
CSC 311: Introduction to Machine Learning
Lecture 3 - Bagging, Linear Models I

Roger Grosse Rahul G. Krishnan Guodong Zhang

University of Toronto, Fall 2021

Intro ML (UofT) CSC311-Lec3 1 / 49

Today

Today we will introduce ensembling methods that combine multiple
models and can perform better than the individual members.

I We’ve seen many individual models (KNN, decision trees)

We will see bagging:

I Train models independently on random “resamples” of the training
data.

We will introduce linear regression, our first parametric learning
algorithm.

I This will exemplify how we’ll think about learning algorithms for
the rest of the course.

Intro ML (UofT) CSC311-Lec3 2 / 49

Bias/Variance Decomposition

Recall, we treat predictions y at a query x as a random variable (where
the randomness comes from the choice of dataset), y? is the optimal
deterministic prediction, t is a random target sampled from the true
conditional p(t|x).

E[(y − t)2] = (y? − E[y])2︸ ︷︷ ︸
bias

+ Var(y)︸ ︷︷ ︸
variance

+ Var(t)︸ ︷︷ ︸
Bayes error

Bias/variance decomposes the expected loss into three terms:

I bias: how wrong the expected prediction is (corresponds to
underfitting)

I variance: the amount of variability in the predictions (corresponds
to overfitting)

I Bayes error: the inherent unpredictability of the targets

Even though this analysis only applies to squared error, we often loosely
use “bias” and “variance” as synonyms for “underfitting” and
“overfitting”.

Intro ML (UofT) CSC311-Lec3 3 / 49

Bias/Variance Decomposition: Another Visualization

We can visualize this decomposition in output space, where the
axes correspond to predictions on the test examples.

If we have an overly simple model (e.g. KNN with large k), it
might have

I high bias (because it cannot capture the structure in the data)
I low variance (because there’s enough data to get stable estimates)

Intro ML (UofT) CSC311-Lec3 4 / 49

Bias/Variance Decomposition: Another Visualization

If you have an overly complex model (e.g. KNN with k = 1), it
might have

I low bias (since it learns all the relevant structure)
I high variance (it fits the quirks of the data you happened to sample)

Intro ML (UofT) CSC311-Lec3 5 / 49

Bias/Variance Decomposition: Another Visualization

The following graphic summarizes the previous two slides:

What doesn’t this capture?

A: Bayes error

Intro ML (UofT) CSC311-Lec3 6 / 49

Bagging: Motivation

Suppose we could somehow sample m independent training sets
from psample.

We could then compute the prediction yi based on each one, and
take the average y = 1

m

∑m
i=1 yi.

How does this affect the three terms of the expected loss?
I Bayes error: unchanged, since we have no control over it
I Bias: unchanged, since the averaged prediction has the same

expectation

E[y] = E

[
1

m

m∑
i=1

yi

]
= E[yi]

I Variance: reduced, since we’re averaging over independent
samples

Var[y] = Var

[
1

m

m∑
i=1

yi

]
=

1

m2

m∑
i=1

Var[yi] =
1

m
Var[yi].

Intro ML (UofT) CSC311-Lec3 7 / 49

Bagging: The Idea

In practice, the sampling distribution psample is often finite or expensive
to sample from.

So training separate models on independently sampled datasets is very
wasteful of data!

I Why not train a single model on the union of all sampled datasets?

Solution: given training set D, use the empirical distribution pD as a
proxy for psample. This is called bootstrap aggregation, or bagging .

I Take a single dataset D with n examples.
I Generate m new datasets (“resamples” or “bootstrap samples”),

each by sampling n training examples from D, with replacement.
I Average the predictions of models trained on each of these datasets.

The bootstrap is one of the most important ideas in all of statistics!

I Intuition: As |D| → ∞, we have pD → psample.

Intro ML (UofT) CSC311-Lec3 8 / 49

Bagging

in this example n = 7, m = 3

Intro ML (UofT) CSC311-Lec3 9 / 49

Bagging

predicting on a query point x

Intro ML (UofT) CSC311-Lec3 10 / 49

Bagging for Binary Classification

If our classifiers output real-valued probabilities, zi ∈ [0, 1], then we can
average the predictions before thresholding:

ybagged = I(zbagged > 0.5) = I

(
m∑
i=1

zi
m
> 0.5

)

If our classifiers output binary decisions, yi ∈ {0, 1}, we can still average
the predictions before thresholding:

ybagged = I

(
m∑
i=1

yi
m
> 0.5

)

This is the same as taking a majority vote.

A bagged classifier can be stronger than the average underyling model.

I E.g., individual accuracy on “Who Wants to be a Millionaire” is
only so-so, but “Ask the Audience” is quite effective.

Intro ML (UofT) CSC311-Lec3 11 / 49

Bagging: Effect of Correlation

Problem: the datasets are not independent, so we don’t get the
1/m variance reduction.

I Possible to show that if the sampled predictions have variance σ2

and correlation ρ, then

Var

(
1

m

m∑
i=1

yi

)
=

1

m
(1− ρ)σ2 + ρσ2.

Ironically, it can be advantageous to introduce additional
variability into your algorithm, as long as it reduces the
correlation between samples.

I Intuition: you want to invest in a diversified portfolio, not just one
stock.

I Can help to use average over multiple algorithms, or multiple
configurations of the same algorithm.

Intro ML (UofT) CSC311-Lec3 12 / 49

Random Forests

Random forests = bagged decision trees, with one extra trick to
decorrelate the predictions

I When choosing each node of the decision tree, choose a random set
of d input features, and only consider splits on those features

Random forests are probably the best black-box machine learning
algorithm — they often work well with no tuning whatsoever.

I one of the most widely used algorithms in Kaggle competitions

Intro ML (UofT) CSC311-Lec3 13 / 49

Bagging Summary

Bagging reduces overfitting by averaging predictions.

Used in most competition winners

I Even if a single model is great, a small ensemble usually helps.

Limitations:

I Does not reduce bias in case of squared error.
I There is still correlation between classifiers.

I Random forest solution: Add more randomness.

I Naive mixture (all members weighted equally).
I If members are very different (e.g., different algorithms, different

data sources, etc.), we can often obtain better results by using a
principled approach to weighted ensembling.

Intro ML (UofT) CSC311-Lec3 14 / 49

Linear Regression

Intro ML (UofT) CSC311-Lec3 15 / 49

Overview

Second learning algorithm of the course: linear regression.
I Task: predict scalar-valued targets (e.g. stock prices)
I Architecture: linear function of the inputs

While KNN was a complete algorithm, linear regression exemplifies
a modular approach that will be used throughout this course:

I choose a model describing the relationships between variables of
interest

I define a loss function quantifying how bad the fit to the data is
I choose a regularizer saying how much we prefer different candidate

models (or explanations of data)
I fit a model that minimizes the loss function and satisfies the

constraint/penalty imposed by the regularizer, possibly using an
optimization algorithm

Mixing and matching these modular components give us a lot of
new ML methods.

Intro ML (UofT) CSC311-Lec3 16 / 49

Supervised Learning Setup

In supervised learning:

There is input x ∈ X , typically a vector of features (or covariates)

There is target t ∈ T (also called response, outcome, output, class)

Objective is to learn a function f : X → T such that t ≈ y = f(x)
based on some data D = {(x(i), t(i)) for i = 1, 2, ..., N}.

Intro ML (UofT) CSC311-Lec3 17 / 49

Linear Regression - Model

Model: In linear regression, we use a linear function of the features
x = (x1, . . . , xD) ∈ RD to make predictions y of the target value t ∈ R:

y =f(x) =
∑
j

wjxj + b

I y is the prediction
I w is the weights
I b is the bias (or intercept)

w and b together are the parameters

We hope that our prediction is close to the target: y ≈ t.

Intro ML (UofT) CSC311-Lec3 18 / 49

What is Linear? 1 feature vs D features

2 1 0 1 2
x: features

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y:
 re

sp
on

se

Fitted line
Data

If we have only 1 feature:
y = wx+ b where w, x, b ∈ R.

y is linear in x.

If we have D features:
y = w>x + b where w,x ∈ RD,
b ∈ R
y is linear in x.

Relation between the prediction y and inputs x is linear in both cases.

Intro ML (UofT) CSC311-Lec3 19 / 49

Linear Regression - Loss Function

A loss function L(y, t) defines how bad it is if, for some example x,
the algorithm predicts y, but the target is actually t.

Squared error loss function:

L(y, t) = 1
2(y − t)2

y − t is the residual, and we want to make this small in magnitude

The 1
2 factor is just to make the calculations convenient.

Cost function: loss function averaged over all training examples

J (w, b) =
1

2N

N∑
i=1

(
y(i) − t(i)

)2
=

1

2N

N∑
i=1

(
w>x(i) + b− t(i)

)2
Terminology varies. Some call “cost” empirical or average loss.

Intro ML (UofT) CSC311-Lec3 20 / 49

Vectorization

Intro ML (UofT) CSC311-Lec3 21 / 49

Vectorization

The prediction for one data point can be computed using a for
loop:

Excessive super/sub scripts are hard to work with, and Python
loops are slow, so we vectorize algorithms by expressing them in
terms of vectors and matrices.

w = (w1, . . . , wD)> x = (x1, . . . , xD)>

y = w>x + b

This is simpler and executes much faster:

Intro ML (UofT) CSC311-Lec3 22 / 49

Vectorization

Why vectorize?

The equations, and the code, will be simpler and more readable.
Gets rid of dummy variables/indices!

Vectorized code is much faster
I Cut down on Python interpreter overhead
I Use highly optimized linear algebra libraries (hardware support)
I Matrix multiplication very fast on GPU (Graphics Processing Unit)

Switching in and out of vectorized form is a skill you gain with practice

Some derivations are easier to do element-wise

Some algorithms are easier to write/understand using for-loops
and vectorize later for performance

Intro ML (UofT) CSC311-Lec3 23 / 49

Vectorization

We can organize all the training examples into a design matrix X
with one row per training example, and all the targets into the
target vector t.

Computing the predictions for the whole dataset:

Xw + b1 =

wTx(1) + b
...

wTx(N) + b

 =

 y(1)

...

y(N)

 = y

Intro ML (UofT) CSC311-Lec3 24 / 49

Vectorization

Computing the squared error cost across the whole dataset:

y = Xw + b1

J =
1

2N
‖y − t‖2

Sometimes we may use J = 1
2‖y− t‖2, without a normalizer. This

would correspond to the sum of losses, and not the averaged loss.
The minimizer does not depend on N (but optimization might!).

We can also add a column of 1’s to design matrix, combine the
bias and the weights, and conveniently write

X =

1 [x(1)]>

1 [x(2)]>

1
...

 ∈ RN×(D+1) and w =


b
w1

w2
...

 ∈ RD+1

Then, our predictions reduce to y = Xw.
Intro ML (UofT) CSC311-Lec3 25 / 49

Optimization

Intro ML (UofT) CSC311-Lec3 26 / 49

Solving the Minimization Problem

We defined a cost function J (w). This is what we’d like to minimize.

Recall from calculus: the minimum of a smooth function (if it exists)
occurs at a critical point, i.e. point where the derivative is zero.

multivariate generalization: set the partial derivatives ∂J /∂wj to
zero.
Equivalently, we can set the gradient to zero. The gradient is the
vector of partial derivatives:

∇wJ =
∂J
∂w

=


∂J
∂w1

...
∂J
∂wD


Solutions may be direct or iterative

Sometimes we can directly find provably optimal parameters (e.g. set the
gradient to zero and solve in closed form). We call this a direct solution.

Iterative solution methods repeatedly apply an update rule that
gradually takes us closer to the soltuion.

Intro ML (UofT) CSC311-Lec3 27 / 49

Direct Solution: Calculus

Lets consider a cartoon visualization of J (w) where w is single
dimensional

Left We seek w = w∗ that minimizes J (w)

Right The gradients of a function can tell us where the maxima and
minima of functions lie

Strategy: Write down an algebraic expression for ∇wJ (w). Set
equation to 0. Solve for w

<latexit sha1_base64="G4NrL4+FchmdNAyoq1HYtt9oFXI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZlZDCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOejjQQ=</latexit>w
<latexit sha1_base64="KD3fVQqxqG3xNoLiu3LBcYSIYFs=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBDEQ9iVoB6DXjxGNA9I1jA7mU2GzM4uM71KWPIJXjwo4tUv8ubfOHkcNLGgoajqprsrSKQw6LrfztLyyuraem4jv7m1vbNb2NuvmzjVjNdYLGPdDKjhUiheQ4GSNxPNaRRI3ggG12O/8ci1EbG6x2HC/Yj2lAgFo2ilu6eH006h6JbcCcgi8WakCDNUO4WvdjdmacQVMkmNaXlugn5GNQom+SjfTg1PKBvQHm9ZqmjEjZ9NTh2RY6t0SRhrWwrJRP09kdHImGEU2M6IYt/Me2PxP6+VYnjpZ0IlKXLFpovCVBKMyfhv0hWaM5RDSyjTwt5KWJ9qytCmk7chePMvL5L6Wck7L5Vvy8XK1SyOHBzCEZyABxdQgRuoQg0Y9OAZXuHNkc6L8+58TFuXnNnMAfyB8/kDAPeNoA==</latexit>

w⇤ <latexit sha1_base64="G4NrL4+FchmdNAyoq1HYtt9oFXI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZlZDCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOejjQQ=</latexit>w

<latexit sha1_base64="e+ttoURH58A1MBP09Fly9EgJr3E=">AAACAnicbVA9SwNBEN2LXzF+Ra3EZjEIsQl3EtRGCNqIVQTzAbkjzG02yZK9vWN3zxCOYONfsbFQxNZfYee/cZNcoYkPBh7vzTAzz484U9q2v63M0vLK6lp2PbexubW9k9/dq6swloTWSMhD2fRBUc4ErWmmOW1GkkLgc9rwB9cTv/FApWKhuNejiHoB9ATrMgLaSO38gSvA59AeYjcA3SfAk9txcXhyabfzBbtkT4EXiZOSAkpRbee/3E5I4oAKTTgo1XLsSHsJSM0Ip+OcGysaARlAj7YMFRBQ5SXTF8b42Cgd3A2lKaHxVP09kUCg1CjwTefkTjXvTcT/vFasuxdewkQUayrIbFE35liHeJIH7jBJieYjQ4BIZm7FpA8SiDap5UwIzvzLi6R+WnLOSuW7cqFylcaRRYfoCBWRg85RBd2gKqohgh7RM3pFb9aT9WK9Wx+z1oyVzuyjP7A+fwA2Spar</latexit>rwJ (w) = 0

<latexit sha1_base64="0rn9DHL8OfJOBsK1YqlkHulpeEM=">AAACAnicbVA9SwNBEN2LXzF+Ra3EZjEIsQl3EtTCImgjVhHMB+SOMLfZJEv29o7dPUM4go1/xcZCEVt/hZ3/xk1yhSY+GHi8N8PMPD/iTGnb/rYyS8srq2vZ9dzG5tb2Tn53r67CWBJaIyEPZdMHRTkTtKaZ5rQZSQqBz2nDH1xP/MYDlYqF4l6PIuoF0BOsywhoI7XzB64An0N7iN0AdJ8AT27HxeHJpd3OF+ySPQVeJE5KCihFtZ3/cjshiQMqNOGgVMuxI+0lIDUjnI5zbqxoBGQAPdoyVEBAlZdMXxjjY6N0cDeUpoTGU/X3RAKBUqPAN52TO9W8NxH/81qx7l54CRNRrKkgs0XdmGMd4kkeuMMkJZqPDAEimbkVkz5IINqkljMhOPMvL5L6ack5K5XvyoXKVRpHFh2iI1REDjpHFXSDqqiGCHpEz+gVvVlP1ov1bn3MWjNWOrOP/sD6/AE0xZaq</latexit>rwJ (w) < 0
<latexit sha1_base64="sVDRcCuY9m4CGCoZ257ySuJ3c7I=">AAACAnicbVA9SwNBEN2LXzF+Ra3EZjEIsQl3EtRKgjZiFcF8QO4Ic5tNsmRv79jdM4Qj2PhXbCwUsfVX2Plv3CRXaOKDgcd7M8zM8yPOlLbtbyuztLyyupZdz21sbm3v5Hf36iqMJaE1EvJQNn1QlDNBa5ppTpuRpBD4nDb8wfXEbzxQqVgo7vUool4APcG6jIA2Ujt/4ArwObSH2A1A9wnw5HZcHJ5c2u18wS7ZU+BF4qSkgFJU2/kvtxOSOKBCEw5KtRw70l4CUjPC6TjnxopGQAbQoy1DBQRUecn0hTE+NkoHd0NpSmg8VX9PJBAoNQp80zm5U817E/E/rxXr7oWXMBHFmgoyW9SNOdYhnuSBO0xSovnIECCSmVsx6YMEok1qOROCM//yIqmflpyzUvmuXKhcpXFk0SE6QkXkoHNUQTeoimqIoEf0jF7Rm/VkvVjv1sesNWOlM/voD6zPHzfPlqw=</latexit>rwJ (w) > 0

<latexit sha1_base64="Mfev+lub1upNzjixRRgurHuJrYM=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBItQN2VGSnVZdCOuKtgHtGPJpJk2NJMZkoylDP0PNy4Uceu/uPNvzLSz0NYDgcM593JPjhdxprRtf1u5tfWNza38dmFnd2//oHh41FJhLAltkpCHsuNhRTkTtKmZ5rQTSYoDj9O2N75J/fYTlYqF4kFPI+oGeCiYzwjWRnrsBViPCObJ3aw8Oe8XS3bFngOtEicjJcjQ6Be/eoOQxAEVmnCsVNexI+0mWGpGOJ0VerGiESZjPKRdQwUOqHKTeeoZOjPKAPmhNE9oNFd/byQ4UGoaeGYyTamWvVT8z+vG2r9yEyaiWFNBFof8mCMdorQCNGCSEs2nhmAimcmKyAhLTLQpqmBKcJa/vEpaFxWnVqneV0v166yOPJzAKZTBgUuowy00oAkEJDzDK7xZE+vFerc+FqM5K9s5hj+wPn8ALUSSTw==</latexit>J (w)
<latexit sha1_base64="Mfev+lub1upNzjixRRgurHuJrYM=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBItQN2VGSnVZdCOuKtgHtGPJpJk2NJMZkoylDP0PNy4Uceu/uPNvzLSz0NYDgcM593JPjhdxprRtf1u5tfWNza38dmFnd2//oHh41FJhLAltkpCHsuNhRTkTtKmZ5rQTSYoDj9O2N75J/fYTlYqF4kFPI+oGeCiYzwjWRnrsBViPCObJ3aw8Oe8XS3bFngOtEicjJcjQ6Be/eoOQxAEVmnCsVNexI+0mWGpGOJ0VerGiESZjPKRdQwUOqHKTeeoZOjPKAPmhNE9oNFd/byQ4UGoaeGYyTamWvVT8z+vG2r9yEyaiWFNBFof8mCMdorQCNGCSEs2nhmAimcmKyAhLTLQpqmBKcJa/vEpaFxWnVqneV0v166yOPJzAKZTBgUuowy00oAkEJDzDK7xZE+vFerc+FqM5K9s5hj+wPn8ALUSSTw==</latexit>J (w)

Intro ML (UofT) CSC311-Lec3 28 / 49

Direct Solution: Calculus

We seek w to minimize J (w) = 1
2‖Xw − t‖2

Taking the gradient with respect to w (see course notes for
additional details) and setting it to 0, we get:

∇wJ (w) = X>Xw −X>t = 0

Optimal weights:
w∗ = (X>X)−1X>t

Linear regression is one of only a handful of models in this course
that permit direct solution.

Intro ML (UofT) CSC311-Lec3 29 / 49

Iterative solution: Gradient Descent

Most optimization problems we cover in this course don’t have a
direct solution.
Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.
Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.
We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.

Intro ML (UofT) CSC311-Lec3 30 / 49

Gradient Descent

Observe:
I if ∂J /∂wj > 0, then increasing wj increases J .
I if ∂J /∂wj < 0, then increasing wj decreases J .

The following update always decreases the cost function for small
enough α (unless ∂J /∂wj = 0):

wj ← wj − α
∂J
∂wj

α > 0 is a learning rate (or step size). The larger it is, the faster w
changes.

I We’ll see later how to tune the learning rate, but values are
typically small, e.g. 0.01 or 0.0001.

I If cost is the sum of N individual losses rather than their average,
smaller learning rate will be needed (α′ = α/N).

Intro ML (UofT) CSC311-Lec3 31 / 49

Gradient Descent

This gets its name from the gradient. Recall the definition:

∇wJ =
∂J
∂w

=


∂J
∂w1

...
∂J
∂wD


I This is the direction of fastest increase in J .

Update rule in vector form:

w← w − α∂J
∂w

And for linear regression we have:

w← w − α

N

N∑
i=1

(y(i) − t(i))x(i)

So gradient descent updates w in the direction of fastest decrease.

Observe that once it converges, we get a critical point, i.e. ∂J
∂w = 0.

Intro ML (UofT) CSC311-Lec3 32 / 49

Gradient Descent for Linear Regression

Even for linear regression, where there is a direct solution, we
sometimes need to use GD.

Why gradient descent, if we can find the optimum directly?
I GD can be applied to a much broader set of models
I GD can be easier to implement than direct solutions
I For regression in high-dimensional space, GD is more efficient than

direct solution
I Linear regression solution: (X>X)−1X>t
I Matrix inversion is an O(D3) algorithm
I Each GD update costs O(ND)
I Or less with stochastic gradient descent (SGD, covered next week)
I Huge difference if D � 1

Intro ML (UofT) CSC311-Lec3 33 / 49

Feature Mappings

Intro ML (UofT) CSC311-Lec3 34 / 49

Feature Mapping (Basis Expansion)

The relation between the input and output may not be linear.

We can still use linear regression by mapping the input features to
another space using feature mapping (or basis expansion).
ψ(x) : RD → Rd and treat the mapped feature (in Rd) as the
input of a linear regression procedure.

Let us see how it works when x ∈ R and we use a polynomial
feature mapping.

Intro ML (UofT) CSC311-Lec3 35 / 49

Polynomial Feature Mapping

If the relationship doesn’t look linear, we can fit a polynomial.

Fit the data using a degree-M polynomial function of the form:

y = w0 + w1x+ w2x
2 + ...+ wMx

M =

M∑
i=0

wix
i

Here the feature mapping is ψ(x) = [1, x, x2, ..., xM]>.

We can still use linear regression to find w since y = ψ(x)>w is
linear in w0, w1,

In general, ψ can be any function. Another example:
ψ(x) = [1, sin(2πx), cos(2πx), sin(4πx), ...]>.

Intro ML (UofT) CSC311-Lec3 36 / 49

Polynomial Feature Mapping with M = 0

y = w0

x

t

M = 0

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

Intro ML (UofT) CSC311-Lec3 37 / 49

Polynomial Feature Mapping with M = 1

y = w0 + w1x

x

t

M = 1

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

Intro ML (UofT) CSC311-Lec3 38 / 49

Polynomial Feature Mapping with M = 3

y = w0 + w1x+ w2x
2 + w3x

3

x

t

M = 3

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

Intro ML (UofT) CSC311-Lec3 39 / 49

Polynomial Feature Mapping with M = 9

y = w0 + w1x+ w2x
2 + w3x

3 + . . .+ w9x
9

x

t

M = 9

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

Intro ML (UofT) CSC311-Lec3 40 / 49

Model Complexity and Generalization

Underfitting (M=0): model is too simple — does not fit the data.
Overfitting (M=9): model is too complex — fits perfectly.

x

t

M = 0

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

Good model (M=3): Achieves small test error (generalizes well).

x

t

M = 3

0 1

−1

0

1

Intro ML (UofT) CSC311-Lec3 41 / 49

Model Complexity and Generalization

x

t

M = 9

0 1

−1

0

1

As M increases, the magnitude of coefficients gets larger.

For M = 9, the coefficients have become finely tuned to the data.

Between data points, the function exhibits large oscillations.

Intro ML (UofT) CSC311-Lec3 42 / 49

Regularization

Intro ML (UofT) CSC311-Lec3 43 / 49

Regularization

The degree M of the polynomial controls the model’s complexity.

The value of M is a hyperparameter for polynomial expansion,
just like k in KNN. We can tune it using a validation set.

Restricting the number of parameters / basis functions (M) is a
crude approach to controlling the model complexity.

Another approach: keep the model large, but regularize it
I Regularizer: a function that quantifies how much we prefer one

hypothesis vs. another

Intro ML (UofT) CSC311-Lec3 44 / 49

L2 (or `2) Regularization

We can encourage the weights to be small by choosing as our
regularizer the L2 penalty.

R(w) = 1
2‖w‖22 =

1

2

∑
j

w2
j .

I Note: To be precise, the L2 norm ‖w‖2 is Euclidean distance, so
we’re regularizing the squared L2 norm.

The regularized cost function makes a tradeoff between fit to the
data and the norm of the weights.

Jreg(w) = J (w) + λR(w) = J (w) +
λ

2

∑
j

w2
j

If you fit training data poorly, J is large. If the weights are large
in magnitude, R is large.

Large λ penalizes weight values more.

λ is a hyperparameter we can tune with a validation set.
Intro ML (UofT) CSC311-Lec3 45 / 49

L2 (or `2) Regularization

The geometric picture:

Intro ML (UofT) CSC311-Lec3 46 / 49

L2 Regularized Least Squares: Ridge regression

For the least squares problem, we have J (w) = 1
2N ‖Xw − t‖2.

When λ > 0 (with regularization), regularized cost gives

wRidge
λ = argmin

w
Jreg(w) = argmin

w

1

2N
‖Xw − t‖22 +

λ

2
‖w‖22

=(X>X + λNI)−1X>t

The case λ = 0 (no regularization) reduces to least squares
solution!

Note that it is also common to formulate this problem as
argminw

1
2‖Xw − t‖22 + λ

2‖w‖22 in which case the solution is

wRidge
λ = (X>X + λI)−1X>t.

Intro ML (UofT) CSC311-Lec3 47 / 49

Gradient Descent under the L2 Regularization

Gradient descent update to minimize J :

w← w − α ∂

∂w
J

The gradient descent update to minimize the L2 regularized cost
J + λR results in weight decay:

w← w − α ∂

∂w
(J + λR)

= w − α
(
∂J
∂w

+ λ
∂R
∂w

)
= w − α

(
∂J
∂w

+ λw

)
= (1− αλ)w − α∂J

∂w

Intro ML (UofT) CSC311-Lec3 48 / 49

Conclusion so far

Linear regression exemplifies recurring themes of this course:

choose a model and a loss function

formulate an optimization problem

solve the minimization problem using one of two strategies
I direct solution (set derivatives to zero)
I gradient descent

vectorize the algorithm, i.e. represent in terms of linear algebra

make a linear model more powerful using features

improve the generalization by adding a regularizer

Intro ML (UofT) CSC311-Lec3 49 / 49

	Introduction

