
CSC 311: Introduction to Machine Learning
Lecture 10 - k-Means and EM Algorithm

Roger Grosse Chris Maddison Juhan Bae Silviu Pitis

University of Toronto, Fall 2020

Intro ML (UofT) CSC311-Lec10 1 / 42

Overview

In the last two lectures, we covered PCA, Autoencoders and
Matrix Factorization—all unsupervised learning algorithms.

I Each algorithm can be used to approximate high dimensional data
using some lower dimensional form.

Those methods made an interesting assumption that data depends
on some latent variables that are never observed. Such models are
called latent variable models.

I For PCA, these correspond to the code vectors (representation).

Today’s lecture:
I First, introduce K-means, a simple algorithm for clustering, i.e.

grouping data points into clusters
I Then, we will reformulate clustering as a latent variable model,

apply the EM algorithm

Intro ML (UofT) CSC311-Lec10 2 / 42

Clustering

Sometimes the data form clusters, where samples within a cluster
are similar to each other, and samples in different clusters are
dissimilar:

Such a distribution is multimodal, since it has multiple modes, or
regions of high probability mass.

Grouping data points into clusters, with no observed labels, is
called clustering. It is an unsupervised learning technique.

E.g. clustering machine learning papers based on topic (deep
learning, Bayesian models, etc.)

I But topics are never observed (unsupervised).

Intro ML (UofT) CSC311-Lec10 3 / 42

Clustering problem

Assume the data {x(1), . . . ,x(N)} lives in a Euclidean space, x(n) ∈ RD.

Assume each data point belongs to one of K clusters

Assume the data points from same cluster are similar, i.e. close in
Euclidean distance.

How can we identify those clusters (data points that belong to each
cluster)? Let’s formulate as an optimization problem.

Intro ML (UofT) CSC311-Lec10 4 / 42

K-means Objective

<latexit sha1_base64="U5ptr1wypzLY69PGCvN2ZH2JI2Q=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIosuiG5cV7AM6Q8mkmTY0yQxJRhiG/oYbF4q49Wfc+Tdm2llo64HA4Zx7uScnTDjTxnW/ncra+sbmVnW7trO7t39QPzzq6jhVhHZIzGPVD7GmnEnaMcxw2k8UxSLktBdO7wq/90SVZrF8NFlCA4HHkkWMYGMl3xfYTMIoF7PhdFhvuE13DrRKvJI0oER7WP/yRzFJBZWGcKz1wHMTE+RYGUY4ndX8VNMEkyke04GlEguqg3yeeYbOrDJCUazskwbN1d8bORZaZyK0k0VGvewV4n/eIDXRTZAzmaSGSrI4FKUcmRgVBaARU5QYnlmCiWI2KyITrDAxtqaaLcFb/vIq6V40vaum+3DZaN2WdVThBE7hHDy4hhbcQxs6QCCBZ3iFNyd1Xpx352MxWnHKnWP4A+fzB3LNkfM=</latexit>mk

<latexit sha1_base64="3lopfPkkAXivKC86622GnO9S8cA=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHqpiSi6LLoxmUF+4A2lsl00g6dTMLMpFhC/sSNC0Xc+ifu/BsnbRbaemDgcM693DPHjzlT2nG+rZXVtfWNzdJWeXtnd2/fPjhsqSiRhDZJxCPZ8bGinAna1Exz2oklxaHPadsf3+Z+e0KlYpF40NOYeiEeChYwgrWR+rbdC7Ee+UH6lD2mVXGW9e2KU3NmQMvELUgFCjT69ldvEJEkpEITjpXquk6svRRLzQinWbmXKBpjMsZD2jVU4JAqL50lz9CpUQYoiKR5QqOZ+nsjxaFS09A3k3lOtejl4n9eN9HBtZcyESeaCjI/FCQc6QjlNaABk5RoPjUEE8lMVkRGWGKiTVllU4K7+OVl0jqvuZc15/6iUr8p6ijBMZxAFVy4gjrcQQOaQGACz/AKb1ZqvVjv1sd8dMUqdo7gD6zPH5sTk6I=</latexit>

x(n)

<latexit sha1_base64="AwgEJiiMfgLTV1d53gPayZCOjDI=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRahXsquKHoRil48VrAf0K4lm2bb0CS7JtlCWfo7vHhQxKs/xpv/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKGjRBFaJxGPVCvAmnImad0ww2krVhSLgNNmMLyd+s0RVZpF8sGMY+oL3JcsZAQbK/nqMS3L00l3iK6R1y2W3Io7A1omXkZKkKHWLX51ehFJBJWGcKx123Nj46dYGUY4nRQ6iaYxJkPcp21LJRZU++ns6Ak6sUoPhZGyJQ2aqb8nUiy0HovAdgpsBnrRm4r/ee3EhFd+ymScGCrJfFGYcGQiNE0A9ZiixPCxJZgoZm9FZIAVJsbmVLAheIsvL5PGWcW7qLj356XqTRZHHo7gGMrgwSVU4Q5qUAcCT/AMr/DmjJwX5935mLfmnGzmEP7A+fwBF2mQ/w==</latexit>

r
(n)
k = 1

K-means Objective: Find cluster centers {mk}Kk=1 and assignments {r(n)}Nn=1

to minimize the sum of squared distances of data points {x(n)} to their
assigned centers.

Data sample n = 1, .., N : x(n) ∈ RD (observed),

Cluster center k = 1, ..,K: mk ∈ RD (not observed),

Responsibilities: Cluster assignment for sample n:
r(n) ∈ RK 1-of-K encoding (not observed)

Intro ML (UofT) CSC311-Lec10 5 / 42

K-means Objective

K-means Objective: Find cluster centers {mk}Kk=1 and assignments
{r(n)}Nn=1 to minimize the sum of squared distances of data points {x(n)}
to their assigned centers.

I Data sample n = 1, .., N : x(n) ∈ RD (observed),
I Cluster center k = 1, ..,K: mk ∈ RD (not observed),
I Responsibilities: Cluster assignment for sample n:

r(n) ∈ RK 1-of-K encoding (not observed)

Mathematically:

min
{mk},{r(n)}

J({mk}, {r(n)}) = min
{mk},{r(n)}

N∑
n=1

K∑
k=1

r
(n)
k ||mk − x(n)||2

where r
(n)
k = I[x(n) is assigned to cluster k], i.e., r(n) = [0, .., 1, .., 0]>

Finding an optimal solution is an NP-hard problem!

Intro ML (UofT) CSC311-Lec10 6 / 42

K-means Objective

Optimization problem:

min
{mk},{r(n)}

N∑
n=1

K∑
k=1

r
(n)
k ||mk − x(n)||2︸ ︷︷ ︸

distance between x(n)

and its assigned cluster center

Since r
(n)
k = I[x(n) is assigned to cluster k], i.e., r(n)=[0, .., 1, .., 0]>

inner sum is over K terms but only one of them is non-zero.

E.g. say sample x(n) is assigned to cluster k = 3, then

rn = [0, 0, 1, 0, ...]

K∑
k=1

r
(n)
k ||mk − x(n)||2 = ||m3 − x(n)||2

Intro ML (UofT) CSC311-Lec10 7 / 42

How to optimize?: Alternating Minimization

Optimization problem:

min
{mk},{r(n)}

N∑
n=1

K∑
k=1

r
(n)
k ||mk − x(n)||2

Problem is hard when minimizing jointly over the parameters
{mk}, {r(n)}

But note that if we fix one and minimize over the other, then it becomes
easy.

Doesn’t guarantee the same solution!

Intro ML (UofT) CSC311-Lec10 8 / 42

How to optimize?: Alternating Minimization

Optimization problem:

min
{mk},{r(n)}

N∑
n=1

K∑
k=1

r
(n)
k ||mk − x(n)||2

Note:

I If we fix the centers {mk} then we can easily find the optimal
assignments {r(n)} for each sample n

min
r(n)

K∑
k=1

r
(n)
k ||mk − x(n)||2

I Assign each point to the cluster with the nearest center

r
(n)
k =

{
1 if k = argminj ‖x(n) −mj‖2
0 otherwise

I E.g. if x(n) is assigned to cluster k̂,

r(n) = [0, 0, ..., 1, ..., 0]>︸ ︷︷ ︸
Only k̂-th entry is 1

Intro ML (UofT) CSC311-Lec10 9 / 42

Alternating Minimization

Likewise, if we fix the assignments {r(n)} then can easily find optimal
centers {mk}

I Set each cluster’s center to the average of its assigned data points:
For l = 1, 2, ...,K

0 =
∂

∂ml

N∑
n=1

K∑
k=1

r
(n)
k ||mk − x(n)||2

=2

N∑
n=1

r
(n)
l (ml − x(n)) =⇒ ml =

∑
n r

(n)
l x(n)∑
n r

(n)
l

Let’s alternate between minimizing J({mk}, {r(n)}) with respect to
{mk} and {r(n)}

This is called alternating minimization

Intro ML (UofT) CSC311-Lec10 10 / 42

K-means Algorithm

High level overview of algorithm:

Initialization: randomly initialize cluster centers

The algorithm iteratively alternates between two steps:

I Assignment step: Assign each data point to the closest cluster
I Refitting step: Move each cluster center to the mean of the data

assigned to it

Assignments Refitted
means

Intro ML (UofT) CSC311-Lec10 11 / 42

Figure from Bishop Simple demo: http://syskall.com/kmeans.js/

Intro ML (UofT) CSC311-Lec10 12 / 42

http://syskall.com/kmeans.js/

The K-means Algorithm

Initialization: Set K cluster means m1, . . . ,mK to random values

Repeat until convergence (until assignments do not change):

I Assignment: Optimize J w.r.t. {r}: Each data point x(n) assigned
to nearest center

k̂(n) = arg min
k
||mk − x(n)||2

and Responsibilities (1-hot or 1-of-K encoding)

r
(n)
k = I[k̂(n) = k] for k = 1, ..,K

I Refitting: Optimize J w.r.t. {m}: Each center is set to mean of
data assigned to it

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k

.

Intro ML (UofT) CSC311-Lec10 13 / 42

K-means for Vector Quantization

Figure from Bishop

Given image, construct “dataset“ of pixels represented by their RGB
pixel intensities

Run k-means, replace each pixel by its cluster center

Intro ML (UofT) CSC311-Lec10 14 / 42

K-means for Image Segmentation

Given image, construct “dataset” of pixels, represented by their RGB
pixel intensities and grid locations

Run k-means (with some modifications) to get superpixels

Intro ML (UofT) CSC311-Lec10 15 / 42

Questions about K-means

Why does update set mk to mean of assigned points?

What if we used a different distance measure?

How can we choose the best distance?

How to choose K?

Will it converge?

Hard cases – unequal spreads, non-circular spreads, in-between points

Intro ML (UofT) CSC311-Lec10 16 / 42

Why K-means Converges

K-means algorithm reduces the cost at each iteration.

I Whenever an assignment is changed, the sum squared distances J of
data points from their assigned cluster centers is reduced.

I Whenever a cluster center is moved, J is reduced.

Test for convergence: If the assignments do not change in the assignment
step, we have converged (to at least a local minimum).

This will always happen after a finite number of iterations, since the
number of possible cluster assignments is finite

K-means cost function after each assignment step (blue) and refitting
step (red). The algorithm has converged after the third refitting step.

Intro ML (UofT) CSC311-Lec10 17 / 42

Local Minima

The objective J is non-convex (so
coordinate descent on J is not
guaranteed to converge to the global
minimum)

There is nothing to prevent k-means
getting stuck at local minima.

We could try many random starting
points

A bad local optimum

Intro ML (UofT) CSC311-Lec10 18 / 42

Soft K-means

Instead of making hard assignments of data points to clusters, we can
make soft assignments. One cluster may have a responsibility of .7 for a
datapoint and another may have a responsibility of .3.

I Allows a cluster to use more information about the data in the
refitting step.

I How do we decide on the soft assignments?
I We already saw this in multi-class classification:

I 1-of-K encoding vs softmax assignments

Intro ML (UofT) CSC311-Lec10 19 / 42

Soft K-means Algorithm

Initialization: Set K means {mk} to random values

Repeat until convergence (measured by how much J changes):

I Assignment: Each data point n given soft “degree of assignment” to
each cluster mean k, based on responsibilities

r
(n)
k =

exp[−β‖mk − x(n)‖2]∑
j exp[−β‖mj − x(n)‖2]

=⇒ r(n) = softmax(−β{‖mk − x(n)‖2}Kk=1)

I Refitting: Model parameters, means, are adjusted to match sample
means of datapoints they are responsible for:

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k

Intro ML (UofT) CSC311-Lec10 20 / 42

Questions about Soft K-means

Some remaining issues

How to set β?

Clusters with unequal weight and width?

These aren’t straightforward to address with K-means. Instead, in the sequel,
we’ll reformulate clustering using a generative model.

As β →∞, soft k-Means becomes k-Means! (Exercise)

Intro ML (UofT) CSC311-Lec10 21 / 42

A Generative View of Clustering

Next: probabilistic formulation of clustering

We need a sensible measure of what it means to cluster the data well

I This makes it possible to judge different methods
I It may help us decide on the number of clusters

An obvious approach is to imagine that the data was produced by a
generative model

I Then we adjust the model parameters using maximum likelihood
i.e. to maximize the probability that it would produce exactly the
data we observed

Intro ML (UofT) CSC311-Lec10 22 / 42

The Generative Model

We’ll be working with the following generative model for data D
Assume a datapoint x is generated as follows:

I Choose a cluster z from {1, . . . ,K} such that p(z = k) = πk
I Given z, sample x from a Gaussian distribution N (x|µz, I)

Can also be written:
p(z = k) = πk

p(x|z = k) = N (x|µk, I)

Intro ML (UofT) CSC311-Lec10 23 / 42

Clusters from Generative Model

This defines joint distribution p(z,x) = p(z)p(x|z) with
parameters {πk,µk}Kk=1

The marginal of x is given by p(x) =
∑

z p(z,x)

p(z = k|x) can be computed using Bayes rule

p(z = k|x) =
p(x | z = k)p(z = k)

p(x)

and tells us the probability x came from the kth cluster

Intro ML (UofT) CSC311-Lec10 24 / 42

The Generative Model

500 points drawn from a mixture of 3 Gaussians.

a) Samples from p(x | z) b) Samples from the marginal p(x) c) Responsibilities p(z |x)

Intro ML (UofT) CSC311-Lec10 25 / 42

Maximum Likelihood with Latent Variables

How should we choose the parameters {πk,µk}Kk=1?

Maximum likelihood principle: choose parameters to maximize
likelihood of observed data

We don’t observe the cluster assignments z, we only see the data x

Given data D = {x(n)}Nn=1, choose parameters to maximize:

log p(D) =

N∑
n=1

log p(x(n))

We can find p(x) by marginalizing out z:

p(x) =

K∑
k=1

p(z = k,x) =

K∑
k=1

p(z = k)p(x|z = k)

Intro ML (UofT) CSC311-Lec10 26 / 42

Gaussian Mixture Model (GMM)

What is p(x)?

p(x) =

K∑
k=1

p(z = k)p(x|z = k) =

K∑
k=1

πkN (x|µk, I)

This distribution is an example of a Gaussian Mixture Model (GMM),
and πk are known as the mixing coefficients

In general, we would have different covariance for each cluster, i.e.,
p(x | z = k) = N (x|µk,Σk). For this lecture, we assume Σk = I for
simplicity.

If we allow arbitrary covariance matrices, GMMs are universal
approximators of densities (if you have enough Gaussians). Even
diagonal GMMs are universal approximators.

Intro ML (UofT) CSC311-Lec10 27 / 42

Visualizing a Mixture of Gaussians – 1D Gaussians

If you fit a Gaussian to data:

Now, we are trying to fit a GMM (with K = 2 in this example):

[Slide credit: K. Kutulakos]

Intro ML (UofT) CSC311-Lec10 28 / 42

Visualizing a Mixture of Gaussians – 2D Gaussians

Intro ML (UofT) CSC311-Lec10 29 / 42

Fitting GMMs: Maximum Likelihood

Maximum likelihood objective:

log p(D) =

N∑
n=1

log p(x(n)) =

N∑
n=1

log

(
K∑
k=1

πkN (x(n)|µk, I)

)

How would you optimize this w.r.t. parameters {πk,µk}?
I No closed form solution when we set derivatives to 0
I Difficult because sum inside the log

One option: gradient ascent. Can we do better?

Can we have a closed form update?

Intro ML (UofT) CSC311-Lec10 30 / 42

Maximum Likelihood

Observation: if we knew z(n) for every x(n), (i.e. our dataset was
Dcomplete = {(z(n),x(n))}Nn=1) the maximum likelihood problem is easy:

log p(Dcomplete) =

N∑
n=1

log p(z(n),x(n))

=

N∑
n=1

log p(x(n)|z(n)) + log p(z(n))

=

N∑
n=1

K∑
k=1

I[z(n) = k]
(

logN (x(n)|µk, I) + log πk

)

Intro ML (UofT) CSC311-Lec10 31 / 42

Maximum Likelihood

log p(Dcomplete) =

N∑
n=1

K∑
k=1

I[z(n) = k]
(

logN (x(n)|µk, I) + log πk

)

We have been optimizing something similar for Naive bayes classifiers

By maximizing log p(Dcomplete), we would get this:

µ̂k =

∑N
n=1 I[z(n) = k] x(n)∑N
n=1 I[z(n) = k]

= class means

π̂k =
1

N

N∑
n=1

I[z(n) = k] = class proportions

Intro ML (UofT) CSC311-Lec10 32 / 42

Maximum Likelihood

We haven’t observed the cluster assignments z(n), but we can compute
p(z(n)|x(n)) using Bayes rule

Conditional probability (using Bayes rule) of z given x

p(z = k|x) =
p(z = k)p(x|z = k)

p(x)

=
p(z = k)p(x|z = k)∑K
j=1 p(z = j)p(x|z = j)

=
πkN (x|µk, I)∑K
j=1 πjN (x|µj , I)

Intro ML (UofT) CSC311-Lec10 33 / 42

Maximum Likelihood

log p(Dcomplete) =

N∑
n=1

K∑
k=1

I[z(n) = k](logN (x(n)|µk, I) + log πk)

We don’t know the cluster assignments I[z(n) =k], but we know their
expectation E[I[z(n) =k] |x(n)]=p(z(n) =k|x(n)).

If we plug in r
(n)
k = p(z(n) = k|x(n)) for I[z(n) = k], we get:

N∑
n=1

K∑
k=1

r
(n)
k (logN (x(n)|µk, I) + log πk)

This is still easy to optimize! Solution is similar to what we have seen:

µ̂k =

∑N
n=1 r

(n)
k x(n)∑N

n=1 r
(n)
k

π̂k =

∑N
n=1 r

(n)
k

N

Note: this only works if we treat r
(n)
k = πkN (x(n)|µk,I)∑K

j=1 πjN (x(n)|µj ,I)
as fixed.

Intro ML (UofT) CSC311-Lec10 34 / 42

How Can We Fit a Mixture of Gaussians?

This motivates the Expectation-Maximization algorithm, which
alternates between two steps:

1. E-step: Compute the posterior probabilities r
(n)
k = p(z(n) = k|x(n))

given our current model - i.e. how much do we think a cluster is
responsible for generating a datapoint.

2. M-step: Use the equations on the last slide to update the

parameters, assuming r
(n)
k are held fixed- change the parameters of

each Gaussian to maximize the probability that it would generate
the data it is currently responsible for.

.95

.5

.5

.05

.5
.5

.95
.05

Intro ML (UofT) CSC311-Lec10 35 / 42

EM Algorithm for GMM

Initialize the means µ̂k and mixing coefficients π̂k

Iterate until convergence:

I E-step: Evaluate the responsibilities r
(n)
k given current parameters

r
(n)
k = p(z(n)=k|x(n)) =

π̂kN (x(n)|µ̂k, I)∑K
j=1 π̂jN (x(n)|µ̂j , I)

=
π̂k exp{− 1

2
‖x(n) − µ̂k‖2}∑K

j=1 π̂j exp{− 1
2
‖x(n) − µ̂j‖2}

I M-step: Re-estimate the parameters given current responsibilities

µ̂k =
1

Nk

N∑
n=1

r
(n)
k x(n)

π̂k =
Nk

N
with Nk =

N∑
n=1

r
(n)
k

I Evaluate log likelihood and check for convergence

log p(D) =
N∑

n=1

log

(
K∑

k=1

π̂kN (x(n)|µ̂k, I)

)

Intro ML (UofT) CSC311-Lec10 36 / 42

Intro ML (UofT) CSC311-Lec10 37 / 42

What just happened: A review

The maximum likelihood objective
∑N

n=1 log p(x(n)) was hard to
optimize

The complete data likelihood objective was easy to optimize:

N∑
n=1

log p(z(n),x(n)) =

N∑
n=1

K∑
k=1

I[z(n) = k](logN (x(n)|µk, I) + log πk)

We don’t know z(n)’s (they are latent), so we replaced I[z(n) = k]

with responsibilities r
(n)
k = p(z(n) = k|x(n)).

That is: we replaced I[z(n) = k] with its expectation under
p(z(n)|x(n)) (E-step).

Intro ML (UofT) CSC311-Lec10 38 / 42

What just happened: A review

We ended up with the expected complete data log-likelihood:

N∑
n=1

Ep(z(n)|x(n))[log p(z(n),x(n))] =

N∑
n=1

K∑
k=1

r
(n)
k

(
logN (x(n)|µk, I)+log πk

)
which we maximized over parameters {πk,µk}k (M-step)

The EM algorithm alternates between:

I The E-step: computing the r
(n)
k = p(z(n) = k|x(n)) (i.e. expectations

E[I[z(n) = k]|x(n)]) given the current model parameters πk,µk
I The M-step: update the model parameters πk,µk to optimize the

expected complete data log-likelihood

Intro ML (UofT) CSC311-Lec10 39 / 42

Relation to k-Means

The K-Means Algorithm:

1. Assignment step: Assign each data point to the closest cluster
2. Refitting step: Move each cluster center to the average of the data

assigned to it

The EM Algorithm:

1. E-step: Compute the posterior probability over z given our current
model

2. M-step: Maximize the probability that it would generate the data it
is currently responsible for.

Can you find the similarities between the soft k-Means algorithm
and EM algorithm with shared covariance 1

β I?

Both rely on alternating optimization methods and can suffer from
bad local optima.

Intro ML (UofT) CSC311-Lec10 40 / 42

Further Discussion

We assumed the covariance of each Gaussian was I to simplify the math.
This assumption can be removed, allowing clusters to have different
spatial extents. The resulting algorithm is still very simple.

Possible problems with maximum likelihood objective:

I Singularities: Arbitrarily large likelihood when a Gaussian explains
a single point with variance shrinking to zero

I Non-convex

EM is more general than what was covered in this lecture. Here, EM
algorithm is used to find the optimal parameters under the GMMs.

Intro ML (UofT) CSC311-Lec10 41 / 42

GMM Recap

A probabilistic view of clustering - Each cluster corresponds to a
different Gaussian.

Model using latent variables.

General approach, can replace Gaussian with other distributions
(continuous or discrete)

More generally, mixture models are very powerful models, i.e.
universal distribution approximators

Optimization is done using the EM algorithm.

Intro ML (UofT) CSC311-Lec10 42 / 42

	Introduction

