CSC311H1F Tutorial 5

Exercises on Bias-Variance Decomposition and Entropy

lan Shi & Skylar Hao



Overview

» Recap: Generalization error can be decomposed into bias,
variance and Bayes error terms.

* Q1: Decompose a predictor for the sample mean estimator of a
Gaussian distribution

* Q2: Prove some properties of Entropy



1. Bias, Variance, and Bayes Error. The purpose of this exercise is to show a simple example
where you can compute the bias, variance, and Bayes error of a predictor. For this question,
we assume we have N scalar-valued observations {:L’{i)}g";l sampled independently from a
Gaussian distribution N'(z; 1, 0?) with known variance o and unknown mean p. We'd like
to estimate the mean parameter p, or equivalently, choose a /i which minimizes the squared
error risk E[(x — 1)?].

We'll introduce the Gaussian distribution properly in a later lecture, but hopefully you’ve
seen it before in a probability course. It is a bell-shaped distribution whose density is:

- 1 (z—p)
: 2y _
p(z;p,0°) = \/EJGXP (—T .

The details of the Gaussian distribution (such as the density) aren’t important for this exer-
cise. The important facts are that E[z] = p and Var(z) = o?).

We will estimate the unknown mean paramter p by taking the empirical mean, or average,

of the observations: v
P 0



Q1: Decomposition

 Decompose the mean squared error (MSE) of sample mean.
E[(x — 1)?]
« Take expectationw.r.t. x ~N(x; u, 02)

E.[(x — )?] = E[x* — 2x + 4°]
= E[x?] — 24E[x] + A2
= Var[x] + E[x]? — 24E[x] + 42
= (E[x] — @)* + Var|[x]
= (u — @) + Var|[x]



Q1: Decomposition

» Take expectation w.r.t estimator /i

» Estimator is a random variable since the training data its generated from is
randomly drawn from the true distribution

By [(x — 1] = E[(u — @) + Var[x]]
= E[(u — 2)?] + Var|[x]
= E[(u* — 2up + [%)] + Var[x]
= u® — 2uE[a] + E[4%] + Var[x]
= u? — 2uE[a] + E[a]? + Var[a] + Var[x]
= (u — E[a])? + Var[4] + Var[x]



Q1: Problem Statement

* Find exact bias, variance, Bayes error of sample mean MSE

* Bias: (u — E[A])?
 Variance: Var|[ji]
« Bayes Error: E(x — u)?

» Use properties of expectation / variance
« Remember that E[x] = u, Var[x] = ¢*

» Also remember fi is our sample mean estimator, meaning its
defined by the equation in the handout



Q1: Bias Solution
(u — E[a])?

Looks like we need E|[/i]

1 E[]_li Lo
=

Substituting back in

(u—E[aD* = (u—-w?=0




Q1: Bias Solution

* Since (u — E[f])? = 0, itis an unbiased estimator

e Estimators which have bias = 0 are unbiased, and vice versa
« Example of biased estimator: Trying to estimate an unknown variance via

1
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Q1: Variance Solution
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 Aside: This can be converted into the standard error formula by
square rooting both sides. Pretty cool connection!



Q1: Bayes Error Solution

 Note that we already obtained Bayes error of Var[x] = ¢2 in decomposition.
Starting from handout equation...

E(x — u)? = E[x? — 2xu + u?]
= E[x*] — 2uE[x] + E[u?]
= E[x]? + Var[x] — 2uE[x] + E[u?]

= p*+0° = 2up +p
= 2u* — 2u* + o*




Q2: Entropy Properties Part (a)

* Prove entropy H(X) is non-negative

1
H(X) = Z p(x)log, (p(x)>

e X is adiscrete random variable. Thus:
*p(x;) =0
* erx p(x) =1

* The two conditions also imply p(x;) < 1




Q2: Entropy Properties Part (a)

Graph for log2(1/x)

* Since 0 < p(x;) < 1,log, (ﬁ) >0

 We are basically done.
* HX) = T, p() log, (55)

]

Non-negative Non-negative

Sums of non-negative values will
remain non-negative



Q2: Entropy Properties Part (b)

Prove H(X,Y) =H(X |Y)+ H(Y)

1
HX,Y) = p(x,y)log, ( )
ZZ p(x,y)
= - Z Z p(x,y)log, p(x,y)
X y

== p(xy) log(yp@))
x 'y

= - Z z p(x,y)(logp(y|x) + logp(x)) Log product identity
x y

By commutativity and
= - z z p(x,y)logp(ylx) — Z Z p(x,y)logp(x) associativity of summation
x y x y



Q2: Entropy Properties Part (b)

HOXGY) = =) > py)logp(rlx) = ) ) p(x,y)logp(x)
Xy x Yy

= —EZp(x,y) logp(y[x) —Elogp(x)Zp(x,y)
X y x y

== ) > pEy1ogp(x) - ) logp() ()
x y x

== > plxy) logp(ylx) +HX)
x Yy

Since log p(x)is not
dependent ony

Marginalizing out y

By definition of H(X)



Q2: Entropy Properties Part (b)

HOGY) = = ) > p(y) logp (710 +H(X)
x y

== > pOIIP() logp (/1) + HX)
X Yy

= —Zp(x)Zp(ylx) logp(y|x) + H(X) Since p(x)is not
dependent ony
X y
- z p(0) (FHYIX =x)) + HX) By definition of H(Y|X = x)

To show the other way around, we can do equivalent
proof, but note H(Y|X) # H(X|Y) in general.



Q2: Entropy Properties Part (c)
* Prove H(X,Y) > H(X)
* Weknowthat H(X) > 0,and H(X,Y) = H(Y|X) + H(X)

* Non rigorous demonstration
« IfH(Y|X) = 0,then H(X,Y) = H(X)
« IfFH(Y|X) > 0,then H(X,Y) = H(X,Y) — H(Y|X) = H(X)
 H(Y|X) cannot be less than 0 [proof similar to part (a)]



