CSC 311: Introduction to Machine Learning
Lecture 5 - Linear Models III, Neural Nets I

Roger Grosse Rahul G. Krishnan ~ Guodong Zhang

University of Toronto, Fall 2021

Intro ML (UofT) CSC311-Lech

1/49

Multiclass Classification and Softmax Regression

Intro ML (T CSC311-Lech 2/49

Overview

o Classification: predicting a discrete-valued target

» Binary classification: predicting a binary-valued target
» Multiclass classification: predicting a discrete(> 2)-valued target

e Examples of multi-class classification

» predict the value of a handwritten digit
» classify e-mails as spam, travel, work, personal

Intro ML (UofT) CSC311-Lech 3/49

Multiclass Classification

o Classification tasks with more than two categories:

cOwli N (4A 12

puzen 2233

26794977658

AT IAWA RS

89378409497

Intro ML (UofT) CSC311-Lech 4/49

Multiclass Classification

o Targets form a discrete set {1,..., K}.

e It’s often more convenient to represent them as one-hot vectors, or
a one-of-K encoding;:

t=(0,...,0,1,0,...,0) e RE

~
entry k is 1

Intro ML (UofT) CSC311-Lech 5/49

Multiclass Linear Classification

We can start with a linear function of the inputs.

Now there are D input dimensions and K output dimensions, so
we need K x D weights, which we arrange as a weight matrix W.

o Also, we have a K-dimensional vector b of biases.
@ A linear function of the inputs:
D
2k = Zwijj + bk for k= 1,2, ...,K
j=1

We can eliminate the bias b by taking W € RE*(P+1) and adding
a dummy variable zg = 1. So, vectorized:

z=Wx+b orwithdummy zo =1 z=Wx

Intro ML (UofT) CSC311-Lech 6 /49

Multiclass Linear Classification

o How can we turn this linear prediction into a one-hot prediction?

e We can interpret the magnitude of z; as an measure of how much
the model prefers k as its prediction.

e If we do this, we should set

)1 i=argmaxy 2y
vi 0 otherwise

o Exercise: how does the case of K = 2 relate to the prediction
rule in binary linear classifiers?

Intro ML (UofT) CSC311-Lech 7/49

Softmax Regression

@ We need to soften our predictions for the sake of optimization.

o We want soft predictions that are like probabilities, i.e., 0 < yp <1
and).y = 1.

e A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:

e’k

yr = softmax(z1,...,2x)r = e
k/

» Outputs can be interpreted as probabilities (positive and sum to 1)

» If zj, is much larger than the others, then softmax(z); ~ 1 and it
behaves like argmax.

» Exercise: how does the case of K = 2 relate to the logistic
function?

o The inputs z; are called the logits.

Intro ML (UofT) CSC311-Lech 8 /49

Softmax Regression

o If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function:

K
Lop(y,t) == trlogys
k=1

= —t"(logy),

where the log is applied elementwise.

o Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.

Intro ML (UofT) CSC311-Lech 9 /49

Softmax Regression

e Softmax regression (with dummy z¢ = 1):

z = Wx
y = softmax(z)
Lep =t (logy)
o Gradient descent updates can be derived for each row of W:

8ECE . 8['CE] azk

— — t .
(9Wk 8zk 6wk (yk k) X
LS)0
Wi — Wi — OzN ;(yk — 1,)X(Z)

e Similar to linear/logistic reg (no coincidence) (verify the update)

Intro ML (UofT) CSC311-Lech 10 /49

Convexity

Intro ML ({ CSC311-Lech 11 /49

When are critical points optimal?

critical
point

critical
point

local
maximum

local
minimum

critical
point

global
minimum

e Gradient descent finds a critical point, but it may be a local
optima.

e Convexity is a property that guarantees that all critical points are
global minima.

Intro ML (UofT) CSC311-Lech

12 /49

Convex Sets

N\

@ A set S is convex if any line segment connecting points in S lies
entirely within S. Mathematically,

X1,x2€S = Ax1+(1—-A)x2€8 for0< A< 1.

e A simple inductive argument shows that for x1,...,xy € S,
weighted averages, or convex combinations, lie within the set:

AMxX)+ -+ Avxy €S for \; >0, \i+--- Ay =1.

Intro ML (UofT) CSC311-Lech 13 /49

Convex Functions

@ A function f is convex if for any xg,x; in the domain of f,

F((1 = N)xo + Ax1) < (1= N)f(x0) + Af(x1)

(z):
e Equivalently, the set of i ;
points lying above the t;fA()Tf()'T“) N R
@ . : !
graph of f is convex. ’ ’ §
o Intuitively: the function 1
is bowl-shaped. fa-vee | 0NC
+ Azy) B
X0 (1= Nz Ea
+ Az
Intro ML (UofT) CSC311-Lecb 14 /49

Convex Functions

o We just saw that the
least-squares loss

$(y — t)? is convex as . .
a function of y (L=MLwo) | N\ L —/
+ AL(wr) : '

e For a linear model,
z=w ' x+bis a linear
function of w and b. If L((1 = Ao
the loss function is +)
convex as a function of
z, then it is convex as a
function of w and b. o W, W

,,

Intro ML (UofT) CSC311-Lech 15 /49

Tracking model performance

Intro ML () CSC311-Lech 16 /49

Progress during learning

@ Recall we introduced training curves as a way to track progress
during learning.

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

training
cost

convergence

iteration #

e The training criterion (e.g. squared error, cross-entropy) is chosen
partly to be easy to optimize.

e We may which to track other metrics which better match what
we’re interested in, even if we can’t directly optimize them.

Intro ML (UofT) CSC311-Lech 17 /49

Metrics for Binary classification

@ Recall that the average of 0—1 loss is the error rate, or fraction
incorrectly classified.
» We noted we couldn’t optimize it, but it’s still a useful metric to
track.
» Equivalently, we can track the accuracy, or fraction correct.
» Typically, the error rate behaves similarly to the cross-entropy loss,
but this isn’t always the case.

e Another way to break down the accuracy:
» P=num positive; N=num negative; TP=true positives; TN=true
negatives

» FP=false positive or a type I error
» FN=false negative or a type II error

TP+TN TP+TN
- P+N TP+TN+FP+FN

e Discuss: When might accuracy present a misleading picture of
performance?

Intro ML (UofT) CSC311-Lech 18 /49

The limitations of accuracy

e Accuracy is highly sensitive to class imbalance.

» Suppose you're trying to screen patients for a particular disease,
and under the data generating distribution, 1% of patients have
that disease.

» How can you achieve 99% accuracy?

» You are able to observe a feature which is 10x more likely in a
patient who has cancer. Does this improve your accuracy?

@ Sensitivity and specificity are useful metrics even under class

imbalance.
> Sensitivity = m [True positive rate]
» Specificity = = J\? —rp [True negative rate]

v

What happens if our classification problem is not truly
(log-)linearly seperable?
How do we pick a threshold for y = o(z)?

>

Intro ML (UofT) CSC311-Lech 19 /49

Designing diagnostic tests

Criterion value

Without

disease With

disease
TF

FP

Testresult

@ You've developed a binary prediction model to indicate whether
someone has a specific disease

e What happens to sensitivity and specificity as you slide the
threshold from left to right?

Intro ML (UofT) CSC311-Lech 20 /49

Sensitivity and specificity

Specificity
True Megative rate

True Fositive rate
Sensitivity

Criterion value

o Tradeoff between sensitivity and specificity

Intro ML (UofT) CSC311-Lech 21 /49

Receiver Operating Characteristic (ROC) curve

Receiver Operating Characteristic (ROC) curve

100F
ol
60

s0f

True Positive rate {Sensitivity)

20

D5t nnnannlonnlonnlnnnd
0 20 40 60 80 100
False Positive rate (100-Specificity)

@ y axis: sensitivity

e x axis: 100-specificity

e Area under the ROC curve (AUC) is a useful metric to track if a
binary classifier achieves a good tradeoff between sensitivity and
specificity.

Intro ML (UofT) CSC311-Lech 22 /49

Metrics for Multi-Class classification

@ You might also be interested in how frequently certain classes are

confused.

e Confusion matrix: K x K matrix; rows are true labels, columns
are predicted labels, entries are frequencies
@ Question: what does the confusion matrix look like if the classifier

is perfect?

actual class

© ©® N o g » W N

Intro ML (Uo

w

o

® < o ©

~
o
.
o

5 0 0

o 3 o0 112
4 6 1 {113
1 3 2 {107
0o o0 7 ‘100
o 6 175

1.2-97

118} »

113} »

100} o

v ®© 9
o © ©
predicted class

CSC311-Lech

103} o

23 /49

Limits of Linear Classification

Intro ML () CSC311-Lech 24 /49

Limits of Linear Classification

Some datasets are not linearly separable, e.g. XOR

Visually obvious, but how to show this?

Intro ML (UofT) CSC311-Lech 25 /49

Limits of Linear Classification

Showing that XOR is not linearly separable (proof by
contradiction)

@ If two points lie in a half-space, line segment connecting them also lie in
the same halfspace.

@ Suppose there were some feasible weights (hypothesis). If the positive
examples are in the positive half-space, then the green line segment must
be as well.

@ Similarly, the red line segment must line within the negative half-space.

T2

1

@ But the intersection can’t lie in both half-spaces. Contradiction!

Intro ML (UofT) CSC311-Lech 26 /49

Limits of Linear Classification

@ Sometimes we can overcome this limitation using feature maps,
just like for linear regression. E.g., for XOR.:

O = = O+

e This is linearly separable. (Try it!)

@ Designing feature maps can be hard. Can we learn them?

Intro ML (UofT) CSC311-Lech 27 /49

Neural Networks

ntro ML (UofT) CSC311-Lech 28 /49

Inspiration: The Brain

e Neurons receive input signals and accumulate voltage. After some
threshold they will fire spiking responses.

Action potential

+40
Na® ions in

Sl 13 e

= e
- & e
z 0 9 & &
£ 2 B K ions out
o o =
o Q o
i 2
g)

Threshold / Failed e
-85 [——————/initiations

Resting state
70 mm—m——

Hyperpolarization
0 1 2 3 4
Time (ms)

[Pic credit: www.moleculardevices.com]

Intro ML (U

CSC311-Lech 29 /49

Inspiration: The Brain

@ For neural nets, we use a much simpler model neuron, or unit:

() _ _
output output weights bias

e J— 6 (wTx+ b
inputs T

I 9 xr
3 activation function inputs

o Compare with logistic regression: y = o(w'x + b)

e By throwing together lots of these incredibly simplistic neuron-like
processing units, we can do some powerful computations!

Intro ML (UofT) CSC311-Lech 30 /49

Multilayer Perceptrons

Intro ML (Uof CSC311-Lech 31/49

Multilayer Perceptrons

an output
unit

output layer
e We can connect lots of

units together into a
directed acyclic graph.

second hidden layer

e Typically, units are

grouped into layers. ahidden
unit

first hidden layer

o This gives a feed-forward
neural network.

input layer

a connection

depth an input

unit

Intro ML (UofT) CSC311-Lecb 32 /49

Multilayer Perceptrons

@ Each hidden layer ¢ connects IN;—1 input units to IV; output units.
@ In a fully connected layer, all input units are connected to all output units.

@ Note: the inputs and outputs for a layer are distinct from the inputs and
outputs to the network.

@ If we need to compute M outputs from N
inputs, we can do so using matrix multiplication.
This means we’ll be using a M x N matrix | /

@ The outputs are a function of the input units:
y =[f(x) =¢(Wx+b)

¢ is typically applied component-wise.

@ A multilayer network consisting of fully
connected layers is called a multilayer
perceptron.

Intro ML (UofT) CSC311-Lecb 33 /49

Multilayer Perceptrons

Some activation functions:

Rectified Linear

Identity Unit Soft ReLU
(ReLU)
Y=z y=logl+e?
y = max(0, z)

Intro ML (UofT) CSC311-Lecb 34 /49

Multilayer Perceptrons

Some activation functions:

Hard Threshold Logistic Hyperbolic Tangent

(tanh)
1 ifz>0 _ 1 . .
Y10 ifz<o0 Y= T3> yo oo

e*+e”~

Intro ML (UofT) CSC311-Lecb 35 /49

Multilayer Perceptrons

@ Each layer computes a function, so the network
computes a composition of functions:

H(WHx + b))

bt — £0)(x)
h®) = ¢(W(2)h(1)+b(2))

h® — ;O

y =/ @)
@ Or more simply:
y = f(L) o--- Of(l)(x),

@ Neural nets provide modularity: we can implement
each layer’s computations as a black box.

Intro ML (UofT) CSC311-Lecb

36 /49

Feature Learning

Last layer:
o If task is regression: choose
y = fO (D)) = (wE) ThED 4 pE)
o If task is binary classification: choose
y = f(L)(h(Lfl)) = U((W(L))Th(Lfl) + b(L))

So neural nets can be viewed as a way of learning features:

linear regressor,
/ clasifier

e The goal:

Intro ML (UofT) CSC311-Lecb 37 /49

Feature Learning

@ Suppose we're trying to classify images of handwritten digits.
Each image is represented as a vector of 28 x 28 = 784 pixel values.

e Each first-layer hidden unit computes (b(wzT x). It acts as a
feature detector.

o We can visualize w by reshaping it into an image. Here’s an
example that responds to a diagonal stroke.

Intro ML (UofT) CSC311-Lech 38 /49

Feature Learning

Here are some of the features learned by the first hidden layer of a
handwritten digit classifier:

e Unlike hard-coded feature maps (e.g., in polynomial regression),
features learned by neural networks adapt to patterns in the data.

Intro ML (UofT) CSC311-Lech 39/49

Expressivity

o In Lecture 4, we introduced the idea of a hypothesis space H,
which is the set of input-output mappings that can be represented
by some model. Suppose we are deciding between two models A, B
with hypothesis spaces Ha, Hp.

o If Hp C H 4, then A is more expressive than B.

A can represent any
function f in Hp.

e Some functions (XOR) can’t be represented by linear classifiers.
Are deep networks more expressive?

Intro ML (UofT) CSC311-Lecb 40 /49

Expressivity—Linear Networks

@ Suppose a layer’s activation function was the identity, so the layer
just computes a affine transformation of the input

» We call this a linear layer

@ Any sequence of linear layers can be equivalently represented with
a single linear layer.

y = WEwWAwWO x
—_——

AW/

» Deep linear networks can only represent linear functions.

» Deep linear networks are no more expressive than linear regression.

Intro ML (UofT) CSC311-Lecb 41 /49

Expressive Power—Non-linear Networks

e Multilayer feed-forward neural nets with nonlinear activation
functions are universal function approximators: they can
approximate any function arbitrarily well, i.e., for any f: X — T
there is a sequence f; € H with f; — f.

e This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)
» Even though ReLU is “almost” linear, it’s nonlinear enough.

Intro ML (UofT) CSC311-Lech 42 /49

Multilayer Perceptrons

Designing a network to classify XOR:

Assume hard threshold activation function

1

1 ‘@ 1

Intro ML (UofT) CSC311-Lech 43 /49

Multilayer Perceptrons

@ hy computes [[z; + 25 — 0.5 > 0]
» i.e. 1 OR 2o

@ ho computes [[z; + x5 — 1.5 > 0]
> j.e. T AND To

e y computes I[h; —hg — 0.5 > 0] =I[h; + (1 — ha) — 1.5 > 0]
> i.e. hl AND (NOT hg) =X XOR XT2

Intro ML (UofT) CSC311-Lech 44 /49

Expressivity

Universality for binary inputs and targets:
e Hard threshold hidden units, linear output
o Strategy: 2” hidden units, each of which responds to one

particular input configuration

X X9 X3 t

@ Only requires one hidden layer, though it needs to be extremely

wide.
CSC311-Lecb

Intro ML (UofT)

45/ 49

Expressivity

e What about the logistic activation function?

@ You can approximate a hard threshold by scaling up the weights
and biases:

1

08+

0.6+

04!

0.2-

R T R R S R]

y = olx) y = o(52)

e This is good: logistic units are differentiable, so we can train them
with gradient descent.

Intro ML (UofT) CSC311-Lecb 46 /49

Expressivity—What is it good for?

o Universality is not necessarily a golden ticket.
» You may need a very large network to represent a given function.
» How can you find the weights that represent a given function?
e Expressivity can be bad: if you can learn any function, overfitting
is potentially a serious concern!
» Recall the polynomial feature mappings from Lecture 2.
Expressivity increases with the degree M, eventually allowing
multiple perfect fits to the training data.

50
25
00
-25

-50
-50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50

This motivated L? regularization.

@ Do neural networks overfit and how can we regularize them?

Intro ML (UofT) CSC311-Lech 47 /49

Regularization and Overfitting for Neural Networks

@ The topic of overfitting (when & how it happens, how to regularize, etc.)
for neural networks is not well-understood, even by researchers!

» In principle, you can always apply L? regularization.
» You will learn more in CSC413.

@ A common approach is early stopping, or stopping training early,
because overfitting typically increases as training progresses.

Generalization error

Prediction Error
-

. Early stopping " -

— Training error

Training lterations

@ Unlike L? regularization, we don’t add an explicit R (@) term to our cost.

Intro ML (UofT) CSC311-Lech 48 / 49

Conclusion

o Multi-class classification

e Convexity of loss functions

Selecting good metrics to track performance in models

@ From linear to non-linear models

Intro ML (UofT) CSC311-Lech 49 /49

