Tutorial 5 – Kernels and Gaussian Processes

CSC2541 Neural Net Training Dynamics - Winter 2022

Slides adapted from CSC2541: Scalable and Flexible Models of Uncertainty - Fall 2017

Stephan Rabanser

University of Toronto
Department of Computer Science

stephan@cs.toronto.edu

Vector Institute for Artificial Intelligence

February 10, 2022

Recap: Basis Functions

- Basis functions allow us to use non-linear feature transformations.
- We can specify them by hand (examples below), or learn them automatically using a neural network.

$$\phi_{j}(x) = x^{j}$$

$$0.5$$

$$0$$

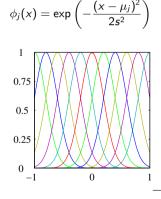
$$-0.5$$

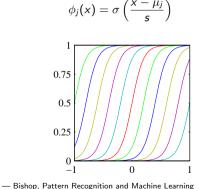
$$-1$$

$$-1$$

$$0$$

$$1$$





Recap: Basis Functions

• How is this useful? We can use linear methods on non-linear features to yield non-linear decision boundaries and regression curves.

$$\phi\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}x_1^2\\x_2^2\\\sqrt{2}x_1x_2\end{bmatrix}$$

— https://gregorygundersen.com/blog/2019/12/10/kernel-trick/

Kernels: Motivation

Generalized Linear Models (GLM)

- Fixed non-linear basis functions.
- Limited hypothesis space.
- Easy to optimize (convex).

Neural Network (NN)

- Adaptive non-linear basis functions.
- Rich hypothesis space.
- Hard to optimize (non-convex).

Towards Kernel Methods

- Feature space in GLM and NN needs to be explicitly constructed.
- Can we use a large (possibly infinite) set of fixed non-linear basis functions without explicitly constructing this space?
- Yes, by using kernel methods!

Kernel Methods

- Kernel methods are instance-based learners: they assign a weight θ_i to any training point \mathbf{x}_i .
- Predictions on new data points \mathbf{x}' make use of a kernel function $\kappa(\cdot, \cdot)$ measuring the similarity of \mathbf{x}' with all points \mathbf{x}_i from the training set.
- Kernelized binary classification example:

$$\hat{y} = \operatorname{sgn} \sum_{i=1}^{n} \theta_{i} y_{i} \kappa(\mathbf{x}_{i}, \mathbf{x}')$$

where

- $y \in \{-1, +1\}$ is the label assigned to a data point **x**.
- θ_i is the weight for training example \mathbf{x}_i .
- $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is the kernel function measuring similarity between $\mathbf{x}, \mathbf{x}' \in \mathbb{R}$.

The Kernel Trick

- Let $\phi(\cdot)$ be a set of not further specified basis functions mappings.
- Explicitly constructing a high-dimensional feature space is expensive.
- By using the kernel trick, we can implicitly perform operations in a high-dimensional feature space.
- In many algorithms, this feature space only appears as a dot product $\langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle = \phi(\mathbf{x})^{\top} \phi(\mathbf{x}')$ of input pairs \mathbf{x}, \mathbf{x}' .
- We define these dot products as the kernel function

$$\kappa(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle = \phi(\mathbf{x})^{\top} \phi(\mathbf{x}')$$

which can also be thought of as a similarity function between x and x'.

Dual Representation

• Recall the regularized linear regression objective:

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \sum_{n=1}^{N} (\boldsymbol{\theta}^{\top} \phi(\mathbf{x}_n) - y_n)^2 + \frac{\lambda}{2} \boldsymbol{\theta}^{\top} \boldsymbol{\theta}$$

• Finding optimal θ :

$$\nabla_{\theta} \mathcal{L}(\theta) = \sum_{n=1}^{N} (\theta^{\top} \phi(\mathbf{x}_n) - y_n) \phi(\mathbf{x}_n) + \lambda \theta = 0$$
$$\theta = -\frac{1}{\lambda} \sum_{n=1}^{N} \underbrace{(\theta^{\top} \phi(\mathbf{x}_n) - y_n)}_{\bullet} \phi(\mathbf{x}_n)$$

• The weights θ can be written as a linear combination of the training examples:

$$heta = \sum_{n=1}^N \mathbf{a}_n \phi(\mathbf{x}_n)$$
 where $\mathbf{a} = \left[\mathbf{a}_1, \dots, \mathbf{a}_n \right]$ are called the dual parameters

Dual Representation

• Substituting θ back into linear regression $y(\mathbf{x}) = \theta^{\top} \phi(\mathbf{x})$ yields:

$$\theta = \sum_{n=1}^{N} \mathbf{a}_n \phi(\mathbf{x}_n) \qquad y(\mathbf{x}) = \sum_{n=1}^{N} \mathbf{a}_n \phi(\mathbf{x}_n)^{\top} \phi(\mathbf{x}) = \sum_{n=1}^{N} \mathbf{a}_n \kappa(\mathbf{x}_n, \mathbf{x})$$

- The feature space only appears as a dot product.
- The kernel matrix, or gram matrix, $\mathbf{K} \in \mathbb{R}^{N \times N}$ collects kernel values in a symmetric positive semi-definite matrix for all data points (Mercer's theorem):

$$\mathbf{K}_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\top} \phi(\mathbf{x}_j)$$

• If a kernel defines such a kernel matrix, then the kernel is valid.

Popular Kernels

Polynomial Kernel

$$\kappa_{\text{Pol}}(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^{\top} \mathbf{x}' + c)^{d}$$

$$0.5$$

$$0$$

$$-0.5$$

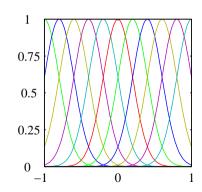
$$-1$$

$$-1$$

$$0$$

Squared Exponential Kernel

$$\kappa_{
m SE}(\mathbf{x},\mathbf{x}') = \sigma^2 \exp\left(-rac{(\mathbf{x}-\mathbf{x}')^2}{2\ell^2}
ight)$$



Kernel Composition Rules

Let $\kappa_1(\mathbf{x}, \mathbf{x}')$ and $\kappa_2(\mathbf{x}, \mathbf{x}')$ be valid kernels, then the following kernels are also valid:

•
$$\kappa(\mathbf{x}, \mathbf{x}') = c\kappa_1(\mathbf{x}, \mathbf{x}') \quad \forall c > 0$$

•
$$\kappa(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})\kappa_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}') \quad \forall$$

•
$$\kappa(\mathbf{x}, \mathbf{x}') = g(\kappa_1(\mathbf{x}, \mathbf{x}'))$$
 g is polynomial with coefficients ≥ 0 .

•
$$\kappa(\mathbf{x}, \mathbf{x}') = \exp(\kappa_1(\mathbf{x}, \mathbf{x}'))$$

•
$$\kappa(\mathbf{x}, \mathbf{x}') = \kappa_1(\mathbf{x}, \mathbf{x}') + \kappa_2(\mathbf{x}, \mathbf{x}')$$
 kernel OR-ing

•
$$\kappa(\mathbf{x}, \mathbf{x}') = \kappa_1(\mathbf{x}, \mathbf{x}')\kappa_2(\mathbf{x}, \mathbf{x}')$$
 kernel AND-ing

•
$$\kappa(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}'$$
 A symmetric and p.s.d.

Check out the Kernel Cookbook:

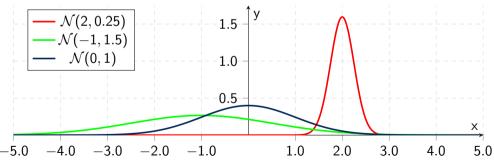
https://www.cs.toronto.edu/~duvenaud/cookbook/

Recap: Multivariate Gaussian

- Handy tool for Bayesian inference on real-valued variables
- General multivariate PDF:

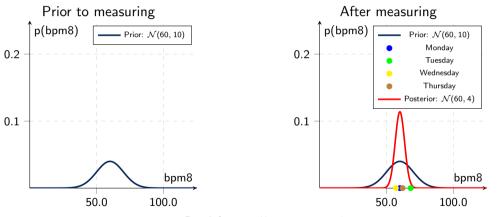
$$\mathbf{x} \sim \mathcal{N}_D(oldsymbol{\mu}, oldsymbol{\Sigma}) = rac{1}{\sqrt{(2\pi)^D |oldsymbol{\Sigma}|}} e^{-rac{1}{2}(\mathbf{x} - oldsymbol{\mu})^ op oldsymbol{\Sigma}^{-1}(\mathbf{x} - oldsymbol{\mu})}$$

ullet Some examples of D=1 Gaussians



Bayesian Parameter Estimation Example

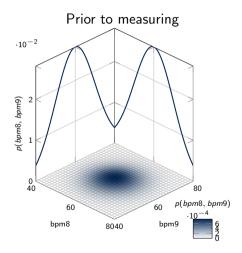
Measure your heart rate at 8am

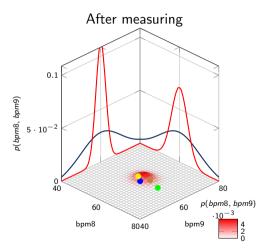


 $-- {\tt Example from http://videolectures.net/mlss2012_cunningham_gaussian_processes/}$

Bayesian Parameter Estimation Example

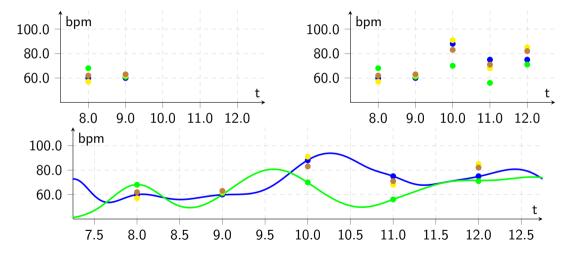
Measure your heart rate at 8am and 9am





Bayesian Parameter Estimation Example

Measuring your heart rate throughout the day



\mathcal{GP} Definition

A Gaussian process describes a distribution over functions (infinitely long vectors).

- Notation: $f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), \kappa(\mathbf{x}, \mathbf{x}))$
- Mean function: $m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$
- Covariance function: $\kappa(\mathbf{x}, \mathbf{x}') = \mathbb{E}[(f(\mathbf{x}) m(\mathbf{x}))(f(\mathbf{x}') m(\mathbf{x}'))]$

We have data points $\boldsymbol{X} = [\boldsymbol{x}_1^\top, \dots, \boldsymbol{x}_n^\top]^\top$ and are interested in their function values $f(\boldsymbol{X}) = (f(\boldsymbol{x}_1), \dots, f(\boldsymbol{x}_n))^\top$.

A Gaussian process is a collection of random variables, any finite number of which have joint Gaussian distribution.

f(x) is one such subset and has (prior) joint Gaussian distribution.

GP Mean and Covariance

The mean function m

- The mean function $m(\cdot)$ encodes the a-priori expectation of the function.
- m(x) will dominate the inference result in case we have not yet observed data similar to x.
- Typical choice: zero-centering the data: $m(\mathbf{x}) = 0$

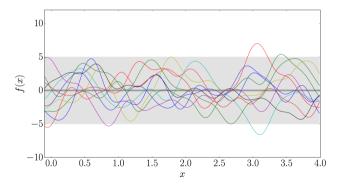
The covariance function κ

- $\kappa(\mathbf{x}, \mathbf{x}')$ measures similarity between \mathbf{x} and $\mathbf{x}' \to \text{similar}$ data points have similar function values.
- κ is a Mercer kernel.
- Typical choice: squared exponential kernel: $\kappa(\mathbf{x},\mathbf{x}') = \sigma^2 e^{-\frac{(\mathbf{x}-\mathbf{x}')^\top(\mathbf{x}-\mathbf{x}')}{2\ell^2}}$ where σ defines the height and ℓ the width of the kernel.

Drawing Samples From The Prior

Same procedure as for multivariate Gaussians:

- 1. Generate $u \in \mathbb{R}^D$ by drawing d samples from $\mathcal{N}(\mathbf{0}, \mathbf{I}_D)$.
- 2. Perform Cholesky decomposition $\Sigma = LL^{\top}$.
- 3. Compute $\mathbf{y} = \boldsymbol{\mu} + \boldsymbol{L}\boldsymbol{u}$ where $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.



The Joint Distribution

We have training data $\mathbf{X} \in \mathbb{R}^{N \times D}$, corresponding observations $\mathbf{y} = f(\mathbf{X})$, and test data points $\mathbf{X}_* \in \mathbb{R}^{N_* \times D}$ for which we want to infer function values $\mathbf{v}_* = f(\mathbf{X}_*)$. The GP defines the following joint distribution

$$\rho(\mathbf{y}, \mathbf{y}_* | \mathbf{X}, \mathbf{X}_*) = \begin{pmatrix} \mathbf{y} \\ \mathbf{y}_* \end{pmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m(\mathbf{X}) \\ m(\mathbf{X}_*) \end{bmatrix}, \begin{bmatrix} \mathbf{K} + \sigma_n^2 \mathbf{I} & \mathbf{K}_* \\ \mathbf{K}_*^\top & \mathbf{K}_{**} \end{bmatrix} \right)$$

where

$$\mathbf{K} = \kappa(\mathbf{X}, \mathbf{X})$$
 $\mathbf{K}_* = \kappa(\mathbf{X}, \mathbf{X}_*)$ $\mathbf{K}_{**} = \kappa(\mathbf{X}_*, \mathbf{X}_*).$

Typically, data points are corrupted by noise \rightarrow our functions should not act as interpolators. We therefore assume

$$y_i = f(\mathbf{x}_i) + \epsilon$$
 where $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$.

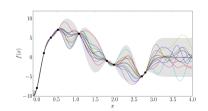
Inference with Gaussian Processes

Inferring an unknown function value and its covariance follows from conditioning multivariate Gaussians:

$$ho(extbf{ extit{y}}_*| extbf{ extit{y}}, extbf{ extit{X}}, extbf{ extit{X}}_*) \sim \mathcal{N}(m{\mu}, m{\Sigma})$$

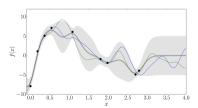
Non-noisy case

- $\mu = m(X_*) + K_*^{\top} K^{-1} (y m(X))$
- $\Sigma = K_{**} K_{*}^{\top} K^{-1} K_{*}$

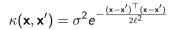


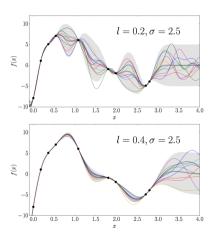
Noisy case

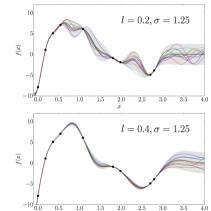
- $\mu = m(X_*) + K_*^{\top} (K + \sigma_n^2 I)^{-1} (y m(X))$
- $\bullet \ \ \boldsymbol{\Sigma} = \boldsymbol{\mathcal{K}}_{**} \boldsymbol{\mathcal{K}}_*^\top (\boldsymbol{\mathcal{K}} + \sigma_n^2 \boldsymbol{I})^{-1} \boldsymbol{\mathcal{K}}_*$



Influence of Kernel Hyperparameters







References I

Useful links

- https://distill.pub/2019/visual-exploration-gaussian-processes/
- http://www.infinitecuriosity.org/vizgp/
- https://mlg.eng.cam.ac.uk/tutorials/06/es.pdf
- https://xavierbourretsicotte.github.io/Kernel_feature_map.html
- https://www.youtube.com/watch?v=nzSBvINmg28
- https://www.youtube.com/watch?v=exqpaqaPG2M
- Christopher M Bishop and Nasser M Nasrabadi, *Pattern recognition and machine learning*, vol. 4, Springer, 2006.
- Christopher K Williams and Carl Edward Rasmussen, *Gaussian processes for machine learning*, vol. 2, MIT press Cambridge, MA, 2006.