
CSC311 Fall 2021 Homework 3

Homework 3

Deadline: Wednesday, Nov. 3, at 11:59pm.

Submission: You will need to submit three files:

• Your answers to all of the questions, as a PDF file titled hw3_writeup.pdf. You can produce
the file however you like (e.g. LATEX, Microsoft Word, scanner), as long as it is readable. If
you need to split your writeup into multiple files, that’s OK, as long as we can figure out
what you did.

• The completed Python files naive_bayes.py and q4.py.

Neatness Point: One point will be given for neatness. You will receive this point as long as we
don’t have a hard time reading your solutions or understanding the structure of your code.

Late Submission: 10% of the marks will be deducted for each day late, up to a maximum of 3
days. After that, no submissions will be accepted.

Homeworks are individual work. See the Course Information handout1 for detailed policies.

1. [5pts] Backprop

In this question, you will derive the backprop updates for a particular neural net architecture.
The network is similar to the multilayer perceptron architecture from lecture, and has one
linear hidden layer. However, there are two architectural differences:

• In addition to the usual vector-valued input x, there is a vector-valued “context” input
η. (The particular meaning of η isn’t important for your derivation, but think of it as
containing additional task information, such as whether to focus on the left or the right
half of the image.) The hidden layer activations are modulated based on η; this means
they are multiplied by a value which depends on η.

• The network has a skip connection which sends information directly from the input to
the output of the network.

The loss function is squared error. The forward pass equations and network architecture are
as follows (the symbol � represents elementwise multiplication, and σ denotes the logistic
function):

z = Wx

s = Uη

h = z� σ(s)

y = v>h + r>x

L = 1
2(y − t)2 x
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<latexit sha1_base64="hRMmAbCeXuaSY1+rtg2tBUDvdig="></latexit>⌘
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The model parameters are matrices W and U, and vectors v and r. Note that there is only
one output unit, i.e. y and t are scalars.

1http://www.cs.toronto.edu/~rgrosse/courses/csc311_f21/syllabus.pdf
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(a) [1pt] Draw the computation graph relating x, z, η, s, h, and the model parameters.

(b) [4pts] Derive the backprop formulas to compute the error signals for all of the model
parameters, as well as x and η. Also include the backprop formulas for all intermediate
quantities needed as part of the computation. You may leave the derivative of the logistic
function as σ′ rather than expanding it out explicitly.

2. [13pts] Fitting a Näıve Bayes Model

In this question, we’ll fit a Näıve Bayes model to the MNIST digits using maximum likeli-
hood. In addition to the mathematical derivations, you will complete the implementation
in naive_bayes.py. The starter code will download the dataset and parse it for you: Each
training sample (t(i),x(i)) is composed of a vectorized binary image x(i) ∈ {0, 1}784, and

1-of-10 encoded class label t(i), i.e., t
(i)
c = 1 means image i belongs to class c.

Given parameters π and θ, Näıve Bayes defines the joint probability of the each data point
x and its class label c as follows:

p(x, c |θ,π) = p(c |θ,π)p(x | c,θ,π) = p(c |π)

784∏
j=1

p(xj | c, θjc).

where p(c |π) = πc and p(xj = 1 | c,θ,π) = θjc. Here, θ is a matrix of probabilities for each
pixel and each class, so its dimensions are 784 × 10, and π is a vector with one entry for
each class. (Note that in the lecture, we simplified notation and didn’t write the probabilities
conditioned on the parameters, i.e. p(c|π) is written as p(c) in lecture slides).

For binary data (xj ∈ {0, 1}), we can write the Bernoulli likelihood as

p(xj | c, θjc) = θ
xj

jc (1− θjc)(1−xj), (1)

which is just a way of expressing p(xj = 1|c, θjc) = θjc and p(xj = 0|c, θjc) = 1 − θjc in
a compact form. For the prior p(t |π), we use a categorical distribution (generalization of
Bernoulli distribution to multi-class case),

p(tc = 1 |π) = p(c |π) = πc or equivalently p(t |π) = Π9
j=0π

tj
j where

9∑
i=0

πi = 1,

where p(c |π) and p(t |π) can be used interchangeably. You will fit the parameters θ and π
using MLE and MAP techniques. In both cases, your fitting procedure can be written as a
few simple matrix multiplication operations.

(a) [3pts] First, derive the maximum likelihood estimator (MLE) for the class-conditional
pixel probabilities θ and the prior π. Derivations should be rigorous.

Hint 1: We saw in lecture that MLE can be thought of as ‘ratio of counts’ for the data,
so what should θ̂jc be counting?

Hint 2: Similar to the binary case, when calculating the MLE for πj for j = 0, 1, ..., 8,

write p(t(i) |π) = Π9
j=0π

t
(i)
j

j and in the log-likelihood replace π9 = 1− Σ8
j=0πj , and then

take derivatives w.r.t. πj . This will give you the ratio π̂j/π̂9 for j = 0, 1, .., 8. You know
that π̂j ’s sum up to 1.

(b) [1pt] Derive the log-likelihood log p(t|x,θ,π) for a single training image.
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(c) [3pt] Fit the parameters θ and π using the training set with MLE, and try to report
the average log-likelihood per data point 1

N ΣN
i=1 log p(t(i)|x(i), θ̂, π̂), using Equation (1).

What goes wrong? (it’s okay if you can’t compute the average log-likelihood here).

(d) [1pt] Plot the MLE estimator θ̂ as 10 separate greyscale images, one for each class.

(e) [2pt] Derive the Maximum A posteriori Probability (MAP) estimator for the class-
conditional pixel probabilities θ, using a Beta(3, 3) prior on each θjc. Hint: it has
a simple final form, and you can ignore the Beta normalizing constant.

(f) [2pt] Fit the parameters θ and π using the training set with MAP estimators from previ-
ous part, and report both the average log-likelihood per data point, 1

N ΣN
i=1 log p(t(i)|x(i), θ̂, π̂),

and the accuracy on both the training and test set. The accuracy is defined as the frac-
tion of examples where the true class is correctly predicted using ĉ = argmaxc log p(tc=
1|x, θ̂, π̂).

(g) [1pt] Plot the MAP estimator θ̂ as 10 separate greyscale images, one for each class.

3. [7pts] Categorial Distribution. In this problem you will consider a Bayesian approach to
modelling categorical outcomes. Let’s consider fitting the categorical distribution, which is
a discrete distribution over K outcomes, which we’ll number 1 through K. The probability
of each category is explicitly represented with parameter θk. For it to be a valid probability
distribution, we clearly need θk ≥ 0 and

∑
k θk = 1. We’ll represent each observation x as

a 1-of-K encoding, i.e, a vector where one of the entries is 1 and the rest are 0. Under this
model, the probability of an observation can be written in the following form:

p(x|θ) =

K∏
k=1

θxk
k .

Suppose you observe a dataset,
D = {x(i)}Ni=1.

Denote the count for outcome k as Nk =
∑n

i=1 x
(i)
k . Recall that each data point is in the

1-of-K encoding, i.e., x
(i)
k = 1 if the ith datapoint represents an outcome k and x

(i)
k = 0

otherwise. In the previous assignment, you showed that the maximum likelihood estimate for
the counts was:

θ̂k =
Nk

N
.

(a) [2pts] For the prior, we’ll use the Dirichlet distribution, which is defined over the set of
probability vectors (i.e. vectors that are nonnegative and whose entries sum to 1). Its
PDF is as follows:

p(θ) ∝ θa1−11 · · · θak−1K .

Determine the posterior distribution p(θ | D). Based on your answer, is the Dirichlet
distribution a conjugate prior for the categorial distribution?

(b) [3pts] Still assuming the Dirichlet prior distribution, determine the MAP estimate of
the parameter vector θ. For this question, you may assume each ak > 1.

Hint: Remember that you need to enforce the constraint that
∑

k θk = 1. You can do
this using the same parameterization trick you used in Question 2. Alternatively, you
could use Lagrange multipliers, if you’re familiar with those.
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(c) [2pts] Now, suppose that your friend said that they had a hidden N + 1st outcome,
x(N+1), drawn from the same distribution as the previous N outcomes. Your friend does
not want to reveal the value of x(N+1) to you. So, you want to use your Bayesian model
to predict what you think x(N+1) is likely to be. The “proper” Bayesian predictor is the
so-called posterior predictive distribution:

p(x(N+1)|D) =

∫
p(x(N+1)|θ)p(θ|D) dθ

What is the probability that the N+1 outcome was k, i.e., the probability that x
(N+1)
k =

1, under your posterior predictive distribution? Hint: A useful fact is that if θ ∼
Dirichlet(a1, . . . , aK), then

E[θk] =
ak∑
k′ ak′

.

Report your answers to the above questions.

4. [5pts] Gaussian Discriminant Analysis. For this question you will build classifiers to
label images of handwritten digits. Each image is 8 by 8 pixels and is represented as a vector
of dimension 64 by listing all the pixel values in raster scan order. The images are grayscale
and the pixel values are between 0 and 1. The labels y are 0, 1, 2, . . . , 9 corresponding to
which character was written in the image. There are 700 training cases and 400 test cases for
each digit; they can be found in the data directory in the starter code.

A skeleton (q4.py) is is provided for each question that you should use to structure your code.
Starter code to help you load the data is provided (data.py). Note: the get digits by label

function in data.py returns the subset of digits that belong to a given class.

Using maximum likelihood, fit a set of 10 class-conditional Gaussians with a separate, full
covariance matrix for each class. Remember that the conditional multivariate Gaussian prob-
ability density is given by,

p(x | y = k,µ,Σk) = (2π)−d/2|Σk|−1/2 exp

{
−1

2
(x− µk)TΣ−1k (x− µk)

}
(2)

You should take p(y = k) =
1

10
. You will compute parameters µkj and Σk for k ∈ (0...9), j ∈

(1...64). You should implement the covariance computation yourself (i.e. without the aid of
np.cov). Hint: To ensure numerical stability you may have to add a small multiple of the
identity to each covariance matrix. For this assignment you should add 0.01I to each matrix.

(a) [3pts] Using the parameters you fit on the training set and Bayes rule, compute the
average conditional log-likelihood, i.e. 1

N

∑N
i=1 log(p(y(i) |x(i), θ)) on both the train and

test set and report it. Hint: for numerical stability, you will want to use np.logaddexp,
as discussed in Lecture 4.

(b) [1pt] Select the most likely posterior class for each training and test data point as your
prediction, and report your accuracy on the train and test set.

(c) [1pt] Compute the leading eigenvectors (largest eigenvalue) for each class covariance
matrix (can use np.linalg.eig) and plot them side by side as 8 by 8 images.

Report your answers to the above questions, and submit your completed Python code for
q4.py.
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