CSC 311: Introduction to Machine Learning
Lecture 6 - Neural Nets II

Roger Grosse Rahul G. Krishnan ~ Guodong Zhang

University of Toronto, Fall 2021

Intro ML (UofT) CSC311-Lec6 1/48

Training neural networks with backpropagation

Intro ML (T CSC311-Lec6 2/48

Recap: Gradient Descent

@ Recall: gradient descent moves opposite the gradient (the direction of
steepest descent)

0

-915000 -500 0 500\\ 1000 1500 ;000
@ Weight space for a multilayer neural net: one coordinate for each weight
or bias of the network, in all the layers

@ Conceptually, not any different from what we’ve seen so far — just
higher dimensional and harder to visualize!

@ We want to define a loss £ and compute the gradient of the cost dJ/dw,
which is the vector of partial derivatives.

» This is the average of d£/dw over all the training examples, so in
this lecture we focus on computing d£/dw.

Intro ML (UofT) CSC311-Lec6 3/48

Univariate Chain Rule

o Let’s now look at how we compute gradients in neural networks.

e We've already been using the univariate Chain Rule.

o Recall: if f(x) and x(¢) are univariate functions, then

d dfds
E (z(t) = e dr

Intro ML (UofT) CSC311-Lec6 4/48

Univariate Chain Rule

Recall: Univariate logistic least squares model

z=wx+b
y=o0(2)

1 2
L=5-1)

Let’s compute the loss derivatives g—f}, %—’g

Intro ML (UofT) CSC311-Lec6 5/48

Univariate Chain Rule

How you would have done it in calculus class

1
ﬁ:i(a(warb)*t)Q aL o1 2
oL a1 o ~ap [T
= = | Z(o(wz +b) —t)?
0 7w |2 10 2
o :5%(0(w1+b)*t)
= 5 50 (o(we +b) - t)? b
) :(U(wx_:,_b)_t)%(a(wx-‘rb)—t)
= (o(wz + b) — t)—aw (o(wz +b) —1t)

= (o(wz +b) — t)o’ (wx + b)%(w:c +b)

= (o(wz +b) —)0’ (wa + b>a%<wx T (o(wn 4 b) —)0’ (wr 4 b)

— (J(wx —+ b) — t)a’(wm + b)l’

What are the disadvantages of this approach?

Intro ML (UofT) CSC311-Lec6 6 /48

Univariate Chain Rule

A more structured way to do it

Computing the derivatives:
Computing the loss:

z=wx+b dy
AL _dtdy _de
1 dz dy dz dy
L= 30— oL _dtd: _dt
ow dz dw dz
oL dLdz dL
9 dzdb dz

y=o0(2)

Remember, the goal isn’t to obtain closed-form solutions, but to be
able to write a program that efficiently computes the derivatives.

Intro ML (UofT) CSC311-Lec6 7/48

Univariate Chain Rule

o We can diagram out the computations using a computation
graph.

@ The nodes represent all the inputs and computed quantities, and
the edges represent which nodes are computed directly as a
function of which other nodes.

Compute Loss
_—

t

Computing the loss:

z=wx+b £
y=0(2) \
L

Compute Derivatives
—

Intro ML (UofT) CSC311-Lec6 8 /48

Univariate Chain Rule

A slightly more convenient notation:
@ Use 7 to denote the derivative d£/dy, sometimes called the error signal.

@ This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

Computing the loss: Computing the derivatives:

z=wxr+b

y=y—t

y=o0(z) z2=750"(2)
1 o
£:§(y—t)2 W=Zx
b=%

Intro ML (UofT) CSC311-Lec6 9/48

Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 17
This requires the Multivariate Chain Rule!

Lo-Regularized regression

Wzﬁy_’ﬁ_’ﬁrcg
w :R/
z=wxr+b
y=o(z)
L=yt
R = %w2
Lreg = L+ AR

Intro ML (UofT)

Softmax regression

20 = E WejTj + by
J

e’k
Yp = —=——
2ope

L= —Ztklogyk
k

CSC311-Lec6 10 /48

Multivariate Chain Rule

e Suppose we have a function f(z,y) and functions x(¢) and y(¢).
(All the variables here are scalar-valued.) Then

d (9fdw af dy / \
&f(:):(t),y(t)) 97 dr +87y$ \ /

o Example:
f@,y) =y +e”
x(t) = cost
y(t) =¢*
e Plug in to Chain Rule:
ar _ofde ofdy
dt Oxdt Oy dt
= (ye™) - (—sint) + (1 + ze™) - 2t

Intro ML (UofT) CSC311-Lec6 11 /48

Multivariable Chain Rule

e In the context of backpropagation:

Mathematical expressions
to be evaluated

df _ofde ofdy

dt Oz dt oydt N, 7
\ NN f
Values already computed | \ -
by our program / y/

@ In our notation:

o,

Y

ez g
= r— _—
a YA

Intro ML (UofT) CSC311-Lec6

12 /48

Backpropagation

Full backpropagation algorithm:
Let v1,...,vn be a topological ordering of the computation graph
(i.e. parents come before children.)

vy denotes the variable we're trying to compute derivatives of (e.g. loss).

Fori=1,...,N
forward pass
Compute v; as a function of Pa(v;)

Fori=N-1,...,1

— —_ Av;
Ui = ZjeCh(vl) Vi Bo;

backward pass

Intro ML (UofT) CSC311-Lec6 13 /48

Backpropagation

Example: univariate logistic least squares regression

" t Backward pass:
Qz—’y_’ﬁ_’['rcg _
/ i s Lieg =1 . _dy
Uu >R m_T ALreg =V,
F d = AR =50'(2)
orward pass: _ Ereg A . % ﬁ@
z=wr+b L ="Cres dLreg - T ow dw
y=o(z) dc =zZr+Ru
= ['rcg _ o
L=t(y—1)’ d b=z%
2 y=L— b
— 2" =Ly-1)
Lrecg =L+ AR

Intro ML (UofT) CSC311-Lec6 14 /48

Backpropagation

Z<;)\”“\11) bm\“‘\j Backward pass:
01 1 t B
3 N \ L=1

T1——>21—>hi—Y1.

>< >f£ Uk =L (yr — ti)

.I'Q—»ZQ—»I’LQ—.:I/Q W
m//uT {“)/T to Wy =7k hi
ey

“'ﬂlf 2 (2) b<2) o

u'.(>1>) w'? 21 k — Yk
Forward pass: o = Zy?wff;)
¢)) (1) K
2 = w; x; +b; v
R == ()
hi = o(z) w)) =z
= w2 h 47 rog.

1 2
L= 5;(%*%)

Intro ML (UofT) CSC311-Lec6 15 /48

Backpropagation

In vectorized form:

w Wij) t Backward pass:
L£L=1
XY L=1
y=~L(y—t)
b(l) b(2) W(Q) _ yhT
Forward pass: b — v
z = Wx + b h=w®@Ty
h =o(z) Z=hoo(z)
y =W®h 4+ b® WO =zx"
1 T
L=yl bl =z

Intro ML (UofT) CSC311-Lec6

16 /48

Computational Cost

e Computational cost of forward pass: one add-multiply operation
per weight
Z; = Z w; CL‘] + b

e Computational cost of backward pass: two add-multiply
operations per weight

hi =Y Frwg
k

e Rule of thumb: the backward pass is about as expensive as two
forward passes.

e For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.

Intro ML (UofT) CSC311-Lec6 17 /48

Backpropagation

@ Backprop is the algorithm for efficiently computing gradients in neural
nets.

@ Gradient descent with gradients computed via backprop is used to train
the overwhelming majority of neural nets today.

» Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

@ Despite its practical success, backprop is believed to be neurally
implausible.

Intro ML (UofT) CSC311-Lec6 18 /48

Pytorch, Tensorflow, et al. (Optional)

@ If we construct our networks out of a series of “primitive” operations
(e.g., add, multiply) with specified routines for computing derivatives,
backprop can be done in a completely mechanical, and automatic, way.

@ This is called autodifferentiation or just autodiff.
@ There are many autodiff libraries (e.g., PyTorch, Tensorflow, Jax, etc.)

@ Practically speaking, autodiff automates the backward pass for you —
but it’s still important to know how things work under the hood.

@ In CSC413, you'll learn more about how autodiff works and use an
autodiff framework to build complex neural networks.

Intro ML (UofT) CSC311-Lec6 19 /48

Convolutional Networks

Intro ML (Uof CSC311-Lec6 20 /48

Overview

What makes vision hard?

@ Vison needs to be robust to a lot of transformations or distortions:

change in pose/viewpoint

change in illumination

deformation

occlusion (some objects are hidden behind others)

vy vy vYyy

e Many object categories can vary wildly in appearance (e.g. chairs)

o Geoff Hinton: “Imaging a medical database in which the age of the
patient sometimes hops to the input dimension which normally
codes for weight!”

Intro ML (UofT) CSC311-Lec6 21 /48

Overview

Suppose we want to train a network that takes a 200 x 200 RGB
image as input.

| 1000 hidden units |

densely connected

200
200

| 3

What is the problem with having this as the first layer?

e Too many parameters! Input size = 200 x 200 x 3 = 120K.
Parameters = 120K x 1000 = 120 million.

e What happens if the object in the image shifts a little?

Intro ML (UofT)

CSC311-Lec6 22 /48

Overview

The same sorts of features that are useful in analyzing one part of the
image will probably be useful for analyzing other parts as well.

E.g., edges, corners, contours, object parts

We want a neural net architecture that lets us learn a set of feature
detectors that are applied at all image locations.

Intro ML (UofT) CSC311-Lec6 23 /48

Convolution Layers

Fully connected layers:

Each hidden unit looks at the entire image.

Intro ML (UofT) CSC311-Lec6 24 /48

Convolution Layers

Locally connected layers:

Each column of hidden units looks at a small region of the image.

Intro ML (UofT) CSC311-Lec6 25 /48

Convolution Layers

Convolution layers:

Each column of hidden units looks at a small region of the image, and
the weights are shared between all image locations.

Intro ML (UofT) CSC311-Lec6 26 /48

Going Deeply Convolutional

Convolution layers can be stacked:

Intro ML (UofT) CSC311-Lec6 27 /48

Convolution

We'’ve already been vectorizing our computations by expressing them
in terms of matrix and vector operations. Convolution is another useful
high-level operation.

Let’s look at the 1-D case first. If ¢ and b are two arrays, the
convolution is defined as:

(axb) = Z arbi_r.

Note: indexing conventions are inconsistent. We’ll explain them in
each case.

Intro ML (UofT) CSC311-Lec6 28 /48

Convolution

Method 1: translate-and-scale

Intro ML (UofT) CSC311-Lec6 29 /48

Convolution

Method 2: flip-and-filter

Intro ML (UofT) CSC311-Lec6 30 /48

Convolution

Some properties of convolution:

o Commutativity
axb=0bxa

o Linearity
a* (A1 + Aoc) = Ajax b+ Aaa * ¢

Intro ML (UofT) CSC311-Lec6 31/48

2-D Convolution

2-D convolution is defined analogously to 1-D convolution.

If A and B are two 2-D arrays, then:

(A * B)zj = Z Z AstBi—s,j—t-
s t

Intro ML (UofT) CSC311-Lec6 32 /48

2-D Convolution

Method 1: Translate-and-Scale

o
4
N
N

\
L
olnv|o|=
o
IN
\
w

Intro ML (UofT) CSC311-Lec6 33 /48

2-D Convolution

Method 2: Flip-and-Filter (note that when used as a neural net layer,
the flipping step is often omitted)

131 T2
0f-1]1| 5k
0 |-1
2|21
10
3|1 X 2 1 115|712
-1 1 O—T2p-4
21211 2|6 |4 |-3
o2 |2 | 1

Intro ML (UofT) CSC311-Lec6 34 /48

2-D Convolution

The thing we convolve by is called a kernel, or filter.

What does this convolution kernel do?

o(1]0
>l< 4
0j1|0

Intro ML (UofT) CSC311-Lec6 35/48

2-D Convolution

The thing we convolve by is called a kernel, or filter.

What does this convolution kernel do?

o(1]0
>l< 4
0j1|0

Intro ML (UofT) CSC311-Lec6 35 /48

2-D Convolution

What does this convolution kernel do?

0o|-1]0
sk |-1]8]-
0[-1]0

Intro ML (UofT) CSC311-Lec6 36 /48

2-D Convolution

What does this convolution kernel do?

0o|-1]0
sk |-1]8]-
0[-1]0

Intro ML (UofT) CSC311-Lec6 36 /48

2-D Convolution

What does this convolution kernel do?

0[-1]0
ko [-1] 4]
0|10

Intro ML (UofT) CSC311-Lec6 37 /48

2-D Convolution

What does this convolution kernel do?

0[-1]0
ko [-1] 4]
0|10

Intro ML (UofT) CSC311-Lec6 37 /48

2-D Convolution

What does this convolution kernel do?

0| -1
%k |2]0]-2
1101

Intro ML (UofT) CSC311-Lec6 38 /48

2-D Convolution

What does this convolution kernel do?

1]0]-1
%k |2]0]-2
1101

Intro ML (UofT) CSC311-Lec6 38 /48

Convolutional networks

Let’s finally turn to convolutional networks. These have two kinds of
layers: detection layers (or convolution layers), and pooling layers.

The convolution layer has a set of filters. Its output is a set of feature
maps, each one obtained by convolving the image with a filter.

convolution

Intro ML (UofT) CSC311-Lec6 39 /48

Convolutional networks
Let’s finally turn to convolutional networks. These have two kinds of
layers: detection layers (or convolution layers), and pooling layers.

The convolution layer has a set of filters. Its output is a set of feature
maps, each one obtained by convolving the image with a filter.

Example first-layer filters

(Zeiler and Fergus, 2013, Visualizing and

convolution

understanding convolutional networks)

Intro ML (UofT) CSC311-Lec6 39 /48

Convolutional networks

It’s common to apply a linear rectification nonlinearity: y; = max(z;,0)

H Why might we do this?

convolution linear
rectification

convolution layer

Intro ML (UofT) CSC311-Lec6 40 /48

Convolutional networks

It’s common to apply a linear rectification nonlinearity: y; = max(z;,0)

Why might we do this?

@ Convolution is a linear operation.
Therefore, we need a nonlinearity,
otherwise 2 convolution layers
would be no more powerful than
1.

convolution linear

rectification @ Two edges in opposite directions

shouldn’t cancel

convolution layer

Intro ML (UofT) CSC311-Lec6 40 /48

Pooling layers

The other type of layer in a pooling layer. These layers reduce the size
of the representation and build in invariance to small transformations.

Most commonly, we use max-pooling, which computes the maximum
value of the units in a pooling group:

Yi = . ~Max “j
j in pooling group

Intro ML (UofT) CSC311-Lec6 41 /48

Convolutional networks

convolution linear max convolution
rectification pooling
convolution layer pooling layer

Intro ML (UofT) CSC311-Lec6 42 /48

Convolutional networks

Because of pooling, higher-layer filters can cover a larger region of the input
than equal-sized filters in the lower layers.

convolution linear max convolution
rectification pooling
convolution layer pooling layer

Intro ML (UofT) CSC311-Lec6 43 /48

Equivariance and Invariance

We said the network’s responses should be robust to translations of the
input. But this can mean two different things.

e Convolution layers are equivariant: if you translate the inputs, the
outputs are translated by the same amount.

e We'd like the network’s predictions to be invariant: if you
translate the inputs, the prediction should not change.

e Pooling layers provide invariance to small translations.

Intro ML (UofT)

CSC311-Lec6 44 /48

Convolution Layers

Each layer consists of several feature maps, or channels each of which is
an array.

o If the input layer represents a grayscale image, it consists of one
channel. If it represents a color image, it consists of three channels.

Each unit is connected to each unit within its receptive field in the
previous layer. This includes all of the previous layer’s feature maps.

Intro ML (UofT) CSC311-Lec6 45 /48

LeNet

Here’s the LeNet architecture, which was applied to handwritten digit
recognition on MNIST in 1998:

C3: f. maps 16@10x10
C1: feature maps - S4: . maps 16@5x5
e 6@28x28 p— e o1
CT e . layer .
6@14x14 | on T F6: layer ouTPuT

Full conrl-ection Gaussian
Convolutions Subsampling Convolutions Subsampling Full connection

Intro ML (i CSC311-Lec6 46 / 48

AlexNet

@ AlexNet, essentially like LeNet but scaled up in every way (more layers, more
units, more connections, etc.):

204 2048 \dense

dense dense|

1000

192 128 Max

Max 128 Max pooling
pooling pooling

204 2048

(Krizhevsky et al., 2012)

@ AlexNet’s stunning performance on the ImageNet competition is what got
everyone excited about deep learning in 2012.

Intro ML (Uof CSC311-Lec6 47 /48

Classification

ImageNet results over the years. There are 1000 classes. Note that errors are top-5
errors (the network gets to make 5 guesses), so chance = 0.5%.

Year Model Top-5 error
2010 Hand-designed descriptors + SVM 28.2%
2011 Compressed Fisher Vectors + SVM 25.8%
2012 AlexNet 16.4%
2013 a variant of AlexNet 11.7%
2014 GoogLeNet 6.6%
2015 deep residual nets 4.5%

Human-level performance is around 5.1%.

They stopped running the object recognition competition because the performance

is already so good.

Intro ML (UofT) CSC311-Lec6 48 / 48

