
CSC 311: Introduction to Machine Learning
Lecture 4 - Neural Networks

Roger Grosse Chris Maddison Juhan Bae Silviu Pitis

University of Toronto, Fall 2020

Intro ML (UofT) CSC311-Lec4 1 / 51

Announcements

Homework 2 is posted! Deadline Oct 14, 23:59.

Intro ML (UofT) CSC311-Lec4 2 / 51

Overview

Design choices so far

task: regression, binary classification, multi-way classification

model: linear, logistic, hard coded feature maps, feed-forward
neural network

loss: squared error, 0-1 loss, cross-entropy

regularization L2, Lp, early stopping

optimization: direct solutions, linear programming, gradient
descent (backpropagation)

Intro ML (UofT) CSC311-Lec4 3 / 51

Neural Networks

Intro ML (UofT) CSC311-Lec4 4 / 51

Inspiration: The Brain

Neurons receive input signals and accumulate voltage. After some
threshold they will fire spiking responses.

[Pic credit: www.moleculardevices.com]

Intro ML (UofT) CSC311-Lec4 5 / 51

Inspiration: The Brain

For neural nets, we use a much simpler model neuron, or unit:

Compare with logistic regression: y = σ(w>x + b)

By throwing together lots of these incredibly simplistic neuron-like
processing units, we can do some powerful computations!
Intro ML (UofT) CSC311-Lec4 6 / 51

Multilayer Perceptrons

Intro ML (UofT) CSC311-Lec4 7 / 51

Multilayer Perceptrons

We can connect lots of
units together into a
directed acyclic graph.

Typically, units are
grouped into layers.

This gives a feed-forward
neural network.

Intro ML (UofT) CSC311-Lec4 8 / 51

Multilayer Perceptrons

Each hidden layer i connects Ni−1 input units to Ni output units.

In a fully connected layer, all input units are connected to all output units.

Note: the inputs and outputs for a layer are distinct from the inputs and
outputs to the network.

If we need to compute M outputs from N
inputs, we can do so using matrix multiplication.
This means we’ll be using a M ×N matrix

The outputs are a function of the input units:

y = f(x) = φ (Wx+ b)

φ is typically applied component-wise.

A multilayer network consisting of fully
connected layers is called a multilayer
perceptron.

Intro ML (UofT) CSC311-Lec4 9 / 51

Multilayer Perceptrons

Some activation functions:

Identity

y = z

Rectified Linear
Unit

(ReLU)

y = max(0, z)

Soft ReLU

y = log 1 + ez

Intro ML (UofT) CSC311-Lec4 10 / 51

Multilayer Perceptrons

Some activation functions:

Hard Threshold

y =

{
1 if z > 0
0 if z ≤ 0

Logistic

y =
1

1 + e−z

Hyperbolic Tangent
(tanh)

y =
ez − e−z

ez + e−z

Intro ML (UofT) CSC311-Lec4 11 / 51

Multilayer Perceptrons

Each layer computes a function, so the network
computes a composition of functions:

h(1) = f (1)(x) = φ(W(1)x + b(1))

h(2) = f (2)(h(1)) = φ(W(2)h(1) + b(2))

...

y = f (L)(h(L−1))

Or more simply:

y = f (L) ◦ · · · ◦ f (1)(x).

Neural nets provide modularity: we can implement
each layer’s computations as a black box.

Intro ML (UofT) CSC311-Lec4 12 / 51

Feature Learning

Last layer:

If task is regression: choose
y = f (L)(h(L−1)) = (w(L))>h(L−1) + b(L)

If task is binary classification: choose
y = f (L)(h(L−1)) = σ((w(L))>h(L−1) + b(L))

So neural nets can be viewed as a way of learning features:

The goal:

Intro ML (UofT) CSC311-Lec4 13 / 51

Feature Learning

Suppose we’re trying to classify images of handwritten digits.
Each image is represented as a vector of 28× 28 = 784 pixel values.

Each first-layer hidden unit computes φ(w>i x). It acts as a
feature detector.

We can visualize w by reshaping it into an image. Here’s an
example that responds to a diagonal stroke.

Intro ML (UofT) CSC311-Lec4 14 / 51

Feature Learning

Here are some of the features learned by the first hidden layer of a
handwritten digit classifier:

Unlike hard-coded feature maps (e.g., in polynomial regression),
features learned by neural networks adapt to patterns in the data.

Intro ML (UofT) CSC311-Lec4 15 / 51

Expressivity

In Lecture 3, we introduced the idea of a hypothesis space H,
which is the set of input-output mappings that can be represented
by some model. Suppose we are deciding between two models A,B
with hypothesis spaces HA,HB.

If HB ⊆ HA, then A is more expressive than B.

A can represent any
function f in HB.

Some functions (XOR) can’t be represented by linear classifiers.
Are deep networks more expressive?

Intro ML (UofT) CSC311-Lec4 16 / 51

Expressivity—Linear Networks

Suppose a layer’s activation function was the identity, so the layer
just computes a affine transformation of the input

I We call this a linear layer

Any sequence of linear layers can be equivalently represented with
a single linear layer.

y = W(3)W(2)W(1)︸ ︷︷ ︸
,W′

x

I Deep linear networks can only represent linear functions.

I Deep linear networks are no more expressive than linear regression.

Intro ML (UofT) CSC311-Lec4 17 / 51

Expressive Power—Non-linear Networks

Multilayer feed-forward neural nets with nonlinear activation
functions are universal function approximators: they can
approximate any function arbitrarily well, i.e., for any f : X → T
there is a sequence fi ∈ H with fi → f .

This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)

I Even though ReLU is “almost” linear, it’s nonlinear enough.

Intro ML (UofT) CSC311-Lec4 18 / 51

Multilayer Perceptrons

Designing a network to classify XOR:

Assume hard threshold activation function

Intro ML (UofT) CSC311-Lec4 19 / 51

Multilayer Perceptrons

h1 computes I[x1 + x2 − 0.5 > 0]
I i.e. x1 OR x2

h2 computes I[x1 + x2 − 1.5 > 0]
I i.e. x1 AND x2

y computes I[h1 − h2 − 0.5 > 0] ≡ I[h1 + (1− h2)− 1.5 > 0]
I i.e. h1 AND (NOT h2) = x1 XOR x2

Intro ML (UofT) CSC311-Lec4 20 / 51

Expressivity

Universality for binary inputs and targets:

Hard threshold hidden units, linear output

Strategy: 2D hidden units, each of which responds to one
particular input configuration

Only requires one hidden layer, though it needs to be extremely
wide.
Intro ML (UofT) CSC311-Lec4 21 / 51

Expressivity

What about the logistic activation function?

You can approximate a hard threshold by scaling up the weights
and biases:

y = σ(x) y = σ(5x)

This is good: logistic units are differentiable, so we can train them
with gradient descent.

Intro ML (UofT) CSC311-Lec4 22 / 51

Expressivity—What is it good for?

Universality is not necessarily a golden ticket.
I You may need a very large network to represent a given function.
I How can you find the weights that represent a given function?

Expressivity can be bad: if you can learn any function, overfitting
is potentially a serious concern!

I Recall the polynomial feature mappings from Lecture 2.
Expressivity increases with the degree M , eventually allowing
multiple perfect fits to the training data.

This motivated L2 regularization.

Do neural networks overfit and how can we regularize them?

Intro ML (UofT) CSC311-Lec4 23 / 51

Regularization and Overfitting for Neural Networks

The topic of overfitting (when & how it happens, how to regularize, etc.)
for neural networks is not well-understood, even by researchers!

I In principle, you can always apply L2 regularization.
I You will learn more in CSC413.

A common approach is early stopping, or stopping training early,
because overfitting typically increases as training progresses.

Unlike L2 regularization, we don’t add an explicit R(θ) term to our cost.

Intro ML (UofT) CSC311-Lec4 24 / 51

Training neural networks with backpropagation

Intro ML (UofT) CSC311-Lec4 25 / 51

Recap: Gradient Descent

Recall: gradient descent moves opposite the gradient (the direction of
steepest descent)

Weight space for a multilayer neural net: one coordinate for each weight
or bias of the network, in all the layers

Conceptually, not any different from what we’ve seen so far — just
higher dimensional and harder to visualize!

We want to define a loss L and compute the gradient of the cost dJ /dw,
which is the vector of partial derivatives.

I This is the average of dL/dw over all the training examples, so in
this lecture we focus on computing dL/dw.

Intro ML (UofT) CSC311-Lec4 26 / 51

Univariate Chain Rule

Let’s now look at how we compute gradients in neural networks.

We’ve already been using the univariate Chain Rule.

Recall: if f(x) and x(t) are univariate functions, then

d

dt
f(x(t)) =

df

dx

dx

dt
.

Intro ML (UofT) CSC311-Lec4 27 / 51

Univariate Chain Rule

Recall: Univariate logistic least squares model

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Let’s compute the loss derivatives ∂L
∂w ,

∂L
∂b

Intro ML (UofT) CSC311-Lec4 28 / 51

Univariate Chain Rule

How you would have done it in calculus class

L =
1

2
(σ(wx+ b)− t)2

∂L
∂w

=
∂

∂w

[
1

2
(σ(wx+ b)− t)2

]
=

1

2

∂

∂w
(σ(wx+ b)− t)2

= (σ(wx+ b)− t)
∂

∂w
(σ(wx+ b)− t)

= (σ(wx+ b)− t)σ′(wx+ b)
∂

∂w
(wx+ b)

= (σ(wx+ b)− t)σ′(wx+ b)x

∂L
∂b

=
∂

∂b

[
1

2
(σ(wx+ b)− t)2

]
=

1

2

∂

∂b
(σ(wx+ b)− t)2

= (σ(wx+ b)− t)
∂

∂b
(σ(wx+ b)− t)

= (σ(wx+ b)− t)σ′(wx+ b)
∂

∂b
(wx+ b)

= (σ(wx+ b)− t)σ′(wx+ b)

What are the disadvantages of this approach?

Intro ML (UofT) CSC311-Lec4 29 / 51

Univariate Chain Rule

A more structured way to do it

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

dL
dy

= y − t

dL
dz

=
dL
dy

dy

dz
=

dL
dy

σ′(z)

∂L
∂w

=
dL
dz

dz

dw
=

dL
dz

x

∂L
∂b

=
dL
dz

dz

db
=

dL
dz

Remember, the goal isn’t to obtain closed-form solutions, but to be
able to write a program that efficiently computes the derivatives.

Intro ML (UofT) CSC311-Lec4 30 / 51

Univariate Chain Rule

We can diagram out the computations using a computation
graph.

The nodes represent all the inputs and computed quantities, and
the edges represent which nodes are computed directly as a
function of which other nodes.

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Intro ML (UofT) CSC311-Lec4 31 / 51

Univariate Chain Rule

A slightly more convenient notation:

Use y to denote the derivative dL/dy, sometimes called the error signal.

This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

y = y − t
z = y σ′(z)

w = z x

b = z

Intro ML (UofT) CSC311-Lec4 32 / 51

Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 1?
This requires the Multivariate Chain Rule!

L2-Regularized regression

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w2

Lreg = L+ λR

Softmax regression

z` =
∑
j

w`jxj + b`

yk =
ezk∑
` e

z`

L = −
∑
k

tk log yk

Intro ML (UofT) CSC311-Lec4 33 / 51

Multivariate Chain Rule

Suppose we have a function f(x, y) and functions x(t) and y(t).
(All the variables here are scalar-valued.) Then

d

dt
f(x(t), y(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

Example:

f(x, y) = y + exy

x(t) = cos t

y(t) = t2

Plug in to Chain Rule:

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

= (yexy) · (− sin t) + (1 + xexy) · 2t

Intro ML (UofT) CSC311-Lec4 34 / 51

Multivariable Chain Rule

In the context of backpropagation:

In our notation:

t = x
dx

dt
+ y

dy

dt

Intro ML (UofT) CSC311-Lec4 35 / 51

Backpropagation

Full backpropagation algorithm:
Let v1, . . . , vN be a topological ordering of the computation graph
(i.e. parents come before children.)

vN denotes the variable we’re trying to compute derivatives of (e.g. loss).

Intro ML (UofT) CSC311-Lec4 36 / 51

Backpropagation

Example: univariate logistic least squares regression

Forward pass:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w2

Lreg = L+ λR

Backward pass:

Intro ML (UofT) CSC311-Lec4 37 / 51

Backpropagation

Example: univariate logistic least squares regression

Forward pass:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w2

Lreg = L+ λR

Backward pass:

Lreg = 1

R = Lreg
dLreg

dR
= Lreg λ

L = Lreg
dLreg

dL
= Lreg

y = L dL
dy

= L (y − t)

z = y
dy

dz

= y σ′(z)

w= z
∂z

∂w
+RdR

dw

= z x+Rw

b = z
∂z

∂b

= z

Intro ML (UofT) CSC311-Lec4 38 / 51

Backpropagation

Multilayer Perceptron (multiple outputs):

Forward pass:

zi =
∑
j

w
(1)
ij xj + b

(1)
i

hi = σ(zi)

yk =
∑
i

w
(2)
ki hi + b

(2)
k

L =
1

2

∑
k

(yk − tk)2

Backward pass:

Intro ML (UofT) CSC311-Lec4 39 / 51

Backpropagation

Multilayer Perceptron (multiple outputs):

Forward pass:

zi =
∑
j

w
(1)
ij xj + b

(1)
i

hi = σ(zi)

yk =
∑
i

w
(2)
ki hi + b

(2)
k

L =
1

2

∑
k

(yk − tk)2

Backward pass:

L = 1

yk = L (yk − tk)

w
(2)
ki = yk hi

b
(2)
k = yk

hi =
∑
k

ykw
(2)
ki

zi = hi σ
′(zi)

w
(1)
ij = zi xj

b
(1)
i = zi

Intro ML (UofT) CSC311-Lec4 40 / 51

Backpropagation

In vectorized form:

Forward pass:

z = W(1)x + b(1)

h = σ(z)

y = W(2)h + b(2)

L =
1

2
‖t− y‖2

Backward pass:

Intro ML (UofT) CSC311-Lec4 41 / 51

Backpropagation

In vectorized form:

Forward pass:

z = W(1)x + b(1)

h = σ(z)

y = W(2)h + b(2)

L =
1

2
‖t− y‖2

Backward pass:

L = 1

y = L (y − t)

W(2) = yh>

b(2) = y

h = W(2)>y

z = h ◦ σ′(z)

W(1) = zx>

b(1) = z

Intro ML (UofT) CSC311-Lec4 42 / 51

Computational Cost

Computational cost of forward pass: one add-multiply operation
per weight

zi =
∑
j

w
(1)
ij xj + b

(1)
i

Computational cost of backward pass: two add-multiply
operations per weight

w
(2)
ki = yk hi

hi =
∑
k

ykw
(2)
ki

Rule of thumb: the backward pass is about as expensive as two
forward passes.

For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.

Intro ML (UofT) CSC311-Lec4 43 / 51

Backpropagation

Backprop is the algorithm for efficiently computing gradients in neural
nets.

Gradient descent with gradients computed via backprop is used to train
the overwhelming majority of neural nets today.

I Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

Despite its practical success, backprop is believed to be neurally
implausible.

Intro ML (UofT) CSC311-Lec4 44 / 51

Gradient Checking

Intro ML (UofT) CSC311-Lec4 45 / 51

Gradient Checking

One way to compute dL/dw is numerical. This is useful for
checking algorithmically computed gradients, or gradient checking.

Recall the definition of the partial derivative:

∂

∂xi
f(x1, . . . , xN) = lim

h→0

f(x1, . . . , xi + h, . . . , xN)− f(x1, . . . , xi, . . . , xN)

h

We can estimate the gradient numerically by fixing h to a small
value, e.g. 10−10, on the right-hand side. This is known as finite
differences.

Intro ML (UofT) CSC311-Lec4 46 / 51

Gradient Checking

Even better: the two-sided definition

∂

∂xi
f(x1, . . . , xN) = lim

h→0

f(x1, . . . , xi + h, . . . , xN)− f(x1, . . . , xi − h, . . . , xN)

2h

Intro ML (UofT) CSC311-Lec4 47 / 51

Gradient Checking

Run gradient checks on small, randomly chosen inputs

Use double precision floats (not the default for TensorFlow,
PyTorch, etc.!)

Compute the relative error:

|a− b|
|a|+ |b|

The relative error should be very small, e.g. 10−6

Intro ML (UofT) CSC311-Lec4 48 / 51

Gradient Checking

Gradient checking is really important!

Learning algorithms often appear to work even if the math is
wrong.

But:
I They might work much better if the derivatives are correct.
I Wrong derivatives might lead you on a wild goose chase.

If you implement derivatives by hand, gradient checking is the
single most important thing you need to do to get your algorithm
to work well.

Intro ML (UofT) CSC311-Lec4 49 / 51

Pytorch, Tensorflow, et al. (Optional)

If we construct our networks out of a series of “primitive” operations
(e.g., add, multiply) with specified routines for computing derivatives,
backprop can be done in a completely mechanical, and automatic, way.

This is called autodifferentiation or just autodiff.

There are many autodiff libraries (e.g., PyTorch, Tensorflow, Jax, etc.)

Practically speaking, autodiff automates the backward pass for you —
but it’s still important to know how things work under the hood.

In CSC413, you’ll learn more about how autodiff works and use an
autodiff framework to build complex neural networks.

Intro ML (UofT) CSC311-Lec4 50 / 51

Beyond Feed-forward Neural Networks (Optional)

For modern applications (vision, language, games)
we use more complicated architectures.

CNN

GAN

RNN

Transformer

Intro ML (UofT) CSC311-Lec4 51 / 51

