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Motivation

Why model uncertainty?

® Confidence calibration: know how reliable a prediction is (e.g. so it can ask a human for
clarification)

® Regularization: prevent your model from overfitting

® Ensembling: smooth your predictions by averaging them over multiple possible models

® Model selection: decide which of multiple plausible models best describes the data

® Sparsification: drop connections, encode them with fewer bits

® Exploration: decide which training examples are worth labeling (active learning), optimize an
expensive black-box function (Bayesian optimization), estimating rewards from multi-armed
bandits (reinforcement learning)

® Robustness: make good predictions when the data is either naturally perturbed or explicitly

modified by an adversary
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Bayesian Parameter Estimation: A Toy Example

® Motivating example: estimating the parameter of a biased coin
® You flip a coin 100 times. It lands heads Ny = 55 times and tails N+ = 45 times.
® What is the probability it will come up heads if we flip again?
® Model: observations x; are independent and identically distributed (i.i.d.)
Bernoulli random variables with parameter 6.
® The likelihood function is the probability of the observed data (the entire
sequence of H's and T's) as a function of 6:

N
L(o) = p(D) =[] 71 - 0)*
i=1
= oNH(1 - g)NT

® Ny and Nt are sufficient statistics.
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Bayesian Parameter Estimation: A Toy Example

® The likelihood is generally very small, so it's often convenient to work with

log-likelihoods.
L(#) = oNr (1 — o)NT ~7.9x1073
0(0) = log L(0) = Ny log8 + N log(1l —6) ~ —69.31
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A Toy Example

® Good values of 6 should assign high probability to the observed data. This
motivates the maximum likelihood criterion.

® Solve by setting derivatives to zero:

ds d
0= @(NH log & + N log(1 — 6))
_ Nu N7
0 1-0

® Setting this to zero gives the maximum likelihood estimate:

bt = —H
ML_NH‘i’NT?

® Normally there's no analytic solution, and we need to solve an optimization
problem (e.g. using gradient descent).
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Bayesian Parameter Estimation: A Toy Example

e Maximum likelihood has a pitfall: if you have too little data, it can overfit.

® E.g., what if you flip the coin twice and get H both times?

" Ny+ Ny 2+0

Ot 1

e But even a fair coin has 25% chance of showing this result.

® Because it never observed T, it assigns this outcome probability 0. This problem
is known as data sparsity.

If you observe a single T in the test set, the likelihood is —oo.
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A Toy Example

® |n maximum likelihood, the observations are treated as random variables, but the
parameters are not.

The Bayesian approach treats the parameters as random variables as well.

To define a Bayesian model, we need to specify two distributions:

® The prior distribution p(@), which encodes our beliefs about the parameters before
we observe the data
® The likelihood p(D| @), same as in maximum likelihood

® When we update our beliefs based on the observations, we compute the posterior
distribution using Bayes' Rule:

p(6)p(D|6)

p(O1D) = [ p(0")p(D]6)do"

We rarely ever compute the denominator explicitly due to intractability.
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Bayesian Parameter Estimation: A Toy Example

® |et's revisit the coin example. We already know the likelihood:
L(6) = p(D) = 6" (1 — )N

® |t remains to specify the prior p(6).
® We can choose an uninformative prior, which assumes as little as possible. A
reasonable choice is the uniform prior.
® But our experience tells us 0.5 is more likely than 0.99. One particularly useful prior

that lets us specify this is the beta distribution:
Ma+ b)

p(6; a, b) = (2T ()

0371(1 _ e)bfl.

® This notation for proportionality lets us ignore the normalization constant:

p(6; a, b) o< H271(1 — )b~ 1,
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Bayesian Parameter Estimation: A Toy Example

Beta distribution for various values of a, b:
° Some ObSGI’VE]tIOﬂS:

® The expectation E[f] = a/(a + b).
® The distribution gets more peaked
when a and b are large.
® The uniform distribution is the
special case where a = b = 1.
® The main thing the beta distribution
is used for is as a prior for the

1 f m Bernoulli distribution.

09 0 0 0 0
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Bayesian Parameter Estimation: A Toy Example

e Computing the posterior distribution:
p(6|D) x p(0)p(D| )
x [071(1 - e)b—l} [0’\’”(1 _g)NT

— (93_1+NH(1 . a)b—l—i-NT‘
® This is just a beta distribution with parameters Ny + a and Nt + b.
® The posterior expectation of 0 is:

Ny + a
Ny -+ Nt +a+b

E[9| D] =

® The parameters a and b of the prior can be thought of as pseudo-counts.

® The reason this works is that the prior and likelihood have the same functional form.
This phenomenon is known as conjugacy, and it's very useful.
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Bayesian Parameter Estimation: A Toy Example

Bayesian inference for the coin flip example:

Small data setting Large data setting
Ny =2, Ny =0 Ny — 55, Ny — 45
3.0 9
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25l — Ukelinood 8| — Likelihood
— Posterior 71| — Posterior
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When you have enough observations, the data overwhelm the prior.
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Bayesian Parameter Estimation: A Toy Example

® What do we actually do with the posterior?

® The posterior predictive distribution is the distribution over future observables

given the past observations. We compute this by marginalizing out the
parameter(s):

p(D'|D) = [ b6 D)p(D |6) co. (1)
® For the coin flip example:
Oprea = Pr(x' = H|D)

= /p(ew)pr(x' = H|6)do

= /Beta(&; Ny + a, Nt + b) -0d0

= EBeta(0;Ny+a,N7r+5)[0]
_ Net+a (2)
N+ Nr+a+b’
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Bayesian Parameter Estimation: A Toy Example

® Maximum a-posteriori (MAP) estimation: find the most likely parameter settings
under the posterior

® This converts the Bayesian parameter estimation problem into a maximization
problem

Orniap = arg mgx p(0|D)
= arg max p(0,D)
= argmax p(8) p(D|6)

= arg max log p(0) + log p(D | 8)
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Bayesian Parameter Estimation: A Toy Example

® Joint probability in the coin flip example:

log p(6, D) = log p(0) + log p(D | 0)
= const + (a — 1) log @ + (b — 1) log(1 — 0) + Ny log 8 + Nt log(1 — 0)
= const + (Ny +a—1)log + (N7t + b — 1) log(1 — 0)

® Maximize by finding a critical point

NH+a—1 NT—I—b—l
0 1-46

d
— — log p(6.D) =
0 dgogp(, )

® Solving for 6,
NH +a—-1

Ny+Nr+a+b—-2

Oviap =
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Bayesian Parameter Estimation: A Toy Example

Comparison of estimates in the coin flip example:

Formula Ny=2,Nr=0 Ny =55, Nt =45

b i 1 55 055
Oored  WikFsTE 4 ~0.67 57~ 0.548
Onar 3=075 25 ~ 0.549

How many samples do we need for Onir, to be a good estimate of 67 Use Hoeffding's
Inequality for sampling complexity bound

p(|0nr, — 0] > €) < 22N

where N = Ny + Nt.
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Bayesian Parameter Estimation: A Toy Example

Lessons learned
® Bayesian parameter estimation is more robust to data sparsity.
e Maximum likelihood is about optimization, while Bayesian parameter estimation is
about integration.
® The Bayesian solution converges to the maximum likelihood solution as we
observe more data.
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Linear Regression as Maximum Likelihood

® \We can give linear regression a probabilistic interpretation by assuming a Gaussian
noise model:

t|x ~N(w'x+ b, 0?)

® Linear regression is just maximum likelihood under this model:

N
L DeowT 2
NZIogp wb):N;IogN(t(),w X+ b,0c%)
N .
1 1 (t0) —wTx — b)?
_Nglog N exp (— 252
N
—w'x— b)?
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Bayesian Linear Regression

® Bayesian linear regression considers various plausible explanations for how the
data points were generated.

® |t makes predictions using all possible regression weights, weighted by their
posterior probability.

A A A

\/
\/
\/

no observations one observation two observations
&%
) K i 57 UNIVERSIEY Ol VECTOR
Bayesian Parameter Estimation 18/29 & TORONTO 7 e



Bayesian Linear Regression

Y Leave Out the blas for Sl m plICIty likelinood q prior/posterior i data space

Prior distribution: a broad, spherical (multivariate)
Gaussian centered at zero:

w ~ N(0,°1) p
Likelihood: same as in the maximum likelihood ) )

formulation: / : o
t]x,w~N(w'x, 0?) .. .. %

Posterior: —
w|D o~ N (%) “ " i

2

s

—2 T —1 ) —o2vT Bl 0w !4 0w ! 0z 1
p=0"23X"t 1 =214 62XTX " ‘
— Bishop, Pattern Recognition and Machine
Learning
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Bayesian Linear Regression

Posterior predictive distribution:

ple[xD) = [ plt]x whp(w| D) dw

= N(t ‘ l"’Txv Jgred(x))

Uéred(x) =02 +x"2x,

where p and 3 are the posterior mean and covariance of X.
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Bayesian Linear Regression

® We can turn this into nonlinear regression using basis functions.

252

6i(x) =¥ 6j(x) = exp (-M)

o= (52)

1 1
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0
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Bayesian Linear Regression

— Bishop, Pattern Recognition and Machine Learning
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Calibration

e Calibration: of the times your model predicts something with 90% confidence, is it

right 90% of the time?

® Example: calibration of weather forecasts
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Calibration

LeNet (1998) ResNet (2016)
CIFAR-100 CIFAR-100
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— Guo et al., 2017, On calibration of modern neural networks
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Calibration

® Suppose an algorithm outputs a probability distribution over targets, and gets a
loss based on this distribution and the true target.

® A scoring rule is a numerical quantization of the calibration of a predictive
distribution p(y|x). If the underlying true distribution over data points is denoted
q(x, y), then the expected scoring rule is defined as S(p, q) = E4[S(p, (x, y))] for
a scoring function S(p, (x,y)).

® A proper scoring rule is a rule which ensures that S(p, q) < S(q, q) with equality
iff p(ylx) = aly|x).

® The canonical example is negative log-likelihood (NLL). If k is the category label,
t is the indicator vector for the label, and y are the predicted probabilities,

L(y,t) = —logyx = —t' (logy)
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Calibration

® (Calibration failures show up in the test NLL scores:

NLL Overfitting on CIFAR-100

451
Test error
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— Guo et al., 2017, On calibration of modern neural networks
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Calibration

Guo et al. explored 7 different calibration methods, but the one that worked the
best was also the simplest: temperature scaling.

A classification network typically predicts o(z), where o is the softmax function

exp(zx)
02y = =—"""
> exp(zkr)
and z are called the logits.
They replace this with
o(z/T),

where T is a scalar called the temperature.
T is tuned to minimize the NLL on a validation set.

Intuitively, because NLL is a proper scoring rule, the algorithm is incentivized to
match the true probabilities as closely as possible.
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Calibration

® Before and after temperature scaling:

Uncal. - CIFAR-100 Temp. Scale - CIFAR-100
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