CSC 311: Introduction to Machine Learning
Lecture 4 - Linear Models IT

Roger Grosse Rahul G. Krishnan ~ Guodong Zhang

University of Toronto, Fall 2021

Intro ML (UofT) CSC311-Lec3 1/50

Overview

@ More about gradient descent

» Choosing a learning rate
» Stochastic gradient descent

o Classification: predicting a discrete-valued target

» Binary classification (this week): predicting a binary-valued target
» Multiclass classification (next week): predicting a discrete-valued
target

Intro ML (UofT) CSC311-Lec3 2 /50

Setting the learning rate

Intro ML (Uof CSC311-Lec3 3/50

Learning Rate (Step Size)

o In gradient descent, the learning rate « is a hyperparameter we
need to tune. Here are some things that can go wrong:

a too large: « much too large:
oscillations instability

a too small:
slow progress

e Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try
0.1,0.03,0.01,...).

CSC311-Lec3 4/50

Intro ML (UofT)

Training Curves

e To diagnose optimization problems, it’s useful to look at training
curves: plot the training cost as a function of iteration.

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

training
cost

convergence

iteration #

e Warning: in general, it’s very hard to tell from the training curves
whether an optimizer has converged. They can reveal major
problems, but they can’t guarantee convergence.

Intro ML (UofT) CSC311-Lec3 5/50

Stochastic gradient descent

Intro ML (T CSC311-Lec3 6/ 50

Stochastic Gradient Descent

@ So far, the cost function J has been the average loss over the
training examples:

1 N N
Nz:n_ Z 9), 1),

(0 denotes the parameters; e.g., in linear regression, 8 = (w, b))

o By linearity,
0T 1L oaLh

‘%_N,lw‘

1=

o Computing the gradient requires summing over all of the training
examples. This is known as batch training.

e Batch training is impractical if you have a large dataset IV > 1
(e.g. millions of training examples)!

Intro ML (UofT) CSC311-Lec3 7 /50

Stochastic Gradient Descent

@ Stochastic gradient descent (SGD) updates the parameters based on the
gradient for a single training example:

1— Choose i uniformly at random,
oL@
2— 6« 06—
— T

@ Cost of each SGD update is independent of N!

@ SGD can make significant progress before even seeing all the data!

@ Mathematical justification: if you sample a training example uniformly
at random, the stochastic gradient is an unbiased estimate of the batch
gradient:

oL@ 1 N o) 8T
90 | T NZ 90 09

Intro ML (UofT) CSC311-Lec3 8 /50

Stochastic Gradient Descent

e Problems with using single training example to estimate gradient:

» Variance in the estimate may be high
» We can’t exploit efficient vectorized operations
e Compromise approach:

» compute the gradients on a randomly chosen medium-sized set of
training examples M C {1,..., N}, called a mini-batch.

» For purposes of analysis, we often assume the examples in the
mini-batch are sampled independetly and uniformly with
replacement.

» In practice, we typically permute the training set and then go
through it sequentially. Each pass over the data is called an epoch.

Intro ML (UofT) CSC311-Lec3 9 /50

Stochastic Gradient Descent

@ Stochastic gradients computed on larger mini-batches have smaller
variance. This is similar to bagging.

» If the training examples are sampled independently, we can apply
the linearity rule for variance.

oL 1 oL
!MIZ - a7 2 ar[ae]‘Mvarlaej]

@ The mini-batch size | M| is a hyperparameter that needs to be set.

J

» Too large: requires more compute; e.g., it takes more memory to
store the activations, and longer to compute each gradient update

» Too small: can’t exploit vectorization, has high variance

» A reasonable value might be |M]| = 100.

Intro ML (UofT) CSC311-Lec3 10 /50

Stochastic Gradient Descent

e Batch gradient descent moves directly downhill (locally speaking).

@ SGD takes steps in a noisy direction, but moves downhill on
average.

batch gradient descent stochastic gradient descent

Intro ML (UofT) CSC311-Lec3 11 /50

SGD Learning Rate

@ In stochastic training, the learning rate also influences the amount
of noise in the parameters resulting from the stochastic updates.

small learning rate large learning rate

e Typical strategy:
» Use a large learning rate early in training so you can get close to
the optimum
» Gradually decay the learning rate to reduce the fluctuations

Intro ML (UofT) CSC311-Lec3 12 /50

Binary Linear Classification

Intro ML (Uof CSC311-Lec3 13 /50

Overview

Binary linear classification

e classification: given a D-dimensional input x € R predict a
discrete-valued target
e binary: predict a binary target t € {0,1}
» Training examples with t = 1 are called positive examples, and

training examples with ¢ = 0 are called negative examples. Sorry.
» t € {0,1} or t € {—1,+1} is for computational convenience.

@ linear: model prediction y is a linear function of x, followed by a
threshold r:

2=w'x+b

1 ifz>r
y= 0 ifz<r

Intro ML (UofT) CSC311-Lec3 14 /50

Some Simplifications

Eliminating the threshold
e We can assume without loss of generality (WLOG) that the
threshold r = 0:
w x+b>r <= w'x+b—1r>0.
~—~—
2wo
Eliminating the bias
o Add a dummy feature xg which always takes the value 1. The
weight wg = b is equivalent to a bias (same as linear regression)
Simplified model
o Receive input x € RP*+! with zg = 1:

AR WTX
1 ifz>0
YZlo ifz<o
Intro ML (UofT) CSC311-Lec3

15 /50

Examples

@ Let’s consider some simple examples to examine the properties of
our model

o Let’s focus on minimizing the training set error, and forget about
whether our model will generalize to a test set.

Intro ML (UofT) CSC311-Lec3 16 / 50

Examples

Suppose this is our training set, with the dummy feature x(
included.

Which conditions on wq,w; guarantee perfect classification?
» When z; =0, need: z = wozg + wix1 >0 <= wy >0
» When 21 = 1, need: z = woxg + w11 <0 <= wo+ w1 <0

Example solution: wg = 1,w; = —2

Is this the only solution?

Intro ML (UofT) CSC311-Lec3 17 /50

Examples

AND
o x1 X2 |t Z = Woxo + W1x1 + WwaTo
1 0 00 need: wg < 0
10 110 € n 0
1 1 010 need: wg + wg <
1 1 111 need: wo +w; <0
need: wg + wi + wo >0
Example solution: wg = —1.5, w1 =1, wy =1

Intro ML (UofT) CSC311-Lec3 18 /50

The Geometric Picture

Input Space, or Data Space for NOT example

T

o

Training examples are points

Weights (hypotheses) w can be represented by half-spaces
Hy={x:w'x>0}, H. = {x:w'x <0}

» The boundaries of these half-spaces pass through the origin (why?)
o The boundary is the decision boundary: {x:w'x = 0}
» In 2-D, it’s a line, but in high dimensions it is a hyperplane

If the training examples can be perfectly separated by a linear
decision rule, we say data is linearly separable.

Intro ML (UofT) CSC311-Lec3 19 /50

The Geometric Picture

Weight Space

wo Z 0
wo +wp < 0

Weights (hypotheses) w are points

e Each training example x specifies a half-space w must lie in to be
correctly classified: w'x > 0ift = 1.
For NOT example:

» =121 =0,t =1 = (wp,w1) € {w:wy >0}

> zo=1,11=1,t=0 = (wo,w1) € {w : wo +wy <0}

The region satisfying all the constraints is the feasible region; if
this region is nonempty, the problem is feasible, otw it is infeasible.

Intro ML (UofT) CSC311-Lec3 20 /50

The Geometric Picture

@ The AND example requires three dimensions, including the dummy one.

@ To visualize data space and weight space for a 3-D example, we can look
at a 2-D slice.

@ The visualizations are similar.

» Feasible set will always have a corner at the origin.

Intro ML (UofT) CSC311-Lec3 21 /50

The Geometric Picture

Visualizations of the AND example

Weight Space

w2

Data Space

a]

w1
<+

- Slice for wg = —1.5 for the

- Slice for zg = 1 and

constraints
- example sol: wop=—1.5, w1 =1, we=1 Cwe < 0
- decision boundary: 0
-wp+we <0
woTo+wix1+wexrs =0 ~wo 4wy <0

— —1.54x1+22=0

-wg+wy+ws >0

Intro ML (UofT) CSC311-Lec3

22 /50

Summary — Binary Linear Classifiers

o Summary: Targets ¢ € {0,1}, inputs x € RP+! with 29 = 1, and
model is defined by weights w and

Z:WTX

1 ifz>0
Y=V 0 ifz<o

e How can we find good values for w?

o If training set is linearly separable, we could solve for w using
linear programming
» We could also apply an iterative procedure known as the perceptron
algorithm (but this is primarily of historical interest).
o If it’s not linearly separable, the problem is harder
» Data is almost never linearly separable in real life.

Intro ML (UofT) CSC311-Lec3 23 /50

Towards Logistic Regression

Intro ML (Uof CSC311-Lec3 24 /50

Loss Functions

o What if the dataset isn’t linearly separable?

@ Define a loss function, and minimize its average over the training

set.
@ Seemingly obvious loss function: 0-1 loss
[0 ify=t
Eo_l(y,t) - { 1 ify 7& t
= Iy # t]

Usually, the cost J is the averaged loss over training examples; for
0-1 loss, this is the misclassification rate:

1 Y . .
JI=% ;H[y(z) #10]

Can you think of a problem with this approach?

Intro ML (UofT) CSC311-Lec3 25 /50

Attempt 1: 0-1 loss

Minimum of a function will be at its critical points.

Let’s try to find the critical point of 0-1 loss
Chain rule:

8[,071 . aﬁofl 82’
ow; 0z Ow,

e But 0Ly_1/0z is zero everywhere it’s defined!

0.0

-20 -15 -10 -05 00 05 10 15 20
z

» 0Ly—1/0w; = 0 means that changing the weights by a very small
amount probably has no effect on the loss.
» Almost any point has 0 gradient!

Intro ML (UofT) CSC311-Lec3 26 / 50

Attempt 2: Linear Regression

@ Sometimes we can replace the loss function we care about with one
which is easier to optimize. This is known as relaxation with a
smooth surrogate loss function.

@ One problem with Lg_1: defined in terms of final prediction, which
inherently involves a discontinuity

o Instead, define loss in terms of w' x directly

» Redo notation for convenience: z = w'x

Intro ML (UofT) CSC311-Lec3 27 /50

Attempt 2: Linear Regression

o We already know how to fit a linear regression model. Can we use
this instead?

T

z = X

ﬁSE(Z,t) =

g

(2 - 1)?

N | =

@ Doesn’t matter that the targets are actually binary. Treat them as
continuous values.

e For this loss function, it makes sense to make final predictions by
thresholding z at £ (why?)

Intro ML (UofT) CSC311-Lec3 28 /50

Attempt 2: Linear Regression

The problem:

large
residual

@ The loss function hates when you make correct predictions with
high confidence!

e If t =1, it’s more unhappy about z = 10 than z = 0.

Intro ML (UofT) CSC311-Lec3 29 /50

Attempt 3: Logistic Activation Function

e There’s obviously no reason to predict values outside [0, 1]. Let’s
squash y into this interval.

@ The logistic function is a kind of sigmoid, or 1
S-shaped function: 0

1 >04

U(Z): 1+€—Z W

o
R R 2 1
7

o o1 (y) =log(y/(1 —y)) is called the logit.
@ A linear model with a logistic nonlinearity is known as log-linear:

Z = WTX
y=o(z)
1
Lsg(y,t) = 5(9 —t)°.

o Used in this way, o is called an activation function.

Intro ML (UofT) CSC311-Lec3 30 /50

Attempt 3: Logistic Activation Function

The problem:
(plot of Lgg as a function of z, assuming ¢ = 1)

0.5

0.4
0.3

o _oc o
ow; 0z ow;

0.2

loss

0.1

0.0

e For z < 0, we have o(z) =~ 0.

° g—f ~ 0 (check!) = E?Tﬁj ~ (0 = derivative w.r.t. w; is small
= wj is like a critical point

o If the prediction is really wrong, you should be far from a critical
point (which is your candidate solution).

Intro ML (UofT) CSC311-Lec3 31 /50

Logistic Regression

@ Because y € [0,1], we can interpret it as the estimated probability
that t = 1. If t = 0, then we want to heavily penalize y ~ 1.

e The pundits who were 99% confident Clinton would win were
much more wrong than the ones who were only 90% confident.

e Cross-entropy loss (aka log loss) captures this intuition:

5

4
| —logy ift=1 é
Leg(y,t) = { —log(l—y) ift=0 53 1 =0
= ~tlogy — (1—t)log(1—y) &
Y1
8.0 0.2 0.4 0.6 0.8 1.0

Intro ML (UofT) CSC311-Lec3 32 /50

Logistic Regression

Logistic Regression:

—— logistic + CE

Z:WTX
y=o0(z)
- 1
1l 4ez

Leg = —tlogy — (1 —1t)log(1 —y)

Plot is for target t = 1.

Intro ML (UofT) CSC311-Lec3 33 /50

Logistic Regression — Numerical Instabilities

e If we implement logistic regression naively, we can end up with
numerical instabilities.

e Consider: t =1 but you're really confident that z < 0.

o If y is small enough, it may be numerically zero. This can cause
very subtle and hard-to-find bugs.

y=0(2) =y=0
Log = —tlogy — (1 —t)log(1 —y) = computes log0

Intro ML (UofT) CSC311-Lec3 34 /50

Logistic Regression — Numerically Stable Version

e Instead, we combine the activation function and the loss into a
single logistic-cross-entropy function.

Licn(,t) = Lor(o(2),1) = tlog(1 + %) + (1 —) log(1 + ¢7)

e Numerically stable computation:

E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)

Intro ML (UofT) CSC311-Lec3 35 /50

Logistic Regression

Comparison of loss functions: (for t = 1)

3.0 _
—— least squares
2:5 logitic 1
= |ogistic
2.0 1
%))
5 15
1.0
0.5
0.0

Intro ML (UofT) CSC311-Lec3 36 /50

Gradient Descent for Logistic Regression

e How do we minimize the cost J for logistic regression? No direct
solution.
» Taking derivatives of J w.r.t. w and setting them to 0 doesn’t have
an explicit solution.
e However, the logistic loss is a convex function in w, so let’s
consider the gradient descent method from last lecture.
» Recall: we initialize the weights to something reasonable and
repeatedly adjust them in the direction of steepest descent.
» A standard initialization is w = 0. (why?)

Intro ML (UofT) CSC311-Lec3 37 /50

Gradient of Logistic Loss

Back to logistic regression:

Leor(y,t) = — tlog(y) — (1 —t)log(1 —y)
y=1/(1+e*) and z=w'x
Therefore
OLcE OLcg Oy Oz o t 1-—-1
ow; 9y 0z Ow; y+1—y Yy =)

=(y —t)z;

(verify this)

Gradient descent (coordinatewise) update to find the weights of logistic
regression:

oT

=wj - NZ t(l z)

Intro ML (UofT) CSC311-Lec3 38 /50

Gradient Descent for Logistic Regression

Comparison of gradient descent updates:

o Linear regression:

@ i i)Y 5 (@

i=1
e Logistic regression:
a N . . .
W W — ~ ;(y(z) _ t(z)) x(®

@ Not a coincidence! These are both examples of generalized linear
models. But we won’t go in further detail.

Intro ML (UofT) CSC311-Lec3 39 /50

Gradient Checking with Finite Differences

Intro ML (UofT) CSC311-Lec3 40 / 50

Gradient Checking

o We’ve derived a lot of gradients so far. How do we know if they’re
correct?
o Recall the definition of the partial derivative:

F@1,... on) = lim flxi,...;zi+ h,...;zn) — f(z1, ...y Tiy ..., TN)
h—0 h

al'i

@ Check your derivatives numerically by plugging in a small value of
h, e.g. 10710, This is known as finite differences.

Intro ML (UofT) CSC311-Lec3 41 /50

Gradient Checking

e Even better: the two-sided definition

fx, ..,z +hy o oyzn) — f(z1, .o @ — hy oo

g (o0 = fn i

— exact
— one-sided
— two-sided

x—h x z+h

Intro ML (UofT) CSC311-Lec3

42 /50

Gradient Checking

@ Run gradient checks on small, randomly chosen inputs

e Use double precision floats (not the default for most deep learning
frameworks!)

o Compute the relative error:
|a — b]
|af + |b|

where a is the finite differences estimate and b is the derivative
computed by the function you wrote.

o The relative error should be very small, e.g. 1076

Intro ML (UofT) CSC311-Lec3 43 / 50

Gradient Checking

o Gradient checking is really important!

o Learning algorithms often appear to work even if the math is
wrong.

e But:

» They might work much better if the derivatives are correct.
» Wrong derivatives might lead you on a wild goose chase.

o If you implement derivatives by hand, gradient checking is the
single most important thing you need to do to get your algorithm
to work well.

Intro ML (UofT) CSC311-Lec3 44 / 50

Linear Classifiers vs. KNN

Intro ML () CSC311-Lec3 45 / 50

Linear Classifiers vs. KNN

Linear classifiers and KNN have very different decision boundaries:

Linear Classifier K Nearest Neighbours

I e i r/\\

Intro ML (UofT) CSC311-Lec3 46 / 50

Linear Classifiers vs. KNN

Advantages of linear classifiers over KNN?

Advantages of KNN over linear classifiers?

Intro ML (UofT) CSC311-Lec3 47 / 50

A Few Basic Concepts

@ A hypothesis is a function f: X — 7T that we might use to make
predictions (recall X is the input space and T is the target space).

@ The hypothesis space H for a particular machine learning model or
algorithm is set of hypotheses that it can represent.

» E.g., in linear regression, H is the set of functions that are linear in
the data features

» The job of a machine learning algorithm is to find a good
hypothesis f € H

@ The members of H, together with an algorithm’s preference for some
hypotheses of H over others, determine an algorithm’s inductive bias.

» Inductive biases can be understood as general natural patterns or
domain knowledge that help our algorithms to generalize;
E.g., linearity, continuity, simplicity (Ly regularization) ...

» The so-called No Free Lunch (NFL) theorems assert that if
datasets/problems were not naturally biased, no ML algorithm
would be better than another

Intro ML (UofT) CSC311-Lec3 48 / 50

A Few Basic Concepts

o If an algorithm’s hypothesis space H can be defined using a finite
set of parameters, denoted 6, we say the algorithm is parametric.
» In linear regression, 8 = (w,b)
» Other examples: logistic regression, neural networks, k-means and
Gaussian mixture models

o If the members of H are defined in terms of the data, we say that
the algorithm is non-parametric.

» In k-nearest neighbors, the learned hypothesis is defined in terms of
the training data

» Other examples: Gaussian processes, decision trees, kernel density
estimation

» These models can sometimes be understood as having an infinite
number of parameters

Intro ML (UofT) CSC311-Lec3 49 / 50

Conclusions

@ Introduced logistic regression, a linear classification algorithm.

e Exemplified some recurring themes

» Can define a surrogate loss function if the one we care about is
intractable.

» Think about whether a loss function penalizes certain mistakes too
much or too little.

» Can be useful to view the classfier’s output as probabilities.

» Learning algorithms can impose inductive biases (in this case,
linearity), which can help or hurt depending on the problem.

o Next week: multiclass classification

Intro ML (UofT) CSC311-Lec3 50 / 50

