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Outline

» Linear, time-invariant (LTI) systems
» Time & frequency domain
» Example: first-order optimizers
> Examples: frequency-domain insights using graphical tools

» When does the momentum optimizer underdamp or
overdamp? (problem set 1)
» How robust is the momentum optimizer to gradient noises?



Block diagrams

The transformation from signal u(t) to y(t):

u y

Example: ML optimizer
» u(t): gradient at time t.
> y(t): weight at time t.
» f: the optimization algorithm (e.g. gradient descent,
heavy-ball momentum, ...)



Linear Time-Invariant system

y
— f
Linearity
a-up+b-uw P a-y1+b-y
Time-invariance
u(t — to) y(t - to)




Why LTI systems?

“Linear systems are important because we can solve them.”
—Richard Feynman

For an LTI system, let f(t) be the impulse response of the system,
we have:

y(t) = u(t) * £(¢)

where * denotes the convolution operation.



Representations of LTI systems

Time-domain:

» An intuitive representation for e.g. ML optimization

» Stability analysis often amounts to calculating eigenvalues
Frequency-domain:

» Classic theory developed in the 1930s

» Offers valuable insights through many graphical tools (e.g.
root locus, Bode plot, Nyquist plot, ...)



Representations of LTI systems

» Time domain (state-space)

X = Ax + Bu
y = Cx+ Du
» Frequency domain (input-output)

» Convolution is very hard to compute directly!
» Apply Laplace transform and turn it into multiplication



Laplace transform

Laplace transform L£{-}: x(t) — X(s).
X(s) = L{x(£)} = / x(t)etdt
0
Important properties:
» Linearity: a-x(t)+b-y(t) = a-X(s)+b-Y(s)
> Time-derivative: %x(t) — sX(s)
» Convolution: x(t) * y(t) — X(s)Y(s)



Time domain — frequency-domain

u y

> f

Time-domain:

x = Ax + Bu
y = Cx+ Du

Frequency-domain (apply Laplace transform):

sX(s) = AX(s) + BU(s)
Y(s) = CX(s) + DU(s)

Y (s) = <C(sl _A)B4 D) U(s)

F(s)

F(s) is the transfer function.



Discrete-time systems

» So far, we have only discussed continuous-time (CT) systems.

However, most practical scenarios (including ML optimization)
are discrete-time (DT).

» Fortunately, all of the above concepts have their discrete-time
counterparts.

State-space representation (DT):
Xt+1 = AXt + But
vt = Cx¢ + Duy

Frequency-domain with z-transform (DT counterpart of Laplace
transform):

zX(z) = AX(z) + BU(z)
Y(z) = CX(z) + DU(z)

e Y(2) = <C(zl _A)B4 D> U(2)

F(2)



Example: gradient descent

Wiyl = We — 08t

> g;: gradient at time t.
> w;: weight at time t.

State-space (time domain) representation:

Xt4+1 = {1} Xt + [—a} 8t
> TB

we = ﬂxt +ﬂgt

C D



Example: gradient descent

State-space (time domain) representation:

xer1 = [1] xe+ [~a] &

~~ S——
A B
Wy = |:1:| Xt + |:0:| 8t
~~ ~~
C D

Frequency-domain representation (transfer function):

K(z) = C(zl — A)'B+ D = Z_—_O‘l

— w

In control theory, such a K(z) is called an integral controller.



Example: gradient descent with momentum

Wep1 = Wy — age + B(we — we_q)

. w, .
Define x; = [W t ] we have the state-space representation:
t—1

Xt+1 = 1—;5 _OB Xt + _0061 8t
A B
W, = [1 0} Xe + [o] g
—— ~—~—~



Example: gradient descent with momentum

State-space (time domain) representation:

Xt+1 = 1 41_ b _Oﬁ] Xt + l_oal 8t
A B
we=[10|x+ [0] &
\T \D/

Frequency-domain representation (transfer function):

—Q V4

K(z):C(zI—A)_lB—i—D:2_1-2_6




Exercise: Nesterov accelerated gradient

Express the Nesterov accelerated gradient as a state-space model
and transfer function.

v = vy — aV.T (we + Bve)

Wil = Wi + Veypl

Hint: the output of the system would be y; := w; + Swv;

g y

K(z)




Aside: PID control

In control systems application, the single most celebrated controller
is perhaps the proportional-integral—derivative (PID) controller.
Consider the following block diagram:

E=r—y u y

g C p

Design controller C such that the error e is driven to 0 over time.



Aside: PID control

Design controller C such that the error e is driven to 0 over time.

e=r—y y
O C 4 p

PID control (continuous-time):

de(t)
dt

mtegral derivative

lﬁﬁ:Ket+K/ 7)dr + Ky

proportional



Optimizers & PID control

First-order optimizers are connected to PID control.
» Gradient descent

This is integral control in discrete-time (K,, K4y = 0)

» Heavy-ball momentum, Nesterov accelerated gradient can
both be interpreted as variants of PID control. See
https://www.argmin.net/2018/04/19/pid/.


https://www.argmin.net/2018/04/19/pid/

Interconnected systems
Expressing LTI systems in terms of transfer functions makes it
convenient to study interconnected systems.
» For example, the optimization loop with quadratic objective

function can be expressed in the following interconnected
system:

w* —w g = Vf(w) w

» P: transfer function from the weight to gradient. Since the
objective is quadratic, we have P = —), where )\ is th
curvature.

> K the optimizer



Interconnected systems

Lowt — g =Vi(w)
O~—" p=—x K

r=w

We can compute the overall transfer function from r to w:

W(z) = K()P(2)(R(z) - W(z)) — W(z)=

1+KP




Frequency-domain analysis

Expressing the optimizers in frequency-domain provides many
useful insights, such as:

» How does the optimizer perform in different curvature regimes
of the objective function?

» How robust is the optimizer to gradient noise?
Many helpful graphical tools in the frequency-domain
» Root locus, Bode plot, Nyquist plot, ...



Example: when does the momentum optimizer underdamp
or overdamp?
The transfer function for heavy-ball momentum optimizer is:

—Q z

K(Z):z—lz—,B

» Let « =0.01, 5 =0.9, and loss function be J(w) = %)\W2.

w* —w g=VJ(w) w

When is the interconnected system overdamped / underdamped /
critically damped (as a function of curvature \)?

» You've done this in problem set 1.



Example: when does the momentum optimizer underdamp

or overdamp?
Let's approach this using frequency-domain analysis.

» We know that the transfer function of the interconnected

system is
KP —AK(z) —a  z
@) =15kp ~Toak() e K@ =93
_r G(z) w

Fact: the roots of the denominator (a.k.a. poles) of G(z)
corresponds to the eigenvalues of matrix A in the state-space
representation of G (i.e. the eigenvalues in problem set 1).

» We are interested in knowing how the poles of G(z) change as
a function of curvature A.

» A graphical tool called the root locus can help us with that.



Example: when does the momentum optimizer underdamp

or overdamp?

Root locus plot showing how the poles evolve as functions of A on
the complex plane.

Root Locus
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Example: when does the momentum optimizer underdamp
or overdamp?

Root Locus
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The plot shows that at A & 0.263, the poles start to have
imaginary parts.



Example: when does the momentum optimizer underdamp
or overdamp?

Root Locus
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Check with the solution in problem set 1: the threshold is
T=a11-B)>*~0263



Example: how robust is the momentum optimizer to
gradient noises?

w* — w VI (w w
() o ]

How does the system respond to disturbance d (gradient noise) of
different frequencies?



Example: how robust is the momentum optimizer to
gradient noises?

Property of LTI system:

» Sinusoid inputs are mapped to sinusoid outputs of the same
frequency.

sin(wt) LN asin(wt + ¢).

Bode plot: plots the magnitude a and phase ¢ as functions of w.



Example: how robust is the momentum optimizer to
gradient noises?

d
* * VJ(w
O =" Ip—_y () K

r=w

Write the transfer function from d to w (assume r = 0):

K

W= K(D+P(-W)) = W(2) = 150(2)

1+KP




Example: how robust is the momentum optimizer to
gradient noises?

Bode magnitude plot of 55, where K(z) = =% ;2 =5 and
P=—X(letaa=0.01,\=1).

Bode Diagram
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As [ increases, gradient noise at frequency around 0.1rad/s is
amplified more and more!



Summary

» LTI system basics
> Block diagram, linearity & time-invariance
» Time-domain & frequency-domain representations
P Laplace transform, transfer functions
» Example: gradient descent, heavy-ball momentum
> Aside: optimizers & PID control
» Examples: frequency-domain analysis using graphical tools:
» Underdamping / overdamping for momentum optimizer (root
locus plot).
> Robustness to gradient noises (Bode plot).



