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Kernel Methods



Recap: Basis Functions

® Basis functions allow us to use non-linear feature transformations.
® We can specify them by hand (examples below), or learn them automatically using
a neural network.
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Recap: Basis Functions

® How is this useful? We can use linear methods on non-linear features to yield
non-linear decision boundaries and regression curves.

— https://gregorygundersen.com/blog/2019/12/10/kernel-trick/

é [ — P VECTOR

Kernels and Gaussian Processes 4/23 TORONTO INSTITUTE
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Kernels: Motivation

Generalized Linear Models (GLM) Neural Network (NN)
® Fixed non-linear basis functions. ® Adaptive non-linear basis functions.
® Limited hypothesis space. ® Rich hypothesis space.
e Easy to optimize (convex). ® Hard to optimize (non-convex).

Towards Kernel Methods
® Feature space in GLM and NN needs to be explicitly constructed.
e Can we use a large (possibly infinite) set of fixed non-linear basis functions
without explicitly constructing this space?

® Yes, by using kernel methods!
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Kernel Methods

o Kernel methods are instance-based learners: they assign a weight 6; to any
training point x;.

® Predictions on new data points x’ make use of a kernel function (-, -) measuring
the similarity of x’ with all points x; from the training set.

e Kernelized binary classification example:
n

y=sgn_ Oiyin(x;,x)
i=1

where
® y € {—1,41} is the label assigned to a data point x.
® ¢; is the weight for training example x;.
® x: X x X — Ris the kernel function measuring similarity between x,x" € R.
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The Kernel Trick

® Let ¢(-) be a set of not further specified basis functions mappings.
® Explicitly constructing a high-dimensional feature space is expensive.

® By using the kernel trick, we can implicitly perform operations in a
high-dimensional feature space.

® |n many algorithms, this feature space only appears as a dot product
(6(x), 6(x')) = 6(x)TG(x') of input pairs x, X'

® \We define these dot products as the kernel function

r(x,X') = (¢(x), 6(x')) = d(x) " 6(x)

which can also be thought of as a similarity function between x and x'.
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Dual Representation

® Recall the regularized linear regression objective:
£(8) = Z(GT Xn) 24 Aeﬁt)
2
® Finding optimal 6:

VoL(6) = Z(e (Xn) — Yn)B(xn) + 20 = 0
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® The weights 0 can be written as a linear combination of the training examples:

0 = Za,,gb(xn) where a = [a1,...,a,]| are called the dual parameters
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Dual Representation

Substituting @ back into linear regression y(x) = 87 $(x) yields:

N N N
0= anp(xn) y(x) =) an(xn) $(x) =D ank(xn, x)
n=1 n=1 n=1

The feature space only appears as a dot product.

The kernel matrix, or gram matrix, K € RVXN collects kernel values in a

symmetric positive semi-definite matrix for all data points (Mercer's theorem):
Kij = r(xi,x}) = ¢(x;) " o(x))

If a kernel defines such a kernel matrix, then the kernel is valid.
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Popular Kernels

Polynomial Kernel

kpol(x,X) = (x' X +¢)?

Squared Exponential Kernel

) (X _ X/)2
kse(x,x') = o” exp (— T )
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Kernel Composition Rules

Let x1(x,x") and ka(x,x’) be valid kernels, then the following kernels are also valid:

k(x,x") = cr1(x,x") Ve >0
k(x,x") = f(x)r1(x, X )F(x")  VF
k(x,x') = g(k1(x,x")) g is polynomial with coefficients > 0.

1(x,x") + Ka(x,x) kernel OR-ing
1(x, x")k2(x,x") kernel AND-ing

Check out the Kernel Cookbook:
https://www.cs.toronto.edu/~duvenaud/cookbook/
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Gaussian Processes



Recap: Multivariate Gaussian

® Handy tool for Bayesian inference on real-valued variables
® General multivariate PDF:
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Bayesian Parameter Estimation Example

Measure your heart rate at 8am

Prior to measuring After measuring
p(bpm8) ’ Prior: A/(60, 10) p(bpm8) = Prior: N(60, 10)
) Monday
0.2 0.2 Tuesday
Wednesday
) Thursday
Posterior: N (60, 4)

0.1 - 0.1

/\ bpm8 bpm8
»-

T
50.0 100.0 50.0 100.0

— Example from http://videolectures.net/mlss2012_cunningham_gaussian_processes/
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Bayesian Parameter Estimation Example

Measure your heart rate at 8am and 9am

Prior to measuring After measuring
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Bayesian Parameter Estimation Example

Measuring your heart rate throughout the day
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GP Definition

A Gaussian process describes a distribution over functions (infinitely long vectors).

¢ Notation: f(x) ~ GP(m(x), x(x,x))
® Mean function: m(x) = E[f(x)]
x') =

e Covariance function: k(x,

E[(f(x) = m(x))(f(x') — m(x))]

We have data points X = [xlT, ...,x,]]" and are interested in their function values

F(X) = (F(x1),...,f(xa))".

A Gaussian process is a collection of random variables, any finite number of which
have joint Gaussian distribution.

f(x) is one such subset and has (prior) joint Gaussian distribution.
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GP Mean and Covariance

The mean function m
® The mean function m(-) encodes the a-priori expectation of the function.
¢ m(x) will dominate the inference result in case we have not yet observed data
similar to x.
® Typical choice: zero-centering the data: m(x) =0

The covariance function s
® x(x,x’) measures similarity between x and x' — similar data points have similar
function values.

® x is a Mercer kernel.
=x) T (x=x')

2e” 22 where o

e Typical choice: squared exponential kernel: k(x,x') = o
defines the height and ¢ the width of the kernel.
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Drawing Samples From The Prior

Same procedure as for multivariate Gaussians:
1. Generate u € RP by drawing d samples from N(0,1p).
2. Perform Cholesky decomposition ¥ = LLT.
3. Compute y = p + Lu where y ~ N(pu, X).
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The Joint Distribution

We have training data X € RV*P | corresponding observations y = f(X), and test
data points X, € RN=*D for which we want to infer function values ¥y« = f(X,).
The GP defines the following joint distribution

sy x) = ()~ (|m) e )

where
K = k(X, X) K. = x(X, Xy) K. = (X, Xi).

Typically, data points are corrupted by noise — our functions should not act as
interpolators. We therefore assume

_yl = f(x,) + € Where €~ N(O) O’%)
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Inference with Gaussian Processes

Inferring an unknown function value and its covariance follows from conditioning
multivariate Gaussians:

Non-noisy case Noisy case
* p=m(X.)+ K Ky —m(X)) o p=m(X.)+ K (K+oal)" (y — m(X))
* 3 =K. - KK K. * ¥ =K.—-K (K+d) K.
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Influence of Kernel Hyperparameters
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® https://www.youtube.com/watch?v=exqpaqaPG2M
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