
CSC 311: Introduction to Machine Learning
Lecture 7 - Probabilistic Models

Roger Grosse Chris Maddison Juhan Bae Silviu Pitis

University of Toronto, Fall 2020

Intro ML (UofT) CSC311-Lec7 1 / 28



Today

So far in the course we have adopted a modular perspective, in
which the model, loss function, optimizer, and regularizer are
specified separately.

Today we will begin putting together a probabilistic interpretation
of the choice of model and loss, and introduce the concept of
maximum likelihood estimation.

Let’s start with a simple biased coin example.
I You flip a coin N = 100 times and get outcomes {x1, . . . , xN} where
xi ∈ {0, 1} and xi = 1 is interpreted as heads H.

I Suppose you had NH = 55 heads and NT = 45 tails.
I What is the probability it will come up heads if we flip again? Let’s

design a model for this scenario, fit the model. We can use the fit
model to predict the next outcome.

Intro ML (UofT) CSC311-Lec7 2 / 28



Model?

The coin is possibly loaded. So, we can assume that one coin flip
outcome x is a Bernoulli random variable for some currently
unknown parameter θ ∈ [0, 1].

p(x = 1|θ) = θ and p(x = 0|θ) = 1− θ
or more succinctly p(x|θ) = θx(1− θ)1−x

It’s sensible to assume that {x1, . . . , xN} are independent and
identically distributed (i.i.d.) Bernoullis.

Thus the joint probability of the outcome {x1, . . . , xN} is

p(x1, ..., xN |θ) =
N∏
i=1

θxi(1− θ)1−xi

Intro ML (UofT) CSC311-Lec7 3 / 28



Loss?

We call the probability mass (or density for continuous) of the
observed data the likelihood function (as a function of the
parameters θ):

L(θ) =

N∏
i=1

θxi(1− θ)1−xi

We usually work with log-likelihoods:

`(θ) =

N∑
i=1

xi log θ + (1− xi) log(1− θ)

How can we choose θ? Good values of θ should assign high
probability to the observed data. This motivates the maximum
likelihood criterion, that we should pick the parameters that
maximize the likelihood:

θ̂ML = max
θ∈[0,1]

`(θ)

Intro ML (UofT) CSC311-Lec7 4 / 28



Maximum Likelihood Estimation for the Coin Example

Remember how we found the optimal solution to linear regression
by setting derivatives to zero? We can do that again for the coin
example.

d`

dθ
=

d

dθ

(
N∑
i=1

xi log θ + (1− xi) log(1− θ)

)

=
d

dθ
(NH log θ +NT log(1− θ))

=
NH

θ
− NT

1− θ

where NH =
∑

i xi and NT = N −
∑

i xi.

Setting this to zero gives the maximum likelihood estimate:

θ̂ML =
NH

NH +NT
.

Intro ML (UofT) CSC311-Lec7 5 / 28



Maximum Likelihood Estimation

Notice, in the coin example we are actually minimizing
cross-entropies!

θ̂ML = max
θ∈[0,1]

`(θ)

= min
θ∈[0,1]

−`(θ)

= min
θ∈[0,1]

N∑
i=1

−xi log θ − (1− xi) log(1− θ)

This is an example of maximum likelihood estimation.
I define a model that assigns a probability (or has a probability

density at) to a dataset
I maximize the likelihood (or minimize the neg. log-likelihood).

Many examples we’ve considered fall in this framework! Let’s
consider classification again.

Intro ML (UofT) CSC311-Lec7 6 / 28



Generative vs Discriminative

Two approaches to classification:

Discriminative approach: estimate parameters of decision
boundary/class separator directly from labeled examples.

I Model p(t|x) directly (logistic regression models)

I Learn mappings from inputs to classes (linear/logistic regression,
decision trees etc)

I Tries to solve: How do I separate the classes?

Generative approach: model the distribution of inputs
characteristic of the class (Bayes classifier).

I Model p(x|t)
I Apply Bayes Rule to derive p(t|x).

I Tries to solve: What does each class ”look” like?

Key difference: is there a distributional assumption over inputs?
Intro ML (UofT) CSC311-Lec7 7 / 28



A Generative Model: Bayes Classifier

Aim to classify text into spam/not-spam (yes c=1; no c=0)

Example: “You are one of the very few who have been selected as
a winners for the free $1000 Gift Card.”

Use bag-of-words features, get binary vector x for each email

Vocabulary:
I “a”: 1
I ...
I “car”: 0
I “card”: 1
I ...
I “win”: 0
I “winner”: 1
I “winter”: 0
I ...
I “you”: 1

Intro ML (UofT) CSC311-Lec7 8 / 28



Bayes Classifier

Given features x = [x1, x2, · · · , xD]T we want to compute class
probabilities using Bayes Rule:

p(c|x)︸ ︷︷ ︸
Pr. class given words

=
p(x, c)

p(x)
=

Pr. words given class︷ ︸︸ ︷
p(x|c) p(c)

p(x)

More formally

posterior =
Class likelihood× prior

Evidence

How can we compute p(x) for the two class case? (Do we need to?)

p(x) = p(x|c = 0)p(c = 0) + p(x|c = 1)p(c = 1)

To compute p(c|x) we need: p(x|c) and p(c)

Intro ML (UofT) CSC311-Lec7 9 / 28



Näıve Bayes

Assume we have two classes: spam and non-spam. We have a
dictionary of D words, and binary features x = [x1, . . . , xD] saying
whether each word appears in the e-mail.

If we define a joint distribution p(c, x1, . . . , xD), this gives enough
information to determine p(c) and p(x|c).

Problem: specifying a joint distribution over D + 1 binary
variables requires 2D+1 − 1 entries. This is computationally
prohibitive and would require an absurd amount of data to fit.

We’d like to impose structure on the distribution such that:
I it can be compactly represented
I learning and inference are both tractable

Intro ML (UofT) CSC311-Lec7 10 / 28



Näıve Bayes

Näıve assumption: Näıve Bayes assumes that the word features xi
are conditionally independent given the class c.

I This means xi and xj are independent under the conditional
distribution p(x|c).

I Note: this doesn’t mean they’re independent.
I Mathematically,

p(c, x1, . . . , xD) = p(c)p(x1|c) · · · p(xD|c).

Compact representation of the joint distribution
I Prior probability of class: p(c = 1) = π (e.g. spam email)
I Conditional probability of word feature given class:
p(xj = 1|c) = θjc (e.g. word ”price” appearing in spam)

I 2D + 1 parameters total (before 2D+1 − 1)

Intro ML (UofT) CSC311-Lec7 11 / 28



Bayes Nets

We can represent this model using an directed graphical model, or
Bayesian network:

This graph structure means the joint distribution factorizes as a
product of conditional distributions for each variable given its
parent(s).

Intuitively, you can think of the edges as reflecting a causal
structure. But mathematically, this doesn’t hold without
additional assumptions.

Intro ML (UofT) CSC311-Lec7 12 / 28



Näıve Bayes: Learning

The parameters can be learned efficiently because the
log-likelihood decomposes into independent terms for each feature.

`(θ) =

N∑
i=1

log p(c(i),x(i)) =
N∑
i=1

log
{
p(x(i)|c(i))p(c(i))

}
=

N∑
i=1

log
{
p(c(i))

D∏
j=1

p(x
(i)
j | c

(i))
}

=

N∑
i=1

[
log p(c(i)) +

D∑
j=1

log p(x
(i)
j | c

(i))

]

=

N∑
i=1

log p(c(i))︸ ︷︷ ︸
Bernoulli log-likelihood

of labels

+

D∑
j=1

N∑
i=1

log p(x
(i)
j | c

(i))︸ ︷︷ ︸
Bernoulli log-likelihood

for feature xj

Each of these log-likelihood terms depends on different sets of
parameters, so they can be optimized independently.

Intro ML (UofT) CSC311-Lec7 13 / 28



Näıve Bayes: Learning

We can handle these terms separately. For the prior we maximize:∑N
i=1 log p(c(i))

This is a minor variant of our coin flip example. Let p(c(i) = 1)=π.

Note p(c(i)) = πc
(i)

(1− π)1−c
(i)

.

Log-likelihood:

N∑
i=1

log p(c(i)) =

N∑
i=1

c(i) log π +

N∑
i=1

(1− c(i)) log(1− π)

Obtain MLEs by setting derivatives to zero:

π̂ =

∑
i 1I[c(i) = 1]

N
=

# spams in dataset

total # samples

Intro ML (UofT) CSC311-Lec7 14 / 28



Näıve Bayes: Learning

Each θjc’s can be treated separately: maximize
∑N

i=1 log p(x
(i)
j | c(i))

This is (again) a minor variant of our coin flip example.

Let θjc = p(x
(i)
j = 1 | c). Note p(x

(i)
j | c) = θ

x
(i)
j

jc (1− θjc)1−x
(i)
j .

Log-likelihood:

N∑
i=1

log p(x
(i)
j | c

(i)) =
N∑
i=1

c(i)
{
x
(i)
j log θj1 + (1− x(i)j ) log(1− θj1)

}
+

N∑
i=1

(1− c(i))
{
x
(i)
j log θj0 + (1− x(i)j ) log(1− θj0)

}

Obtain MLEs by setting derivatives to zero:

θ̂jc =

∑
i 1I[x

(i)
j = 1 & c(i) = c]∑
i 1I[c(i) = c]

for c = 1
=

#word j appears in spams

# spams in dataset

Intro ML (UofT) CSC311-Lec7 15 / 28



Näıve Bayes: Inference

We predict the category by performing inference in the model.

Apply Bayes’ Rule:

p(c |x) =
p(c)p(x | c)∑
c′ p(c

′)p(x | c′)
=

p(c)
∏D
j=1 p(xj | c)∑

c′ p(c
′)
∏D
j=1 p(xj | c′)

We need not compute the denominator if we’re simply trying to
determine the most likely c.

Shorthand notation:

p(c |x) ∝ p(c)
D∏
j=1

p(xj | c)

For input x, predict by comparing the values of p(c)
∏D
j=1 p(xj | c)

for different c (e.g. choose the largest).

Intro ML (UofT) CSC311-Lec7 16 / 28



Näıve Bayes

Näıve Bayes is an amazingly cheap learning algorithm!

Training time: estimate parameters using maximum likelihood
I Compute co-occurrence counts of each feature with the labels.
I Requires only one pass through the data!

Test time: apply Bayes’ Rule
I Cheap because of the model structure. (For more general models,

Bayesian inference can be very expensive and/or complicated.)

We covered the Bernoulli case for simplicity. But our analysis
easily extends to other probability distributions.

Unfortunately, it’s usually less accurate in practice compared to
discriminative models due to its “näıve” independence assumption.

Intro ML (UofT) CSC311-Lec7 17 / 28



MLE issue: Data Sparsity

Maximum likelihood has a pitfall: if you have too little data, it
can overfit.

E.g., what if you flip the coin twice and get H both times?

θML =
NH

NH +NT
=

2

2 + 0
= 1

Because it never observed T, it assigns this outcome probability 0.
This problem is known as data sparsity.

Intro ML (UofT) CSC311-Lec7 18 / 28



Bayesian Parameter Estimation

In maximum likelihood, the observations are treated as random
variables, but the parameters are not.

! "

The Bayesian approach treats the parameters as random variables
as well. β is the set of parameters in the prior distribution of θ.

β " #

To define a Bayesian model, we need to specify two distributions:
I The prior distribution p(θ), which encodes our beliefs about the

parameters before we observe the data
I The likelihood p(D |θ), same as in maximum likelihood

Intro ML (UofT) CSC311-Lec7 19 / 28



Bayesian Parameter Estimation

When we update our beliefs based on the observations, we
compute the posterior distribution using Bayes’ Rule:

p(θ | D) =
p(θ)p(D |θ)∫
p(θ′)p(D |θ′) dθ′

.

We rarely ever compute the denominator explicitly. In general, it
is computationally intractable.

Intro ML (UofT) CSC311-Lec7 20 / 28



Bayesian Parameter Estimation

Let’s revisit the coin example. We already know the likelihood:

L(θ) = p(D|θ) = θNH (1− θ)NT

It remains to specify the prior p(θ).
I We can choose an uninformative prior, which assumes as little as

possible. A reasonable choice is the uniform prior.
I But our experience tells us 0.5 is more likely than 0.99. One

particularly useful prior that lets us specify this is the beta
distribution:

p(θ; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1.

I This notation for proportionality lets us ignore the normalization
constant:

p(θ; a, b) ∝ θa−1(1− θ)b−1.

Intro ML (UofT) CSC311-Lec7 21 / 28



Bayesian Parameter Estimation

Beta distribution for various values of a, b:

Some observations:

I The expectation E[θ] = a/(a+ b) (easy to derive).
I The distribution gets more peaked when a and b are large.
I The uniform distribution is the special case where a = b = 1.

The beta distribution is used for is as a prior for the Bernoulli distribution.

Intro ML (UofT) CSC311-Lec7 22 / 28



Bayesian Parameter Estimation

Computing the posterior distribution:

p(θ | D) ∝ p(θ)p(D |θ)

∝
[
θa−1(1− θ)b−1

] [
θNH (1− θ)NT

]
= θa−1+NH (1− θ)b−1+NT .

This is just a beta distribution with parameters NH + a and
NT + b.

The posterior expectation of θ is:

E[θ | D] =
NH + a

NH +NT + a+ b

The parameters a and b of the prior can be thought of as
pseudo-counts.

I The reason this works is that the prior and likelihood have the same
functional form. This phenomenon is known as conjugacy
(conjugate priors), and it’s very useful.

Intro ML (UofT) CSC311-Lec7 23 / 28



Bayesian Parameter Estimation

Bayesian inference for the coin flip example:

Small data setting
NH = 2, NT = 0

Large data setting
NH = 55, NT = 45

When you have enough observations, the data overwhelm the prior.

Intro ML (UofT) CSC311-Lec7 24 / 28



Maximum A-Posteriori Estimation

Maximum a-posteriori (MAP) estimation: find the most likely
parameter settings under the posterior

Intro ML (UofT) CSC311-Lec7 25 / 28



Maximum A-Posteriori Estimation

This converts the Bayesian parameter estimation problem into a
maximization problem

θ̂MAP = arg max
θ

p(θ | D)

= arg max
θ

p(θ,D)

= arg max
θ

p(θ) p(D |θ)

= arg max
θ

log p(θ) + log p(D |θ)

We already saw an example of this in the homework.

Intro ML (UofT) CSC311-Lec7 26 / 28



Maximum A-Posteriori Estimation

Joint probability in the coin flip example:

log p(θ,D) = log p(θ) + log p(D | θ)
= Const + (a− 1) log θ + (b− 1) log(1− θ) +NH log θ +NT log(1− θ)
= Const + (NH + a− 1) log θ + (NT + b− 1) log(1− θ)

Maximize by finding a critical point

0 =
d

dθ
log p(θ,D) =

NH + a− 1

θ
− NT + b− 1

1− θ

Solving for θ,

θ̂MAP =
NH + a− 1

NH +NT + a+ b− 2

Intro ML (UofT) CSC311-Lec7 27 / 28



Maximum A-Posteriori Estimation

Comparison of estimates in the coin flip example:

Formula NH = 2, NT = 0 NH = 55, NT = 45

θ̂ML
NH

NH+NT
1 55

100 = 0.55

E[θ|D] NH+a
NH+NT+a+b

4
6 ≈ 0.67 57

104 ≈ 0.548

θ̂MAP
NH+a−1

NH+NT+a+b−2
3
4 = 0.75 56

102 ≈ 0.549

θ̂MAP assigns nonzero probabilities as long as a, b > 1.

Intro ML (UofT) CSC311-Lec7 28 / 28


