D]6')d6"

p(0|D) =

o We rarely ever compute the denominator explicitly. In general, it
is computationally intractable.
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Bayesian Parameter Estimation

o Let’s revisit the coin example. We already know the likelihood:
L(8) = p(D|6) = 6™ (1 — 6)""

e It remains to specify the prior p(@).
» We can choose an uninformative prior, which assumes as little as
possible. A reasonable choice is the uniform prior.
» But our experience tells us 0.5 is more likely than 0.99. One
particularly useful prior that lets us specify this is the beta
distribution:

I'(a+b)

a—1 b—1
r((zmme (1=6)""

p(6;a,b) =

» This notation for proportionality lets us ignore the normalization
constant:

p(0;a,b) < 97711 — )L
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Bayesian Parameter Estimation

@ Beta distribution for various values of a, b:
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@ Some observations:

» The expectation E[f] = a/(a + b)
» The distribution gets more peaked when a and b are large.
» The uniform distribution is the special case where a = b = 1.

@ The beta distribution is used for is as a prior for the Bernoulli distribution.
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Bayesian Parameter Estimation

e Computing the posterior distribution:

p(0|D) o p(8)p(D|0)
x [6v71 (1= 0)"| [6Vn (1 - )]

_ 9a71+NH(1 _ 0)b71+NT'

e This is just a beta distribution with parameters Ny + a and
Nrp + 0.
@ The posterior expectation of @ is:
N H+a
Ny + Nr+a+b
o The parameters a and b of the prior can be thought of as
pseudo-counts.
» The reason this works is that the prior and likelihood have the same

functional form. This phenomenon is known as conjugacy
(conjugate priors), and it’s very useful.

E[0|D] =
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Bayesian Parameter Estimation

Bayesian inference for the coin flip example:

Small data setting Large data setting
Npg =2, Np =0 Npg =55, Ny =45
3.0 9
— Prior — Prior
2.5/ — Likelihood 8l — Likelihood
— Posterior 7|| — Posterior
2.0 6
5
15
4
1.0 3
0.5 ?
. ) j

0‘8.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

When you have enough observations, the data overwhelm the prior.
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Maximum A-Posteriori Estimation

e Maximum a-posteriori (MAP) estimation: find the most likely
parameter settings under the posterior

3.0 :
— Prior
a5l — Likelihood
— Posterior
2.0
1.5
1.0
0.5
0'8.0 0.2 0.4 0.6 0.8 1.0
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Maximum A-Posteriori Estimation

e This converts the Bayesian parameter estimation problem into a
maximization problem
Oniap = arg mgx p(0|D)
= arg max p(6,D)
= argmax p(8) p(D [ 0)
= argmax log p(0) + log p(D | 0)
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Maximum A-Posteriori Estimation

e Joint probability in the coin flip example:

log p(6, D) = log p(0) + log p(D | )
= Const + (a — 1) log 0 + (b — 1) log(1 — 0) + Ny log 0 + Nz log(1l — )
= Const + (Ng +a — 1)logf + (Nr + b — 1) log(1 — 6)

o Maximize by finding a critical point

Ng+a-—1 NT+b*1
0 1-46

d
0= T logp(0,D) =

e Solving for 6,

Ng+a—-1
NH+NT+a+b—2

Oviap =
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Maximum A-Posteriori Estimation

Comparison of estimates in the coin flip example:

Formula NH:2,NT:0 NH:55,NT:45
) N 55 __
Onir, Nt 1 25 =0.55
Np+ 4 ~ 57
E[6|D] NHJFJI{[Tf:aer 5 ~0.67 101 ~ 0.548

2 Ny+a—1
OMAP W Nrtati—2

[N

— 56
=0.75 105 ~ 0.549

éM AP assigns nonzero probabilities as long as a,b > 1.

Intro ML (UofT) CSC311-Lec7 36 /45



Multivariate Gaussian Distribution
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Classification: Diabetes Example

@ Observation per patient: White blood cell count & glucose value.

10 20 30 40 50 80 70

@ p(x |t =k) for each class is shaped like an ellipse
= we model each class as a multivariate Gaussian
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Univariate Gaussian distribution

@ Recall the Gaussian, or normal,

distribution:
1 (x — p)?
N(x; p,0%) = ex (—
(w5 p,07) 5y P 572
e Parameterized by mean p and B
variance o?. "

@ The Central Limit Theorem says
that sums of lots of independent
random variables are
approximately Gaussian. L

T ep---

@ In machine learning, we use
Gaussians a lot because they make
the calculations easy.
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Multivariate Mean and Covariance

@ Mean
M1
p=Ex=|:
Hd
@ Covariance
of o012 -+ oD
. o12 03 -+ o2
Y =Cov(x) =E[(x—p)(x—p) |=
op1 Op2 - 0%

@ The statistics (u and 3) uniquely define a multivariate Gaussian (or
multivariate Normal) distribution, denoted A (u, ¥) or N (x; p, X)

» This is not true for distributions in general!
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Multivariate Gaussian Distribution

e PDF of the multivariate Gaussian distribution:

1 1 _
N(XSHaE):WeXP —§(X—M)TE fx—p)

AN
/’h;'l”

XXX
Vi 'o:o“ S

g
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Gaussian Intuition: (Multivariate) Shift + Scale

@ Recall that in the univariate case, all normal distributions are shaped
like the standard normal distribution

@ The densities are related to the standard normal by a shift (u), a scale
(or stretch, or dilation) o, and a normalization factor
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Gaussian Intuition: (Multivariate) Shift + Scale

@ The same intuition applies in the multivariate case.

@ We can think of the multivariate Gaussian as a shifted and “scaled”
version of the standard multivariate normal distribution.

» The standard multivariate normal has p =0 and ¥ =1
@ Multivariate analog of the shift is simple: it’s a vector p

@ But what about the scale?

» In the univariate case, the scale factor was the square root of the
variance: o = Vo2

» But in the multivariate case, the covariance X is a matrix!
PR .
Does 32 exist, and can we scale by it?
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Multivariate Scaling (Intuitive)

(optional draw-on slide for intuition)

We call a matrix “positive definite” if it scales the space in orthogonal
directions. The univariate analog is positive scalar o > 0.
Consider, e.g., how these two matrices transform the orthogonal vectors:

Consider 2 0 1 05
matrix: ( > ( 0.5 1 )

0 0.5
Cor}sider 1 0 1 1
action on: (0) 1 (1) (1) 1 <_1>

Draw action

on slide:

Notice: both matrices are symmetric!
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Multivariate Scaling (Formal) (details optional)

We summarize some definitions/results from linear algebra (without proof).
Knowing them is optional, but they may help with intuition (esp. for PCA).

@ Definition. Symmetric matrix A is positive semidefinite if x' Ax > 0 for all
non-zero x. It is positive definite if x Ax > 0 for all non-zero x.

» Any positive definite matrix is positive semidefinite.
» Positive definite matrices have positive eigenvalues, and positive
semidefinite matrices have non-negative eigenvalues.
» For any matrix X, XX and XX are positive semidefinite.
@ Theorem (Unique Positive Square Root). Let A be a positive semidefinite

real matrix. Then there is a unique positive semidefinite matrix B such that
A =B B =BB. We call A2 2 B the positive square root of A.

@ Theorem (Spectral Theorem). The following are equivalent for A € R4*¢:

1. A is symmetric.

2. RP has an orthonormal basis consisting of the eigenvectors of A.

3. There exists orthogonal matrix Q and diagonal matrix A such that
A = QAQT. This is called the spectral decomposition of A.

» The columns of Q are (unit) eigenvectors of A.
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