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Today

e So far in the course we have adopted a modular perspective, in
which the model, loss function, optimizer, and regularizer are
specified separately.

o Today we will begin putting together a probabilistic interpretation
of the choice of model and loss, and introduce the concept of
maximum likelihood estimation.

o Let’s start with a simple biased coin example.

» You flip a coin N = 100 times and get outcomes {z1,...,xx} where
x; € {0,1} and x; = 1 is interpreted as heads H.

» Suppose you had Ny = 55 heads and Ny = 45 tails.

» What is the probability it will come up heads if we flip again? Let’s
design a model for this scenario, fit the model. We can use the fit
model to predict the next outcome.
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Model?

@ The coin is possibly loaded. So, we can assume that one coin flip
outcome z is a Bernoulli random variable for some currently
unknown parameter 6 € [0, 1].

p(x=1/0) =0 and p(x=0/f)=1—-16

1—x

or more succinctly p(z|6) = 6*(1 —0)

o It’s sensible to assume that {z1,...,xy} are independent and
identically distributed (i.i.d.) Bernoullis.

e Thus the joint probability of the outcome {z1,...,zn} is

N
plar, .., zn|0) = [T 67 (1 — )~

i=1
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Loss?

e We call the probability mass (or density for continuous) of the
observed data the likelihood function (as a function of the
parameters 6):

N
L(O) =[] o" (1 —0)'
=1

e We usually work with log-likelihoods:
N
00) = Z x;logh + (1 — x;)log(1 — 0)
i=1
e How can we choose 87 Good values of 6 should assign high
probability to the observed data. This motivates the maximum
likelihood criterion, that we should pick the parameters that
maximize the likelihood:

Onir, = 00
M = mmax, £(6)
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Maximum Likelihood Estimation for the Coin Example

@ Remember how we found the optimal solution to linear regression
by setting derivatives to zero? We can do that again for the coin
example.

N

d¢ d
— == ZmilogG + (1 — ;) log(1l — 9))
dg de <i_1

:@(NHlogG—{—NTlog(l—G))
_ Ny Np
S0 1-90

where Ny =), x; and Ny = N — ) . x;.
@ Setting this to zero gives the maximum likelihood estimate:

Ny

by, = —
ML= Ny + Nr
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Maximum Likelihood Estimation

e Notice, in the coin example we are actually minimizing
cross-entropies!

éML = Imax 5(0)

0€l0,1]
= min —£(0
oty ~A0)
N
== i - 11 9— 1-— i 1 1—0
Jmin 2 zilogf — (1 — z;)log(1 — )

o This is an example of maximum likelihood estimation.
» define a model that assigns a probability (or has a probability
density at) to a dataset
» maximize the likelihood (or minimize the neg. log-likelihood).
e Many examples we’ve considered fall in this framework! Let’s
consider classification again.
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Generative vs Discriminative

Two approaches to classification:

e Discriminative approach: estimate parameters of decision
boundary/class separator directly from labeled examples.

» Model p(t|x) directly (logistic regression models)

» Learn mappings from inputs to classes (linear/logistic regression,
decision trees etc)

» Tries to solve: How do I separate the classes?

o Generative approach: model the distribution of inputs
characteristic of the class (Bayes classifier).

» Model p(x|t)
» Apply Bayes Rule to derive p(t|x).

» Tries to solve: What does each class ”look” like?

o Key difference: is there a distributional assumption over inputs?
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A Generative Model: Bayes Classifier

e Aim to classify text into spam/not-spam (yes c=1; no ¢=0)

o Example: “You are one of the very few who have been selected as

a winners for the free $1000 Gift Card.”

o Use bag-of-words features, get binary vector x for each email

e Vocabulary:

>

vV VY VY VY VY VY VvV VvYY

(La” : 1

“car”: 0
“card”: 1

“winner”: 1

“winter”: 0

“you”: 1
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Bayes Classifier

T

o Given features x = [371, T, - ,xD] we want to compute class

probabilities using Bayes Rule:

Pr. words given class

plelx) _px0) _ pxle)  plo)
p(x) p(x)

Pr. class given words

e More formally

Class likelihood x prior

posterior = -
Evidence

e How can we compute p(x) for the two class case? (Do we need to?)

p(x) = p(x[c = 0)p(c = 0) + p(x|c = 1)p(c = 1)

e To compute p(c|x) we need: p(x|c) and p(c)
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Naive Bayes

@ Assume we have two classes: spam and non-spam. We have a
dictionary of D words, and binary features x = [x1,...,2p| saying
whether each word appears in the e-mail.

e If we define a joint distribution p(c, x1,...,xp), this gives enough
information to determine p(c) and p(x|c).

@ Problem: specifying a joint distribution over D + 1 binary
variables requires 21 — 1 entries. This is computationally
prohibitive and would require an absurd amount of data to fit.

e We'd like to impose structure on the distribution such that:

» it can be compactly represented
» learning and inference are both tractable

Intro ML (UofT) CSC311-Lec7 10 /28



Naive Bayes

e Naive assumption: Naive Bayes assumes that the word features x;

are conditionally independent given the class c.
» This means x; and z; are independent under the conditional
distribution p(x|c).
» Note: this doesn’t mean they’re independent.
» Mathematically,

ple; a1, xp) = p(e)p(aafe) - - p(zple).

e Compact representation of the joint distribution
» Prior probability of class: p(c =1) = 7 (e.g. spam email)
» Conditional probability of word feature given class:
p(xj = 1|c) = 0. (e.g. word "price” appearing in spam)
» 2D + 1 parameters total (before 2P+! — 1)
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Bayes Nets

@ We can represent this model using an directed graphical model, or
Bayesian network:

F® - ®

e This graph structure means the joint distribution factorizes as a
product of conditional distributions for each variable given its
parent(s).

e Intuitively, you can think of the edges as reflecting a causal
structure. But mathematically, this doesn’t hold without
additional assumptions.
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Naive Bayes: Learning

o The parameters can be learned efficiently because the
log-likelihood decomposes into independent terms for each feature.

:Z { H <)|c }

1 j=1

{logp(c(“) + Z log p(z{" | c(”)]

Jj=1

I
.Mz

D N
- Sloere®) +30 3 logalel? 1)
i=1 =1 i=1

| S — | S —
Bernoulli log-likelihood Bernoulli log-likelihood
of labels for feature

e Each of these log-likelihood terms depends on different sets of
parameters, so they can be optimized independently.
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Naive Bayes: Learning

@ We can handle these terms separately. For the prior we maximize:
S log p(c®)

e This is a minor variant of our coin flip example. Let p(c() = 1)=.
Note p(c) = e (1-— W)l_c(i).

o Log-likelihood:

N N N
Z logp(c(i)) = Z D logm + Z(l — ) log(1 — )
i1

=1 i=1
e Obtain MLEs by setting derivatives to zero:

S e = 1] _ # spams in dataset
N ~ total # samples

T =
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Naive Bayes: Learning

Each 6;.’s can be treated separately: maximize YV | log p(a:;i)’ )

This is (again) a minor variant of our coin flip example.
; ; () ®
Let 0. = p(z) = 1]¢). Note p(al” [¢) = 677 (1—;0)' ™% .

o Log-likelihood:

N N
Zlogp(xg.z) | V) = Z ¢ {x;-” log0;1 + (1 — :c;”) log(1 — 9]-1)}
i=1 i=1
N
+y
i=1

— )y {xiz) log 00 + (1 — xgl)) log(1 — Gjo)}

e Obtain MLEs by setting derivatives to zero:

b — > ]I[l“;i) =1& W= | for c=1 Fword j appears in spams
Je S e = ¢ o # spams in dataset
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Naive Bayes: Inference

e We predict the category by performing inference in the model.

Apply Bayes’ Rule:

plelx) = p(ap(x|e) p(e) 172 p(xj | c)
> p(d)p(x| ) Do (C/)HJ (i)

We need not compute the denominator if we’re simply trying to
determine the most likely c.

@ Shorthand notation:

>

(c|x) x p(c H (zj|c)

For input x, predict by comparing the values of p(c) Hle p(zj|c)
for different ¢ (e.g. choose the largest).
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Naive Bayes

Naive Bayes is an amazingly cheap learning algorithm!

Training time: estimate parameters using maximum likelihood

» Compute co-occurrence counts of each feature with the labels.
» Requires only one pass through the datal

o Test time: apply Bayes’ Rule

» Cheap because of the model structure. (For more general models,
Bayesian inference can be very expensive and/or complicated.)

We covered the Bernoulli case for simplicity. But our analysis
easily extends to other probability distributions.

e Unfortunately, it’s usually less accurate in practice compared to
discriminative models due to its “naive” independence assumption.
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MLE issue: Data Sparsity

e Maximum likelihood has a pitfall: if you have too little data, it
can overfit.

e E.g., what if you flip the coin twice and get H both times?

__Ne  _ 2
" Ny +Nr 240

O,

@ Because it never observed T, it assigns this outcome probability 0.
This problem is known as data sparsity.
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Bayesian Parameter Estimation

o In maximum likelihood, the observations are treated as random
variables, but the parameters are not.

o The Bayesian approach treats the parameters as random variables
as well. 3 is the set of parameters in the prior distribution of 6.

e To define a Bayesian model, we need to specify two distributions:
» The prior distribution p(@), which encodes our beliefs about the
parameters before we observe the data
» The likelihood p(D|0), same as in maximum likelihood
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Bayesian Parameter Estimation

e When we update our beliefs based on the observations, we
compute the posterior distribution using Bayes’ Rule:
p(8)p(D|6)
Jp(0)p(D|6')d6"

p(0|D) =

o We rarely ever compute the denominator explicitly. In general, it
is computationally intractable.
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Bayesian Parameter Estimation

o Let’s revisit the coin example. We already know the likelihood:
L(8) = p(DI9) = 6V# (1 — )M

e It remains to specify the prior p(0).

» We can choose an uninformative prior, which assumes as little as
possible. A reasonable choice is the uniform prior.

» But our experience tells us 0.5 is more likely than 0.99. One
particularly useful prior that lets us specify this is the beta
distribution:

I'(a+b)

p(b;a,b) = T(@)T(b) 0"t (1 —0)b L

» This notation for proportionality lets us ignore the normalization
constant:

p(8;a,b) o *71(1 — )L,
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Bayesian Parameter Estimation

@ Beta distribution for various values of a, b:

5
o
Il
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@ Some observations:

» The expectation E[f] = a/(a + b) (easy to derive).
» The distribution gets more peaked when a and b are large.
» The uniform distribution is the special case where a = b = 1.

@ The beta distribution is used for is as a prior for the Bernoulli distribution.
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Bayesian Parameter Estimation

e Computing the posterior distribution:
p(8]D) x p(8)p(D|0)
o [ge71(1 — o)b—l} [0V (1 — 0)7]

_ Ha—l-i-NH(l _ 0)b—1+NT_

e This is just a beta distribution with parameters Ny + a and
Np +b.
o The posterior expectation of 6 is:
Ng +a
Ng+Nr+a+b
@ The parameters a and b of the prior can be thought of as
pseudo-counts.
» The reason this works is that the prior and likelihood have the same

functional form. This phenomenon is known as conjugacy
(conjugate priors), and it’s very useful.

E[¢| D] =
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Bayesian Parameter Estimation

Bayesian inference for the coin flip example:

Small data setting Large data setting
Npg =2, Np =0 Npg =55, Ny =45
3.0 9
— Prior — Prior
2.5/ — Likelihood 8l — Likelihood
— Posterior 7|| — Posterior
2.0 6
5
15
4
1.0 3
0.5 ?
. ) j

0‘8.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

When you have enough observations, the data overwhelm the prior.
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Maximum A-Posteriori Estimation

e Maximum a-posteriori (MAP) estimation: find the most likely
parameter settings under the posterior

3.0
— Prior
25l — leellh.ood
— Posterior
2.0
1.5
1.0
0.5
0'8.0 0.2 0.4 0.6 0.8 1.0
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Maximum A-Posteriori Estimation

@ This converts the Bayesian parameter estimation problem into a
maximization problem
Oriap = arg ax p(0|D)
= arg max p(0,D)
= argmax p(6) p(D|6)
= argmax logp(0) + logp(D | 0)

o We already saw an example of this in the homework.
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Maximum A-Posteriori Estimation

e Joint probability in the coin flip example:

log p(6, D) = log p(6) + log p(D | 6)
= Const + (a — 1) log6 + (b — 1) log(1 — 0) + Ny log 6 + Ny log(1l — 6)
= Const + (Ng +a —1)logf + (N7 + b — 1) log(1 — 0)

e Maximize by finding a critical point

Ng+a—1 Nr+b—1
0 1-4

d
0= ogp(0,D)

e Solving for 6,

Npg+a—1
Nyg+ Nr+a+b—2

Oviap =
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Maximum A-Posteriori Estimation

Comparison of estimates in the coin flip example:

Formula NH:2,NT:0 NH:55,NT:45
) N 55 __
Onir, Nt 1 25 =0.55
Np+ 4 ~ 57
E[6|D] NHJFJI{[Tf:aer 5 ~0.67 101 ~ 0.548

2 Ny+a—1
OMAP W Nrtati—2

[N

— 56
=0.75 105 ~ 0.549

éM AP assigns nonzero probabilities as long as a,b > 1.
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