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Motivation

Why model uncertainty?
• Confidence calibration: know how reliable a prediction is (e.g. so it can ask a human for

clarification)

• Regularization: prevent your model from overfitting

• Ensembling: smooth your predictions by averaging them over multiple possible models

• Model selection: decide which of multiple plausible models best describes the data

• Sparsification: drop connections, encode them with fewer bits

• Exploration: decide which training examples are worth labeling (active learning), optimize an
expensive black-box function (Bayesian optimization), estimating rewards from multi-armed
bandits (reinforcement learning)

• Robustness: make good predictions when the data is either naturally perturbed or explicitly

modified by an adversary
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Bayesian Parameter Estimation: A Toy Example

• Motivating example: estimating the parameter of a biased coin
• You flip a coin 100 times. It lands heads NH = 55 times and tails NT = 45 times.
• What is the probability it will come up heads if we flip again?

• Model: observations xi are independent and identically distributed (i.i.d.)
Bernoulli random variables with parameter θ.

• The likelihood function is the probability of the observed data (the entire
sequence of H’s and T’s) as a function of θ:

L(θ) = p(D) =
N∏
i=1

θxi (1− θ)1−xi

= θNH (1− θ)NT

• NH and NT are sufficient statistics.

Bayesian Parameter Estimation 3/29



Bayesian Parameter Estimation: A Toy Example

• The likelihood is generally very small, so it’s often convenient to work with
log-likelihoods.

L(θ) = θNH (1− θ)NT ≈ 7.9× 10−31

`(θ) = log L(θ) = NH log θ + NT log(1− θ) ≈ −69.31
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A Toy Example

• Good values of θ should assign high probability to the observed data. This
motivates the maximum likelihood criterion.

• Solve by setting derivatives to zero:

d`

dθ
=

d

dθ
(NH log θ + NT log(1− θ))

=
NH

θ
− NT

1− θ

• Setting this to zero gives the maximum likelihood estimate:

θ̂ML =
NH

NH + NT
,

• Normally there’s no analytic solution, and we need to solve an optimization
problem (e.g. using gradient descent).

Bayesian Parameter Estimation 5/29



Bayesian Parameter Estimation: A Toy Example

• Maximum likelihood has a pitfall: if you have too little data, it can overfit.

• E.g., what if you flip the coin twice and get H both times?

θML =
NH

NH + NT
=

2

2 + 0
= 1

• But even a fair coin has 25% chance of showing this result.

• Because it never observed T, it assigns this outcome probability 0. This problem
is known as data sparsity.

• If you observe a single T in the test set, the likelihood is −∞.
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A Toy Example

• In maximum likelihood, the observations are treated as random variables, but the
parameters are not.

• The Bayesian approach treats the parameters as random variables as well.
• To define a Bayesian model, we need to specify two distributions:

• The prior distribution p(θ), which encodes our beliefs about the parameters before
we observe the data

• The likelihood p(D |θ), same as in maximum likelihood

• When we update our beliefs based on the observations, we compute the posterior
distribution using Bayes’ Rule:

p(θ | D) =
p(θ)p(D |θ)∫

p(θ′)p(D |θ′) dθ′
.

• We rarely ever compute the denominator explicitly due to intractability.
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Bayesian Parameter Estimation: A Toy Example

• Let’s revisit the coin example. We already know the likelihood:

L(θ) = p(D) = θNH (1− θ)NT

• It remains to specify the prior p(θ).
• We can choose an uninformative prior, which assumes as little as possible. A

reasonable choice is the uniform prior.
• But our experience tells us 0.5 is more likely than 0.99. One particularly useful prior

that lets us specify this is the beta distribution:

p(θ; a, b) =
Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1.

• This notation for proportionality lets us ignore the normalization constant:

p(θ; a, b) ∝ θa−1(1− θ)b−1.
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Bayesian Parameter Estimation: A Toy Example

Beta distribution for various values of a, b:
• Some observations:

• The expectation E[θ] = a/(a + b).
• The distribution gets more peaked

when a and b are large.
• The uniform distribution is the

special case where a = b = 1.

• The main thing the beta distribution
is used for is as a prior for the
Bernoulli distribution.
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Bayesian Parameter Estimation: A Toy Example
• Computing the posterior distribution:

p(θ | D) ∝ p(θ)p(D |θ)

∝
[
θa−1(1− θ)b−1

] [
θNH (1− θ)NT

]
= θa−1+NH (1− θ)b−1+NT .

• This is just a beta distribution with parameters NH + a and NT + b.

• The posterior expectation of θ is:

E[θ | D] =
NH + a

NH + NT + a + b

• The parameters a and b of the prior can be thought of as pseudo-counts.
• The reason this works is that the prior and likelihood have the same functional form.

This phenomenon is known as conjugacy, and it’s very useful.
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Bayesian Parameter Estimation: A Toy Example

Bayesian inference for the coin flip example:

Small data setting
NH = 2, NT = 0

Large data setting
NH = 55, NT = 45

When you have enough observations, the data overwhelm the prior.
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Bayesian Parameter Estimation: A Toy Example

• What do we actually do with the posterior?
• The posterior predictive distribution is the distribution over future observables

given the past observations. We compute this by marginalizing out the
parameter(s):

p(D′ | D) =

∫
p(θ | D)p(D′ |θ) dθ. (1)

• For the coin flip example:

θpred = Pr(x′ = H | D)

=

∫
p(θ | D)Pr(x′ = H | θ)dθ

=

∫
Beta(θ;NH + a,NT + b) · θ dθ

= EBeta(θ;NH+a,NT+b)[θ]

=
NH + a

NH + NT + a + b
, (2)
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Bayesian Parameter Estimation: A Toy Example

• Maximum a-posteriori (MAP) estimation: find the most likely parameter settings
under the posterior

• This converts the Bayesian parameter estimation problem into a maximization
problem

θ̂MAP = arg max
θ

p(θ | D)

= arg max
θ

p(θ,D)

= arg max
θ

p(θ) p(D |θ)

= arg max
θ

log p(θ) + log p(D |θ)
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Bayesian Parameter Estimation: A Toy Example

• Joint probability in the coin flip example:

log p(θ,D) = log p(θ) + log p(D | θ)

= const + (a− 1) log θ + (b − 1) log(1− θ) + NH log θ + NT log(1− θ)

= const + (NH + a− 1) log θ + (NT + b − 1) log(1− θ)

• Maximize by finding a critical point

0 =
d

dθ
log p(θ,D) =

NH + a− 1

θ
− NT + b − 1

1− θ

• Solving for θ,

θ̂MAP =
NH + a− 1

NH + NT + a + b − 2
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Bayesian Parameter Estimation: A Toy Example

Comparison of estimates in the coin flip example:

Formula NH = 2,NT = 0 NH = 55,NT = 45

θ̂ML
NH

NH+NT
1 55

100 = 0.55

θpred
NH+a

NH+NT+a+b
4
6 ≈ 0.67 57

104 ≈ 0.548

θ̂MAP
NH+a−1

NH+NT+a+b−2
3
4 = 0.75 56

102 ≈ 0.549

How many samples do we need for θ̂ML to be a good estimate of θ? Use Hoeffding’s
Inequality for sampling complexity bound

p(|θ̂ML − θ| ≥ ε) ≤ 2e−2Nε2

where N = NH + NT .
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Bayesian Parameter Estimation: A Toy Example

Lessons learned
• Bayesian parameter estimation is more robust to data sparsity.

• Maximum likelihood is about optimization, while Bayesian parameter estimation is
about integration.

• The Bayesian solution converges to the maximum likelihood solution as we
observe more data.
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Linear Regression as Maximum Likelihood

• We can give linear regression a probabilistic interpretation by assuming a Gaussian
noise model:

t | x ∼ N (w>x + b, σ2)

• Linear regression is just maximum likelihood under this model:

1

N

N∑
i=1

log p(t(i) | x(i); w, b) =
1

N

N∑
i=1

logN (t(i); w>x + b, σ2)

=
1

N

N∑
i=1

log

[
1√
2πσ

exp

(
−(t(i) −w>x− b)2

2σ2

)]

= const− 1

2Nσ2

N∑
i=1

(t(i) −w>x− b)2
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Bayesian Linear Regression

• Bayesian linear regression considers various plausible explanations for how the
data points were generated.

• It makes predictions using all possible regression weights, weighted by their
posterior probability.

Bayesian Parameter Estimation 18/29



Bayesian Linear Regression

• Leave out the bias for simplicity

• Prior distribution: a broad, spherical (multivariate)
Gaussian centered at zero:

w ∼ N (0, ν2I)

• Likelihood: same as in the maximum likelihood
formulation:

t | x,w ∼ N (w>x, σ2)

• Posterior:

w | D ∼ N (µ,Σ)

µ = σ−2ΣX>t Σ−1 = ν−2I + σ−2X>X
— Bishop, Pattern Recognition and Machine

Learning
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Bayesian Linear Regression

Posterior predictive distribution:

p(t | x,D) =

∫
p(t | x,w)p(w | D) dw

= N (t |µ>x, σ2pred(x))

σ2pred(x) = σ2 + x>Σx,

where µ and Σ are the posterior mean and covariance of Σ.
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Bayesian Linear Regression

• We can turn this into nonlinear regression using basis functions.

φj(x) = x j
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— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

— Bishop, Pattern Recognition and Machine Learning
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Calibration

• Calibration: of the times your model predicts something with 90% confidence, is it
right 90% of the time?

• Example: calibration of weather forecasts

The Weather Channel Local Weather Station

Bayesian Parameter Estimation 23/29



Calibration

• Most of our neural nets output
probability distributions, e.g. over
object categories. Are these
calibrated?

• While more accurate, modern neural
networks are overconfident in their
decisions.
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— Guo et al., 2017, On calibration of modern neural networks
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Calibration

• Suppose an algorithm outputs a probability distribution over targets, and gets a
loss based on this distribution and the true target.

• A scoring rule is a numerical quantization of the calibration of a predictive
distribution p(y |x). If the underlying true distribution over data points is denoted
q(x , y), then the expected scoring rule is defined as S(p, q) = Eq[S(p, (x , y))] for
a scoring function S(p, (x , y)).

• A proper scoring rule is a rule which ensures that S(p, q) ≤ S(q, q) with equality
iff p(y |x) = q(y |x).

• The canonical example is negative log-likelihood (NLL). If k is the category label,
t is the indicator vector for the label, and y are the predicted probabilities,

L(y, t) = − log yk = −t>(log y)
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Calibration

• Calibration failures show up in the test NLL scores:

— Guo et al., 2017, On calibration of modern neural networks
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Calibration

• Guo et al. explored 7 different calibration methods, but the one that worked the
best was also the simplest: temperature scaling.

• A classification network typically predicts σ(z), where σ is the softmax function

σ(z)k =
exp(zk)∑
k ′ exp(zk ′)

and z are called the logits.

• They replace this with
σ(z/T ),

where T is a scalar called the temperature.

• T is tuned to minimize the NLL on a validation set.

• Intuitively, because NLL is a proper scoring rule, the algorithm is incentivized to
match the true probabilities as closely as possible.
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Calibration

• Before and after temperature scaling:
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