Motivation

Why model uncertainty?

- **Confidence calibration**: know how reliable a prediction is (e.g. so it can ask a human for clarification)
- **Regularization**: prevent your model from overfitting
- **Ensembling**: smooth your predictions by averaging them over multiple possible models
- **Model selection**: decide which of multiple plausible models best describes the data
- **Sparsification**: drop connections, encode them with fewer bits
- **Exploration**: decide which training examples are worth labeling (active learning), optimize an expensive black-box function (Bayesian optimization), estimating rewards from multi-armed bandits (reinforcement learning)
- **Robustness**: make good predictions when the data is either naturally perturbed or explicitly modified by an adversary
Motivating example: estimating the parameter of a biased coin
- You flip a coin 100 times. It lands heads $N_H = 55$ times and tails $N_T = 45$ times.
- What is the probability it will come up heads if we flip again?

Model: observations x_i are independent and identically distributed (i.i.d.) Bernoulli random variables with parameter θ.

The likelihood function is the probability of the observed data (the entire sequence of H’s and T’s) as a function of θ:

\[
L(\theta) = p(D) = \prod_{i=1}^{N} \theta^{x_i} (1 - \theta)^{1-x_i} = \theta^{N_H} (1 - \theta)^{N_T}
\]

N_H and N_T are sufficient statistics.
Bayesian Parameter Estimation: A Toy Example

- The likelihood is generally very small, so it’s often convenient to work with log-likelihoods.

\[L(\theta) = \theta^{N_H}(1 - \theta)^{N_T} \]

\[\ell(\theta) = \log L(\theta) = N_H \log \theta + N_T \log(1 - \theta) \]

\[\approx 7.9 \times 10^{-31} \]

\[\approx -69.31 \]
A Toy Example

- Good values of θ should assign high probability to the observed data. This motivates the maximum likelihood criterion.

- Solve by setting derivatives to zero:

 $$
 \frac{d \ell}{d \theta} = \frac{d}{d \theta} \left(N_H \log \theta + N_T \log(1 - \theta) \right)
 = \frac{N_H}{\theta} - \frac{N_T}{1 - \theta}
 $$

- Setting this to zero gives the maximum likelihood estimate:

 $$
 \hat{\theta}_{ML} = \frac{N_H}{N_H + N_T},
 $$

- Normally there’s no analytic solution, and we need to solve an optimization problem (e.g. using gradient descent).
Bayesian Parameter Estimation: A Toy Example

• Maximum likelihood has a pitfall: if you have too little data, it can overfit.
• E.g., what if you flip the coin twice and get H both times?

\[\theta_{\text{ML}} = \frac{N_H}{N_H + N_T} = \frac{2}{2 + 0} = 1 \]

• But even a fair coin has 25% chance of showing this result.
• Because it never observed T, it assigns this outcome probability 0. This problem is known as data sparsity.
• If you observe a single T in the test set, the likelihood is \(-\infty\).
A Toy Example

- In maximum likelihood, the observations are treated as random variables, but the parameters are not.
- The **Bayesian** approach treats the parameters as random variables as well.
- To define a Bayesian model, we need to specify two distributions:
 - The *prior distribution* \(p(\theta) \), which encodes our beliefs about the parameters *before* we observe the data
 - The *likelihood* \(p(D | \theta) \), same as in maximum likelihood
- When we update our beliefs based on the observations, we compute the *posterior distribution* using Bayes’ Rule:
 \[
 p(\theta | D) = \frac{p(\theta)p(D | \theta)}{\int p(\theta')p(D | \theta') d\theta'}.
 \]
- We rarely ever compute the denominator explicitly due to intractability.
Let's revisit the coin example. We already know the likelihood:

\[L(\theta) = p(D) = \theta^N H (1 - \theta)^N T \]

It remains to specify the prior \(p(\theta) \).

- We can choose an uninformative prior, which assumes as little as possible. A reasonable choice is the uniform prior.
- But our experience tells us 0.5 is more likely than 0.99. One particularly useful prior that lets us specify this is the beta distribution:

\[
p(\theta; a, b) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1 - \theta)^{b-1}.
\]

This notation for proportionality lets us ignore the normalization constant:

\[
p(\theta; a, b) \propto \theta^{a-1} (1 - \theta)^{b-1}.
\]
Bayesian Parameter Estimation: A Toy Example

Beta distribution for various values of a, b:

- Some observations:
 - The expectation $\mathbb{E}[\theta] = a/(a + b)$.
 - The distribution gets more peaked when a and b are large.
 - The uniform distribution is the special case where $a = b = 1$.
- The main thing the beta distribution is used for is as a prior for the Bernoulli distribution.
Computing the posterior distribution:

\[p(\theta \mid D) \propto p(\theta)p(D \mid \theta) \]
\[\propto \left[\theta^{a-1}(1-\theta)^{b-1} \right] \left[\theta^{N_H}(1-\theta)^{N_T} \right] \]
\[= \theta^{a-1+N_H}(1-\theta)^{b-1+N_T}. \]

This is just a beta distribution with parameters \(N_H + a \) and \(N_T + b \).

The posterior expectation of \(\theta \) is:

\[\mathbb{E}[\theta \mid D] = \frac{N_H + a}{N_H + N_T + a + b} \]

The parameters \(a \) and \(b \) of the prior can be thought of as pseudo-counts.

The reason this works is that the prior and likelihood have the same functional form. This phenomenon is known as conjugacy, and it’s very useful.
Bayesian Parameter Estimation: A Toy Example

Bayesian inference for the coin flip example:

Small data setting

\[N_H = 2, \quad N_T = 0 \]

Large data setting

\[N_H = 55, \quad N_T = 45 \]

When you have enough observations, the data overwhelm the prior.
Bayesian Parameter Estimation: A Toy Example

- What do we actually do with the posterior?
- The **posterior predictive distribution** is the distribution over future observables given the past observations. We compute this by marginalizing out the parameter(s):

\[
p(D' | D) = \int p(\theta | D)p(D' | \theta) d\theta.
\] (1)

- For the coin flip example:

\[
\theta_{\text{pred}} = \Pr(x' = H | D) = \int p(\theta | D)Pr(x' = H | \theta) d\theta
\]

\[
= \int \text{Beta}(\theta; N_H + a, N_T + b) \cdot \theta d\theta
\]

\[
= \mathbb{E}_{\text{Beta}(\theta; N_H + a, N_T + b)}[\theta]
\]

\[
= \frac{N_H + a}{N_H + N_T + a + b},
\] (2)
Bayesian Parameter Estimation: A Toy Example

- **Maximum a-posteriori (MAP) estimation**: find the most likely parameter settings under the posterior

- This converts the Bayesian parameter estimation problem into a maximization problem

\[
\hat{\theta}_{\text{MAP}} = \arg \max_{\theta} \ p(\theta | D)
\]

\[
= \arg \max_{\theta} \ p(\theta, D)
\]

\[
= \arg \max_{\theta} \ p(\theta) \ p(D | \theta)
\]

\[
= \arg \max_{\theta} \ \log p(\theta) + \log p(D | \theta)
\]
Bayesian Parameter Estimation: A Toy Example

- Joint probability in the coin flip example:

\[
\log p(\theta, D) = \log p(\theta) + \log p(D | \theta)
\]

\[
= \text{const} + (a - 1) \log \theta + (b - 1) \log(1 - \theta) + N_H \log \theta + N_T \log(1 - \theta)
\]

\[
= \text{const} + (N_H + a - 1) \log \theta + (N_T + b - 1) \log(1 - \theta)
\]

- Maximize by finding a critical point

\[
0 = \frac{d}{d\theta} \log p(\theta, D) = \frac{N_H + a - 1}{\theta} - \frac{N_T + b - 1}{1 - \theta}
\]

- Solving for \(\theta \),

\[
\hat{\theta}_{MAP} = \frac{N_H + a - 1}{N_H + N_T + a + b - 2}
\]
Bayesian Parameter Estimation: A Toy Example

Comparison of estimates in the coin flip example:

<table>
<thead>
<tr>
<th>Formula</th>
<th>$N_H = 2, N_T = 0$</th>
<th>$N_H = 55, N_T = 45$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\theta}_{ML}$</td>
<td>$\frac{N_H}{N_H + N_T}$</td>
<td>$\frac{55}{100} = 0.55$</td>
</tr>
<tr>
<td>θ_{pred}</td>
<td>$\frac{N_H + a}{N_H + N_T + a + b}$</td>
<td>$\frac{4}{6} \approx 0.67$</td>
</tr>
<tr>
<td>$\hat{\theta}_{MAP}$</td>
<td>$\frac{N_H + a - 1}{N_H + N_T + a + b - 2}$</td>
<td>$\frac{3}{4} = 0.75$</td>
</tr>
</tbody>
</table>

How many samples do we need for $\hat{\theta}_{ML}$ to be a good estimate of θ? Use Hoeffding’s Inequality for sampling complexity bound

$$p(|\hat{\theta}_{ML} - \theta| \geq \varepsilon) \leq 2e^{-2N\varepsilon^2}$$

where $N = N_H + N_T$.
Lessons learned

- Bayesian parameter estimation is more robust to data sparsity.
- Maximum likelihood is about optimization, while Bayesian parameter estimation is about integration.
- The Bayesian solution converges to the maximum likelihood solution as we observe more data.
Linear Regression as Maximum Likelihood

- We can give linear regression a probabilistic interpretation by assuming a Gaussian noise model:

\[t \mid x \sim \mathcal{N}(w^\top x + b, \sigma^2) \]

- Linear regression is just maximum likelihood under this model:

\[
\frac{1}{N} \sum_{i=1}^{N} \log p(t^{(i)} \mid x^{(i)}; w, b) = \frac{1}{N} \sum_{i=1}^{N} \log \mathcal{N}(t^{(i)}; w^\top x + b, \sigma^2) \\
= \frac{1}{N} \sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{(t^{(i)} - w^\top x - b)^2}{2\sigma^2} \right) \right] \\
= \text{const} - \frac{1}{2N\sigma^2} \sum_{i=1}^{N} (t^{(i)} - w^\top x - b)^2
\]
Bayesian linear regression considers various plausible explanations for how the data points were generated.

- It makes predictions using all possible regression weights, weighted by their posterior probability.
Bayesian Linear Regression

• Leave out the bias for simplicity

• Prior distribution: a broad, spherical (multivariate) Gaussian centered at zero:

\[w \sim \mathcal{N}(0, \nu^2 I) \]

• Likelihood: same as in the maximum likelihood formulation:

\[t \mid x, w \sim \mathcal{N}(w^T x, \sigma^2) \]

• Posterior:

\[w \mid \mathcal{D} \sim \mathcal{N}(\mu, \Sigma) \]

\[\mu = \sigma^{-2} \Sigma X^T t \]

\[\Sigma^{-1} = \nu^{-2} I + \sigma^{-2} X^T X \]

— Bishop, Pattern Recognition and Machine Learning
Bayesian Linear Regression

Posterior predictive distribution:

\[p(t \mid x, D) = \int p(t \mid x, w)p(w \mid D) \, dw \]

\[= \mathcal{N}(t \mid \mu^\top x, \sigma^2_{\text{pred}}(x)) \]

\[\sigma^2_{\text{pred}}(x) = \sigma^2 + x^\top \Sigma x, \]

where \(\mu \) and \(\Sigma \) are the posterior mean and covariance of \(\Sigma \).
Bayesian Linear Regression

- We can turn this into nonlinear regression using basis functions.

\[\phi_j(x) = x^j \]

\[\phi_j(x) = \exp \left(-\frac{(x - \mu_j)^2}{2s^2} \right) \]

\[\phi_j(x) = \sigma \left(\frac{x - \mu_j}{s} \right) \]

— Bishop, Pattern Recognition and Machine Learning
Bayesian Linear Regression

— Bishop, Pattern Recognition and Machine Learning
Calibration

- **Calibration**: of the times your model predicts something with 90% confidence, is it right 90% of the time?
- **Example**: calibration of weather forecasts

The Weather Channel
Local Weather Station
• Most of our neural nets output probability distributions, e.g. over object categories. Are these calibrated?
• While more accurate, modern neural networks are overconfident in their decisions.
Calibration

• Suppose an algorithm outputs a probability distribution over targets, and gets a loss based on this distribution and the true target.

• A scoring rule is a numerical quantization of the calibration of a predictive distribution $p(y|x)$. If the underlying true distribution over data points is denoted $q(x,y)$, then the expected scoring rule is defined as $S(p, q) = \mathbb{E}_q[S(p, (x, y))]$ for a scoring function $S(p, (x, y))$.

• A proper scoring rule is a rule which ensures that $S(p, q) \leq S(q, q)$ with equality iff $p(y|x) = q(y|x)$.

• The canonical example is negative log-likelihood (NLL). If k is the category label, t is the indicator vector for the label, and y are the predicted probabilities,

$$L(y, t) = - \log y_k = - t^\top (\log y)$$
Calibration

- Calibration failures show up in the test NLL scores:

Guo et al., 2017, On calibration of modern neural networks
Guo et al. explored 7 different calibration methods, but the one that worked the best was also the simplest: **temperature scaling**.

A classification network typically predicts $\sigma(z)$, where σ is the softmax function

$$
\sigma(z)_k = \frac{\exp(z_k)}{\sum_{k'} \exp(z_{k'})}
$$

and z are called the **logits**.

They replace this with

$$
\sigma(z/T),
$$

where T is a scalar called the **temperature**.

T is tuned to minimize the NLL on a validation set.

Intuitively, because NLL is a proper scoring rule, the algorithm is incentivized to match the true probabilities as closely as possible.
Calibration

- Before and after temperature scaling:

![Graph showing calibration before and after temperature scaling](image)
References I

