
Tutorial 8: Linear Systems
CSC2541 Tutorial 8, Winter 2022

Jenny Bao

Mar 3, 2022



Outline

I Linear, time-invariant (LTI) systems
I Time & frequency domain

I Example: first-order optimizers
I Examples: frequency-domain insights using graphical tools

I When does the momentum optimizer underdamp or
overdamp? (problem set 1)

I How robust is the momentum optimizer to gradient noises?



Block diagrams

The transformation from signal u(t) to y(t):

f
u y

Example: ML optimizer
I u(t): gradient at time t.
I y(t): weight at time t.
I f : the optimization algorithm (e.g. gradient descent,

heavy-ball momentum, ...)



Linear Time-Invariant system

f
u y

Linearity

f
a · u1 + b · u2 a · y1 + b · y2

Time-invariance

f
u(t − t0) y(t − t0)



Why LTI systems?

“Linear systems are important because we can solve them.”
—Richard Feynman

f
u y

For an LTI system, let f (t) be the impulse response of the system,
we have:

y(t) = u(t) ∗ f (t)

where ∗ denotes the convolution operation.



Representations of LTI systems

f
u y

Time-domain:
I An intuitive representation for e.g. ML optimization
I Stability analysis often amounts to calculating eigenvalues

Frequency-domain:
I Classic theory developed in the 1930s
I Offers valuable insights through many graphical tools (e.g.

root locus, Bode plot, Nyquist plot, ...)



Representations of LTI systems

f
u y

y(t) = u(t) ∗ f (t)

I Time domain (state-space)

ẋ = Ax + Bu
y = Cx + Du

I Frequency domain (input-output)
I Convolution is very hard to compute directly!
I Apply Laplace transform and turn it into multiplication

Y (s) = F (s)U(s)



Laplace transform

Laplace transform L{·}: x(t) → X (s).

X (s) = L{x(t)} =
∫ ∞

0
x(t)e−stdt

Important properties:
I Linearity: a · x(t) + b · y(t)→ a · X (s) + b · Y (s)
I Time-derivative: d

dt x(t)→ sX (s)
I Convolution: x(t) ∗ y(t)→ X (s)Y (s)



Time domain → frequency-domain

f
u y

Time-domain:

ẋ = Ax + Bu
y = Cx + Du

Frequency-domain (apply Laplace transform):

sX (s) = AX (s) + BU(s)
Y (s) = CX (s) + DU(s)

=⇒ Y (s) =
(

C(sI − A)−1B + D
)

︸ ︷︷ ︸
F (s)

U(s)

F (s) is the transfer function.



Discrete-time systems
I So far, we have only discussed continuous-time (CT) systems.

However, most practical scenarios (including ML optimization)
are discrete-time (DT).

I Fortunately, all of the above concepts have their discrete-time
counterparts.

State-space representation (DT):
xt+1 = Axt + But

yt = Cxt + Dut

Frequency-domain with z-transform (DT counterpart of Laplace
transform):

zX (z) = AX (z) + BU(z)
Y (z) = CX (z) + DU(z)

=⇒ Y (z) =
(

C(zI − A)−1B + D
)

︸ ︷︷ ︸
F (z)

U(z)



Example: gradient descent

wt+1 = wt − αgt

I gt : gradient at time t.
I wt : weight at time t.

State-space (time domain) representation:

xt+1 =
[
1
]

︸︷︷︸
A

xt +
[
−α
]

︸ ︷︷ ︸
B

gt

wt =
[
1
]

︸︷︷︸
C

xt +
[
0
]

︸︷︷︸
D

gt



Example: gradient descent
State-space (time domain) representation:

xt+1 =
[
1
]

︸︷︷︸
A

xt +
[
−α
]

︸ ︷︷ ︸
B

gt

wt =
[
1
]

︸︷︷︸
C

xt +
[
0
]

︸︷︷︸
D

gt

Frequency-domain representation (transfer function):

K (z) = C(zI − A)−1B + D = −α
z − 1

K (z) = −α
z−1

g w

In control theory, such a K (z) is called an integral controller.



Example: gradient descent with momentum

wt+1 = wt − αgt + β(wt − wt−1)

Define xt =
[

wt
wt−1

]
, we have the state-space representation:

xt+1 =
[
1 + β −β
1 0

]
︸ ︷︷ ︸

A

xt +
[
−α
0

]
︸ ︷︷ ︸

B

gt

wt =
[
1 0

]
︸ ︷︷ ︸

C

xt +
[
0
]

︸︷︷︸
D

gt



Example: gradient descent with momentum
State-space (time domain) representation:

xt+1 =
[
1 + β −β
1 0

]
︸ ︷︷ ︸

A

xt +
[
−α
0

]
︸ ︷︷ ︸

B

gt

wt =
[
1 0

]
︸ ︷︷ ︸

C

xt +
[
0
]

︸︷︷︸
D

gt

Frequency-domain representation (transfer function):

K (z) = C(zI − A)−1B + D = −α
z − 1 ·

z
z − β

K (z) = −α
z−1 ·

z
z−β

g w



Exercise: Nesterov accelerated gradient

Express the Nesterov accelerated gradient as a state-space model
and transfer function.

vt = βvt − α∇J (wt + βvt)
wt+1 = wt + vt+1

Hint: the output of the system would be yt := wt + βvt

K (z)
g y



Aside: PID control

In control systems application, the single most celebrated controller
is perhaps the proportional–integral–derivative (PID) controller.
Consider the following block diagram:

C P
r e = r − y u y

Design controller C such that the error e is driven to 0 over time.



Aside: PID control

Design controller C such that the error e is driven to 0 over time.

C P
r e = r − y u y

PID control (continuous-time):

u(t) = Kpe(t)︸ ︷︷ ︸
proportional

+ Ki

∫ t

0
e(τ)dτ︸ ︷︷ ︸

integral

+ Kd
de(t)

dt︸ ︷︷ ︸
derivative



Optimizers & PID control

First-order optimizers are connected to PID control.
I Gradient descent

K (z) = −α
z−1

g w

This is integral control in discrete-time (Kp,Kd = 0)
I Heavy-ball momentum, Nesterov accelerated gradient can

both be interpreted as variants of PID control. See
https://www.argmin.net/2018/04/19/pid/.

https://www.argmin.net/2018/04/19/pid/


Interconnected systems
Expressing LTI systems in terms of transfer functions makes it
convenient to study interconnected systems.
I For example, the optimization loop with quadratic objective

function can be expressed in the following interconnected
system:

P = −λ K
r = w∗ w∗ − w g = ∇f (w) w

I P: transfer function from the weight to gradient. Since the
objective is quadratic, we have P = −λ, where λ is th
curvature.

I K the optimizer



Interconnected systems

P = −λ K
r = w∗ w∗ − w g = ∇f (w) w

We can compute the overall transfer function from r to w :

W (z) = K (z)P(z)(R(z)−W (z)) =⇒ W (z) = KP
1 + KP R(z)

KP
1+KP

r w



Frequency-domain analysis

Expressing the optimizers in frequency-domain provides many
useful insights, such as:
I How does the optimizer perform in different curvature regimes

of the objective function?
I How robust is the optimizer to gradient noise?

Many helpful graphical tools in the frequency-domain
I Root locus, Bode plot, Nyquist plot, ...



Example: when does the momentum optimizer underdamp
or overdamp?

The transfer function for heavy-ball momentum optimizer is:

K (z) = −α
z − 1

z
z − β

I Let α = 0.01, β = 0.9, and loss function be J (w) = 1
2λw2.

P = −λ K
r = w∗ w∗ − w g = ∇J (w) w

When is the interconnected system overdamped / underdamped /
critically damped (as a function of curvature λ)?
I You’ve done this in problem set 1.



Example: when does the momentum optimizer underdamp
or overdamp?

Let’s approach this using frequency-domain analysis.
I We know that the transfer function of the interconnected

system is

G(z) = KP
1 + KP = −λK (z)

1− λK (z) , where K (z) = −α
z − 1

z
z − β

G(z)r w

Fact: the roots of the denominator (a.k.a. poles) of G(z)
corresponds to the eigenvalues of matrix A in the state-space
representation of G (i.e. the eigenvalues in problem set 1).
I We are interested in knowing how the poles of G(z) change as

a function of curvature λ.
I A graphical tool called the root locus can help us with that.



Example: when does the momentum optimizer underdamp
or overdamp?

Root locus plot showing how the poles evolve as functions of λ on
the complex plane.



Example: when does the momentum optimizer underdamp
or overdamp?

The plot shows that at λ ≈ 0.263, the poles start to have
imaginary parts.



Example: when does the momentum optimizer underdamp
or overdamp?

Check with the solution in problem set 1: the threshold is
T = α−1(1−

√
β)2 ≈ 0.263 X



Example: how robust is the momentum optimizer to
gradient noises?

P = −λ K
r = w∗ w∗ − w ∇J (w) d

w

How does the system respond to disturbance d (gradient noise) of
different frequencies?



Example: how robust is the momentum optimizer to
gradient noises?

Property of LTI system:
I Sinusoid inputs are mapped to sinusoid outputs of the same

frequency.

sin(ωt) LTI−→ a sin(ωt + φ).

Bode plot: plots the magnitude a and phase φ as functions of ω.



Example: how robust is the momentum optimizer to
gradient noises?

P = −λ K
r = w∗ w∗ − w ∇J (w) d

w

Write the transfer function from d to w (assume r = 0):

W = K (D + P(−W )) =⇒ W (z) = K
1 + KP D(z)

K
1+KP

d w



Example: how robust is the momentum optimizer to
gradient noises?

Bode magnitude plot of K
1+KP , where K (z) = −α

z−1
z

z−β and
P = −λ (let α = 0.01, λ = 1).

As β increases, gradient noise at frequency around 0.1rad/s is
amplified more and more!



Summary

I LTI system basics
I Block diagram, linearity & time-invariance
I Time-domain & frequency-domain representations

I Laplace transform, transfer functions
I Example: gradient descent, heavy-ball momentum
I Aside: optimizers & PID control

I Examples: frequency-domain analysis using graphical tools:
I Underdamping / overdamping for momentum optimizer (root

locus plot).
I Robustness to gradient noises (Bode plot).


