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Today

@ Today we will introduce ensembling methods that combine multiple
models and can perform better than the individual members.

» We've seen many individual models (KNN, decision trees)
@ We will see bagging:

» Train models independently on random “resamples” of the training
data.

@ We will introduce linear regression, our first parametric learning
algorithm.

» This will exemplify how we’ll think about learning algorithms for
the rest of the course.
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Bias/Variance Decomposition

@ Recall, we treat predictions y at a query x as a random variable (where
the randomness comes from the choice of dataset), y, is the optimal
deterministic prediction, ¢ is a random target sampled from the true
conditional p(t|x).

El(y — t)’] = (v« —E[y])* + Var(y) + Var(t)

bias variance Bayes error

@ Bias/variance decomposes the expected loss into three terms:

» bias: how wrong the expected prediction is (corresponds to
underfitting)

» variance: the amount of variability in the predictions (corresponds
to overfitting)

» Bayes error: the inherent unpredictability of the targets

@ Even though this analysis only applies to squared error, we often loosely
use “bias” and “variance” as synonyms for “underfitting” and
“overfitting”.
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Bias/Variance Decomposition: Another Visualization

e We can visualize this decomposition in output space, where the
axes correspond to predictions on the test examples.

o If we have an overly simple model (e.g. KNN with large k), it
might have

» high bias (because it cannot capture the structure in the data)
» low variance (because there’s enough data to get stable estimates)
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Bias/Variance Decomposition: Another Visualization

e If you have an overly complex model (e.g. KNN with k£ = 1), it
might have

» low bias (since it learns all the relevant structure)
» high variance (it fits the quirks of the data you happened to sample)
X

contours of
expected loss
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Bias/Variance Decomposition: Another Visualization

@ The following graphic summarizes the previous two slides:

Low Variance High Variance

@ What doesn’t this capture?

Low Bias

High Bias

A: Bayes error
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Bagging: Motivation

@ Suppose we could somehow sample m independent training sets
from psample-

@ We could then compute the prediction y; based on each one, and
take the average y = L 3" ;.

o How does this affect the three terms of the expected loss?

» Bayes error: unchanged, since we have no control over it
» Bias: unchanged, since the averaged prediction has the same

expectation
m

i=1

Ely] =E = Efy]

» Variance: reduced, since we're averaging over independent
samples

m

1 1 & 1
m Zyz] =2 ;Vaf[yi] = Evar[yi]'

i=1

Var[y] = Var
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Bagging: The Idea

@ In practice, the sampling distribution psample is often finite or expensive
to sample from.

@ So training separate models on independently sampled datasets is very
wasteful of data!

» Why not train a single model on the union of all sampled datasets?

@ Solution: given training set D, use the empirical distribution pp as a
proxy for psampie. This is called bootstrap aggregation, or bagging .

» Take a single dataset D with n examples.

» Generate m new datasets (“resamples” or “bootstrap samples”),
each by sampling n training examples from D, with replacement.

» Average the predictions of models trained on each of these datasets.

@ The bootstrap is one of the most important ideas in all of statistics!

» Intuition: As |D| — oo, we have pp — Psample-
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Bagging
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in this example n =7, m =3
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Bagging
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Bagging for Binary Classification

@ If our classifiers output real-valued probabilities, z; € [0, 1], then we can
average the predictions before thresholding:

m z
Ybagged = H(Zbagged > 05) =1I <Z E > 05>
=1

@ If our classifiers output binary decisions, y; € {0,1}, we can still average
the predictions before thresholding:

Ybagged = 1 <41 é > 0.5)

This is the same as taking a majority vote.
@ A bagged classifier can be stronger than the average underyling model.

» E.g., individual accuracy on “Who Wants to be a Millionaire” is
only so-so, but “Ask the Audience” is quite effective.
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Bagging: Effect of Correlation

o Problem: the datasets are not independent, so we don’t get the
1/m variance reduction.
» Possible to show that if the sampled predictions have variance o2
and correlation p, then

1 & 1 ) )
Var (m;yz> = E(l—p)a + po©.

@ Ironically, it can be advantageous to introduce additional
variability into your algorithm, as long as it reduces the
correlation between samples.

» Intuition: you want to invest in a diversified portfolio, not just one
stock.

» Can help to use average over multiple algorithms, or multiple
configurations of the same algorithm.
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Random Forests

o Random forests = bagged decision trees, with one extra trick to
decorrelate the predictions

» When choosing each node of the decision tree, choose a random set
of d input features, and only consider splits on those features

o Random forests are probably the best black-box machine learning
algorithm — they often work well with no tuning whatsoever.

» one of the most widely used algorithms in Kaggle competitions
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Bagging Summary

@ Bagging reduces overfitting by averaging predictions.
@ Used in most competition winners
» Even if a single model is great, a small ensemble usually helps.
@ Limitations:
» Does not reduce bias in case of squared error.
» There is still correlation between classifiers.
» Random forest solution: Add more randomness.

» Naive mixture (all members weighted equally).

> If members are very different (e.g., different algorithms, different
data sources, etc.), we can often obtain better results by using a
principled approach to weighted ensembling.
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Linear Regression
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Overview

@ Second learning algorithm of the course: linear regression.

» Task: predict scalar-valued targets (e.g. stock prices)
» Architecture: linear function of the inputs

e While KNN was a complete algorithm, linear regression exemplifies
a modular approach that will be used throughout this course:
» choose a model describing the relationships between variables of
interest
> define a loss function quantifying how bad the fit to the data is

» choose a regularizer saying how much we prefer different candidate
models (or explanations of data)

» fit a model that minimizes the loss function and satisfies the
constraint /penalty imposed by the regularizer, possibly using an
optimization algorithm

e Mixing and matching these modular components give us a lot of
new ML methods.
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Supervised Learning Setup
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In supervised learning;:
@ There is input x € X, typically a vector of features (or covariates)
e There is target ¢t € T (also called response, outcome, output, class)

e Objective is to learn a function f : X — T such that t ~ y = f(x)
based on some data D = {(x®,t®) for i = 1,2,...,N}.
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Linear Regression - Model

@ Model: In linear regression, we use a linear function of the features
x = (z1,...,2p) € RP to make predictions y of the target value ¢t € R:

y =f(x) :ijl’j-i-b

» y is the prediction
» w is the weights
> b is the bias (or intercept)

@ w and b together are the parameters

@ We hope that our prediction is close to the target: y ~ t.
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What is Linear? 1 feature vs D features

If we have only 1 feature:
y = wx + b where w, x,b € R.

@ y is linear in x.

o If we have D features:
y=Ww' X+ bwhere w,x € RP,
beR

@ y is linear in x.

Relation between the prediction y and inputs x is linear in both cases.
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Linear Regression - Loss Function

e A loss function L(y,t) defines how bad it is if, for some example x,
the algorithm predicts y, but the target is actually ¢.

@ Squared error loss function:

L(y,t)=3@y—1)°

@ y — t is the residual, and we want to make this small in magnitude

e The % factor is just to make the calculations convenient.
e Cost function: loss function averaged over all training examples

1 Ny 2
T(w.b) = 55> (v 1)

1 & 2
- = T <i)+b—t<i))
QNZ(W x

e Terminology varies. Some call “cost” empirical or average loss.
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Vectorization
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Vectorization

@ The prediction for one data point can be computed using a for
loop:
y =b
for j in range(M):
y += wlil * x[7]

e Excessive super/sub scripts are hard to work with, and Python
loops are slow, so we vectorize algorithms by expressing them in
terms of vectors and matrices.

wz(wl,...,wD)T x:(azl,...,acp)T
y ::\vjix-+ b

o This is simpler and executes much faster:
y = hp.dot(w, X) + b
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Vectorization

Why vectorize?
e The equations, and the code, will be simpler and more readable.
Gets rid of dummy variables/indices!
@ Vectorized code is much faster

» Cut down on Python interpreter overhead
» Use highly optimized linear algebra libraries (hardware support)
» Matrix multiplication very fast on GPU (Graphics Processing Unit)

Switching in and out of vectorized form is a skill you gain with practice
@ Some derivations are easier to do element-wise

e Some algorithms are easier to write/understand using for-loops
and vectorize later for performance
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Vectorization

@ We can organize all the training examples into a design matrix X
with one row per training example, and all the targets into the
target vector t.

one feature across
all training examples

xT 80| 3 0 N
X — xg; - g —51 52 g amln a0
) —

e Computing the predictions for the whole dataset:

Xw + bl = : = : =y
wlx(N) 4 y )
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Vectorization

o Computing the squared error cost across the whole dataset:

y = Xw + b1
J = ny—tHz

o Sometimes we may use J = ||y — t||%, without a normalizer. This
would correspond to the sum of losses, and not the averaged loss.
The minimizer does not depend on N (but optimization might!).

@ We can also add a column of 1’s to design matrix, combine the
bias and the weights, and conveniently write

1 [X(l)]T b
X = |1 [X(Q)]T e RVX(DHD) nd w — Z; c RP+1
1

Then, our predictions reduce to y = Xw.
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Optimization
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Solving the Minimization Problem
We defined a cost function J(w). This is what we’d like to minimize.

Recall from calculus: the minimum of a smooth function (if it exists)
occurs at a critical point, i.e. point where the derivative is zero.

e multivariate generalization: set the partial derivatives 07 /0w; to
Z€ero.

o Equivalently, we can set the gradient to zero. The gradient is the
vector of partial derivatives:

6&7
) o
Vod = 87‘7 =
w 07
owp

Solutions may be direct or iterative

@ Sometimes we can directly find provably optimal parameters (e.g. set the
gradient to zero and solve in closed form). We call this a direct solution.

@ Iterative solution methods repeatedly apply an update rule that
gradually takes us closer to the soltuion.
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Direct Solution: Calculus

@ Lets consider a cartoon visualization of J(w) where w is single
dimensional

o Left We seek w = w* that minimizes J (w)

@ Right The gradients of a function can tell us where the maxima and
minima of functions lie

@ Strategy: Write down an algebraic expression for V,, 7 (w). Set
equation to 0. Solve for w
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Direct Solution: Calculus

o We seek w to minimize J(w) = 1| Xw — t||?

Taking the gradient with respect to w (see course notes for
additional details) and setting it to 0, we get:

VeI (W) =X"Xw-X"t =0

Optimal weights:
wh = (XTX)"1X Tt

Linear regression is one of only a handful of models in this course
that permit direct solution.
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[terative solution: Gradient Descent

o Most optimization problems we cover in this course don’t have a
direct solution.

o Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

o Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

e We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.

I(w)

w " ’”l</w27
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Gradient Descent

@ Observe:
» if 0J/Ow; > 0, then increasing w; increases J.
» if 0J/0w; < 0, then increasing w; decreases J.

o The following update always decreases the cost function for small
enough o (unless 07 /0w; = 0):

wj; <—w~—aa—j
J J 811)]'

e a > 0 is a learning rate (or step size). The larger it is, the faster w
changes.

» We'll see later how to tune the learning rate, but values are
typically small, e.g. 0.01 or 0.0001.

» If cost is the sum of N individual losses rather than their average,
smaller learning rate will be needed (o' = a/N).
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Gradient Descent

@ This gets its name from the gradient. Recall the definition:

883
9 o

Vod = 8l =
w 07
8wD

» This is the direction of fastest increase in J.
e Update rule in vector form:

N4

W W—a—
W
And for linear regression we have:

N
a

_ = (8 _ $()) ()
W W Z(y ") x
=1
@ So gradient descent updates w in the direction of fastest decrease.

o Observe that once it converges, we get a critical point, i.e. g—v{ =
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Gradient Descent for Linear Regression

e Even for linear regression, where there is a direct solution, we
sometimes need to use GD.
o Why gradient descent, if we can find the optimum directly?

» GD can be applied to a much broader set of models
» GD can be easier to implement than direct solutions
» For regression in high-dimensional space, GD is more efficient than
direct solution
» Linear regression solution: (X' X) !XTt
Matrix inversion is an O(D?) algorithm
Each GD update costs O(ND)
Or less with stochastic gradient descent (SGD, covered next week)
Huge difference if D > 1

>
>
»
>
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Feature Mappings
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Feature Mapping (Basis Expansion)

The relation between the input and output may not be linear.

@ We can still use linear regression by mapping the input features to
another space using feature mapping (or basis expansion).
¥(x) : RP — R? and treat the mapped feature (in R?) as the
input of a linear regression procedure.

o Let us see how it works when x € R and we use a polynomial
feature mapping.
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Polynomial Feature Mapping

If the relationship doesn’t look linear, we can fit a polynomial.

0 1

Fit the data using a degree-M polynomial function of the form:

M
Y = wo + w1 + w2x2 + ...+ waM = Zwixi
i=0
o Here the feature mapping is 9 (z) = [1,z, 22, ...,2M]T.
o We can still use linear regression to find w since y = () 'w is

linear in wq, w, ....
@ In general, 1) can be any function. Another example:
¥(z) = [1,sin(27x), cos(2mz), sin(47x), ... .
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Polynomial Feature Mapping with M =0

Y = wo
1 o M=0 A
o)

t

o) AN o
O 4

o

-1

0 1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Polynomial Feature Mapping with M =1

Yy = wo + wix

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Polynomial Feature Mapping with M = 3

2
Y = Wy + W1T + WX +w3:c3

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Polynomial Feature Mapping with M =9

y:wg+w1$+w2x2+w3x3+...+w9x9

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Model Complexity and Generalization

Underfitting (M=0):
Overfitting (M=9):

—©— Training
—O— Test

model is too simple — does not fit the data.
model is too complex — fits perfectly.

M =0 1
t

Good model (M
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=3): Achieves small test error (generalizes well).
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Model Complexity and Generalization

M=0 M=1 M=3 M=9

wy | 019 082 031 035 o
wy 127 799 232.37

w} -25.43 -5321.83 !

w} 1737 4856831

w} -231639.30

ws 640042.26

wy 106180052 _,

ws 1042400.18

w} -557682.99

wy 125201.43 0 a1

e As M increases, the magnitude of coefficients gets larger.
e For M =9, the coefficients have become finely tuned to the data.

o Between data points, the function exhibits large oscillations.
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Regularization
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Regularization

@ The degree M of the polynomial controls the model’s complexity.

@ The value of M is a hyperparameter for polynomial expansion,
just like k£ in KNN. We can tune it using a validation set.

o Restricting the number of parameters / basis functions (M) is a
crude approach to controlling the model complexity.

e Another approach: keep the model large, but regularize it

» Regularizer: a function that quantifies how much we prefer one
hypothesis vs. another
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L?* (or {3 ) Regularization

@ We can encourage the weights to be small by choosing as our
regularizer the L? penalty.

1
R(w) = Siwl3 =5 >
J

» Note: To be precise, the L? norm ||w||2 is Euclidean distance, so
we're regularizing the squared L? norm.

@ The regularized cost function makes a tradeoff between fit to the
data and the norm of the weights.

Tueg(w) = T(w) 4 VR(w) = T (w) + 5 3" u?

o If you fit training data poorly, 7 is large. If the weights are large
in magnitude, R is large.
e Large ) penalizes weight values more.
@ ) is a hyperparameter we can tune with a validation set.
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L?* (or {3 ) Regularization

@ The geometric picture:

loss

regularizer
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L? Regularized Least Squares: Ridge regression

For the least squares problem, we have J(w) = 5k || Xw — t||2.

e When A > 0 (with regularization), regularized cost gives

2

i . o1 A
Wihdge = argmin Jyeg(W) = argmin — || Xw — t||% + = w5

=(X"X +AND)1X Tt

e The case A = 0 (no regularization) reduces to least squares
solution!

o Note that it is also common to formulate this problem as
argminy, 3 || Xw — t||3 + %HWH% in which case the solution is
wide — (XTX + A1)~ X Tt
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Gradient Descent under the L? Regularization
e Gradient descent update to minimize J:
W — W — aa—wj

o The gradient descent update to minimize the L? regularized cost
J + AR results in weight decay:

w(—w—ai(J+)\R)

ow
W—@(?i%—/\ )
:(1—a)\)w—ag§
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Conclusion so far

Linear regression exemplifies recurring themes of this course:
@ choose a model and a loss function

o formulate an optimization problem
@ solve the minimization problem using one of two strategies

» direct solution (set derivatives to zero)
» gradient descent

@ vectorize the algorithm, i.e. represent in terms of linear algebra
e make a linear model more powerful using features

e improve the generalization by adding a regularizer
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