CSC311H1F Tutorial 5

Exercises on Bias-Variance Decomposition and Entropy

Ian Shi & Skylar Hao

Overview

- Recap: Generalization error can be decomposed into bias, variance and Bayes error terms.
- Q1: Decompose a predictor for the sample mean estimator of a Gaussian distribution
- Q2: Prove some properties of Entropy

1. Bias, Variance, and Bayes Error. The purpose of this exercise is to show a simple example where you can compute the bias, variance, and Bayes error of a predictor. For this question, we assume we have N scalar-valued observations $\{x^{(i)}\}_{i=1}^{N}$ sampled independently from a Gaussian distribution $\mathcal{N}(x;\mu,\sigma^2)$ with known variance σ^2 and unknown mean μ . We'd like to estimate the mean parameter μ , or equivalently, choose a $\hat{\mu}$ which minimizes the squared error risk $\mathbb{E}[(x-\hat{\mu})^2]$.

We'll introduce the Gaussian distribution properly in a later lecture, but hopefully you've seen it before in a probability course. It is a bell-shaped distribution whose density is:

$$p(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

The details of the Gaussian distribution (such as the density) aren't important for this exercise. The important facts are that $\mathbb{E}[x] = \mu$ and $\operatorname{Var}(x) = \sigma^2$).

We will estimate the unknown mean paramter μ by taking the empirical mean, or average, of the observations:

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x^{(i)}.$$

Q1: Decomposition

• Decompose the mean squared error (MSE) of sample mean.

 $\mathbb{E}[(x-\hat{\mu})^2]$

• Take expectation w.r.t. $x \sim N(x; \mu, \sigma^2)$

$$\mathbb{E}_{x}[(x - \hat{\mu})^{2}] = \mathbb{E}[x^{2} - 2x\hat{\mu} + \hat{\mu}^{2}]$$

$$= \mathbb{E}[x^{2}] - 2\hat{\mu}\mathbb{E}[x] + \hat{\mu}^{2}$$

$$= \operatorname{Var}[x] + \mathbb{E}[x]^{2} - 2\hat{\mu}\mathbb{E}[x] + \hat{\mu}^{2}$$

$$= (\mathbb{E}[x] - \hat{\mu})^{2} + \operatorname{Var}[x]$$

$$= (\mu - \hat{\mu})^{2} + \operatorname{Var}[x]$$

Q1: Decomposition

- Take expectation w.r.t estimator $\hat{\mu}$
 - Estimator is a random variable since the training data its generated from is randomly drawn from the true distribution

$$\begin{split} \mathbb{E}_{\hat{\mu}}[\mathbb{E}_{x}[(x-\hat{\mu})^{2}]] &= \mathbb{E}[(\mu-\hat{\mu})^{2} + \operatorname{Var}[x]] \\ &= \mathbb{E}[(\mu-\hat{\mu})^{2}] + \operatorname{Var}[x] \\ &= \mathbb{E}[(\mu^{2}-2\mu\hat{\mu}+\hat{\mu}^{2})] + \operatorname{Var}[x] \\ &= \mu^{2}-2\mu\mathbb{E}[\hat{\mu}] + \mathbb{E}[\hat{\mu}^{2}] + \operatorname{Var}[x] \\ &= \mu^{2}-2\mu\mathbb{E}[\hat{\mu}] + \mathbb{E}[\hat{\mu}]^{2} + \operatorname{Var}[\hat{\mu}] + \operatorname{Var}[x] \\ &= (\mu-\mathbb{E}[\hat{\mu}])^{2} + \operatorname{Var}[\hat{\mu}] + \operatorname{Var}[x] \end{split}$$

Q1: Problem Statement

- Find exact bias, variance, Bayes error of sample mean MSE
 - Bias: $(\mu \mathbb{E}[\hat{\mu}])^2$
 - Variance: $Var[\hat{\mu}]$
 - Bayes Error: $\mathbb{E}(x \mu)^2$
- Use properties of expectation / variance
- Remember that $\mathbb{E}[x] = \mu$, $\operatorname{Var}[x] = \sigma^2$
- Also remember $\hat{\mu}$ is our sample mean estimator, meaning its defined by the equation in the handout

Q1: Bias Solution

$$(\mu - \mathbb{E}[\hat{\mu}])^2$$

Looks like we need $\mathbb{E}[\hat{\mu}]$

$$\mathbb{E}[\hat{\mu}] = \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N} x_i\right] = \frac{1}{N}\sum_{i=1}^{N}\mathbb{E}[x_i] = \frac{1}{N}\sum_{i=1}^{N} \mu = \frac{1}{N}(N\mu) = \mu$$

Substituting back in

$$(\mu - \mathbb{E}[\hat{\mu}])^2 = (\mu - \mu)^2 = 0$$

Q1: Bias Solution

- Since $(\mu \mathbb{E}[\hat{\mu}])^2 = 0$, it is an <u>unbiased</u> estimator
- Estimators which have bias = 0 are unbiased, and vice versa
 - Example of biased estimator: Trying to estimate an unknown variance via

$$S^2 = \frac{1}{n} \sum_i (x_i - \hat{\mu})^2$$

Q1: Variance Solution

$$\operatorname{Var}[\hat{\mu}] = \operatorname{Var}\left[\frac{1}{N}\sum_{i=1}^{N} x_i\right] = \frac{1}{N^2}\operatorname{Var}\left[\sum_{i=1}^{N} x_i\right] = \frac{1}{N^2}\sum_{i=1}^{N}\operatorname{Var}[x_i]$$
$$= \frac{1}{N^2}\sum_{i=1}^{N} \sigma^2 = \frac{1}{N^2}(\operatorname{N}\sigma^2)$$

• Aside: This can be converted into the standard error formula by square rooting both sides. Pretty cool connection!

Q1: Bayes Error Solution

• Note that we already obtained Bayes error of $Var[x] = \sigma^2$ in decomposition. Starting from handout equation...

$$\mathbb{E}(x-\mu)^2 = \mathbb{E}[x^2 - 2x\mu + \mu^2]$$

$$= \mathbb{E}[x^2] - 2\mu\mathbb{E}[x] + \mathbb{E}[\mu^2]$$

$$= \mathbb{E}[x]^2 + \operatorname{Var}[x] - 2\mu\mathbb{E}[x] + \mathbb{E}[\mu^2]$$

$$= \mu^2 + \sigma^2 - 2\mu\mu + \mu^2$$

$$= 2\mu^2 - 2\mu^2 + \sigma^2$$

$$= \sigma^2$$

Q2: Entropy Properties Part (a)

• Prove entropy H(X) is non-negative

$$H(X) = \sum_{x} p(x) \log_2\left(\frac{1}{p(x)}\right)$$

- X is a discrete random variable. Thus:
 - $p(x_i) \ge 0$
 - $\sum_{x \in \mathcal{X}} p(x) = 1$
- The two conditions also imply $p(x_i) \leq 1$

Q2: Entropy Properties Part (a)

• Since
$$0 \le p(x_i) \le 1$$
, $\log_2\left(\frac{1}{p(x)}\right) \ge 0$

• We are basically done.

•
$$H(X) = \sum_{x} p(x) \log_2\left(\frac{1}{p(x)}\right)$$

Non-negative Non-negative

Sums of non-negative values will remain non-negative

Q2: Entropy Properties Part (b)

Prove H(X, Y) = H(X | Y) + H(Y)

$$H(X,Y) = \sum_{x} \sum_{y} p(x,y) \log_2 \left(\frac{1}{p(x,y)}\right)$$

= $-\sum_{x} \sum_{y} p(x,y) \log_2 p(x,y)$
= $-\sum_{x} \sum_{y} p(x,y) \log(p(y|x)p(x))$
= $-\sum_{x} \sum_{y} p(x,y) \log(p(y|x) + \log p(x))$ Log product identity
= $-\sum_{x} \sum_{y} p(x,y) \log p(y|x) - \sum_{x} \sum_{y} p(x,y) \log p(x)$ By commutativity and associativity of summation

Q2: Entropy Properties Part (b)

$$H(X,Y) = -\sum_{x} \sum_{y} p(x,y) \log p(y|x) - \sum_{x} \sum_{y} p(x,y) \log p(x)$$

$$= -\sum_{x} \sum_{y} p(x,y) \log p(y|x) - \sum_{x} \log p(x) \sum_{y} p(x,y) \quad \begin{array}{l} \text{Since } \log p(x) \text{is not} \\ \text{dependent on } y \end{array}$$

$$= -\sum_{x} \sum_{y} p(x,y) \log p(y|x) - \sum_{x} \log p(x) \left(p(x) \right) \quad \text{Marginalizing out } y$$

$$= -\sum_{x} \sum_{y} p(x,y) \log p(y|x) + H(X) \quad \text{By definition of } H(X)$$

Q2: Entropy Properties Part (b)

$$H(X,Y) = -\sum_{x} \sum_{y} p(x,y) \log p(y|x) + H(X)$$

= $-\sum_{x} \sum_{y} p(y|x)p(x) \log p(y|x) + H(X)$
= $-\sum_{x} p(x) \sum_{y} p(y|x) \log p(y|x) + H(X)$ Since $p(x)$ is not dependent on y
= $-\sum_{x} p(x) (-H(Y|X = x)) + H(X)$ By definition of $H(Y|X = x)$

To show the other way around, we can do equivalent proof, but note $H(Y|X) \neq H(X|Y)$ in general.

Q2: Entropy Properties Part (c)

- Prove $H(X, Y) \ge H(X)$
- We know that $H(X) \ge 0$, and H(X, Y) = H(Y|X) + H(X)
- Non rigorous demonstration
 - If H(Y|X) = 0, then H(X, Y) = H(X)
 - If H(Y|X) > 0, then $H(X,Y) \ge H(X,Y) H(Y|X) = H(X)$
 - *H*(*Y*|*X*) cannot be less than 0 [proof similar to part (a)]