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Overview

The Exponential Family
» Formula & basics
» Examples: Bernoulli, Gaussian, ...
» Useful identities

Generalized Linear Models



The Exponential Family

plxim) = S h(x) exp(n” u(x)

» 7. natural parameters
> u(x): sufficient statistic

» Z(m): partition function, ensures the distribution p(x|n) is
normalized.

continuous: Z(n) :/h(x)exp(nTu(x))dx

discrete: Z(n Zh x) exp(n " u(x))



Example 1: Bernoulli

p(x|n) = Zn )h(X) exp(n " u(x))
Bernoulli distribution:
p(x|p) = Bern(x|p) = p*(1 — )~
Put in the exponential family form:
Bern(x|p) = (1 = p) (1)

=L ee{(loe )}

2ty "

> = p=oa(n), Z(n) =a(-n)



Exercise: put the multinomial distribution in the standard form for
exponential family



Example 2: Gaussian ()
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Gaussian distribution (treating only u as parameter, assuming o is
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Example 3: Gaussian (¢ and o)

p(x|n) = %h(x) exp(n " u(x))

Gaussian distribution (treating both 1 and o as parameters):

1 1
p(x|u,o'2) = Tﬂ'ail eXp(—ﬁ(x — 'u)z)
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The Exponential Family

Other members of the exponential family:

» Poisson, gamma, exponential, beta, Dirichlet, ...



Why studying the exponential family?

Many convenient properties
» Sufficient statistics for maximum likelihood

> Many convenient identities for Z(n) (the partition function)
» Relates concepts such as the Fisher information matrix

Can be used to derive the Generalized Linear Models (GLM)



Maximum likelihood & sufficient statistics

Consider i.i.d. data X = {x1,...,xny}. Find 17 to maximize p(X|n)
(maximum likelihood).

N

P n)= I | 71 Xi)exXp\n ul\X;
N

= <Z(171)) " ( f[l h(x,-)) exp(n’ Z u(x;))

i=1
Take derivative of the log-likelihood and set it to 0.

N
Vinlog p(X|m) = —NVlog Z(n) + > u(x;) = 0

1 N
= Vylog Z(n) = N,Z u(xi)



Maximum likelihood & sufficient statistics

Valog 2(n) = 1> u(x)

The maximum-likelihood solution 7 only depends on Z,N:l u(x;).
> Hence u(x) is called the sufficient statistic

Examples:
» Bernoulli: u(x) = x. Only need to store ) x;.

> Gaussian (y and 0): u(x) = [x xz]T. Need to store both Y. x;
and Y, X2



|dentities

p(x|n) = Z(ln)h(x)exp(nTu(x))

1. ’V,, log Z(n) = Exrp(x|m[u(x)] =: 5‘ (moments)

Derivation:
v, log Z(n) = Z(ln v /h ) exp(n T u(x))dx
1
7 [ M) eeln” u(x)u(x)dx

Z
_ / Zl h(x) exp(n T u(x))u(x)dx
E




|dentities

p(x|n) = %h(x) exp(n T u(x))

L. | Vylog Z2(n) = Exepixim[u(x)] =: E‘ (moments)

» There's a 1-to-1 mapping between 1 <> £
» £ is an alternative parameterization for the exponential family

p(x|n) < p(x|€)



|dentities

plxim) = S h(x) exp(n” u(x)

1. ‘V,, log Z(n) = Exp(x|m[u(x)] =: & ‘ (moments)

2. [V, log p(x|m) = u(x) — Exepisim ()]

Derivation:

Vaqlog p(x|n) = =V, log Z(n) + V,,(nTu(x))
= 7Ex~p(x|n)[u(x)] + U(X)



|dentities

plxim) = S h(x) exp(n” u(x)

1. ‘ Vylog Z(n) = Expixmy[u(x)] =: & ‘ (moments)

2. |V log p(x|m) = u(x) — Expuim[u(x)] |

Recall, in maximum likelihood, we have

N 1 N
VoY togp(eln) = (Y u(x) - Talog2(n) )
=1 v

i—1 —
! —_— moments &

empirical moments é
=N-(£-¢)=0

Maximum likelihood — moment matching



|dentities

plxim) = S h(x) exp(n” u(x)

1. ‘V,, log Z(n) = Exp(x|m[u(x)] =: & ‘ (moments)
2 \Vn log p(x|1) = u(x) — Exp(xim)[u(x)] \
3.1. ‘ V7 log Z(n) = Cov(u(x)) = —V3 log p(x|n) ‘

Derivation: V2 log p(x|n) = Vyu(x) — V7 log Z(n) = —V; log Z(n)

V2 log Z(n) = VyExp(x|m ()]
the grad-log trick — = Exp(x|n)[Vy log p(x|m)u(x)"]
= Exop(xfm) [ ((X) = By [u(x)]) u(x) ']
E[(u — E[u])E[u]] = 0~ = E[(u(x) — E[u(x)]) (u(x)~E[u(x)]) ]
= Cov(u(x))



|dentities

p(x|n) = %h(x) exp(n T u(x))

1. ‘ Vi log Z2(n) = Expxmy[u(x)] =: & ‘ (moments)

2. |V log p(xm) = u(x) — Exopiuim[u(x)] |

3.1.
3.2.

V3 log Z2(n) = Cov(u(x)) = —V} log p(x|n)

Vi log Z(n) = Fy

(Fisher information matrix)

3.3. ’ Fo,=Vy€&=Jen ‘ (Jacobian of mapping np — £)

We will skip the details for now, as the Fisher information matrix will be
covered in lecture 3. Also, discussion on these identities are in Chapter 3
of the course notes.



Generalized Linear Models

Consider two familiar models

Linear regression: £ = 5% Z, ((ti — yi)?, where y; = w ' x;

1 N

= VWCZ—N :1( ti — Yi)Xi

Logistic regression: £ = & Z,N=1 —tilogy; — (1 — t;) log(1 — y;), where
yi = o(w'x;)

1 N

= VWEZ*N (ti — yi)xi

Their gradients have the same form (1) Why?

(Images taken from CSC311 lecture slides).



Generalized Linear Models

» Linear regression, logistic regression, softmax regression all belong to
a broader class of models called generalized linear models (GLM).

» GLM is derived from the exponential family.



Generalized Linear Models

Consider the linear model with features:
2= w'(x)
y = a(z) (activation)

Assume the labels are distributed according to the exponential family
(implied in the loss function)

p(tln) = %h(t) exp(n " u(t))

We focus on a special case of the exponential family where u(t) = t.
1

E0) h(t)exp(n't)

p(tln) =



Generalized Linear Models

z=w'P(x), y=a(2)
1

p(tln) = %h(t)exp(n”)

Recall, the moments can be computed by differentiating the partition
function:

Vi log Z(1) = Eep(ejm)[u(t)] = Eemp(eimy[t] =y  (Prediction probability)
There is a 1-to-1 mapping between 1 <> y. Let

n=1(y)



Generalized Linear Models

1
tln) = =—h(t)exp(n't
pltln) = Zgsh(D) ()
Gradient of log-likelihood w.r.t weights w:
0 = 0 On; dy; 0z;
w ; log p(ti|ni) = o log p(t’“")aT/,-az,- S

i=1

I
M=

(u(ts) = Egop(ts i lu(t)]) Y (vi)a' (z:) p(xi)

1

™=

(ti — yi)V'(vi)a' (zi)p(xi)

1

This greatly simplifies if we choose a = 1~*.
-1 ’ ’ on dy
n=1y(a(z)) =y (2)) =z = V' (y)a'(z) = ;o= =1

= 9,07~



Generalized Linear Models

To summarize, when the following conditions are met:

» Linear model with activation

z=w'¢(x), y=a(z)
» The label distribution belongs to the exponential family

1
%h(t) exp(n ' t)

where y =V, log Z(n), and = ¢(y)

p(tln) =
» Activation is chosen as:
Then we have:

9 & :
S Z log p(ti|n) = Z(ti — yi)p(xi)
i=1 1

i=



GLM example: logistic regression

Cross-entropy loss (negative log-likelihood):

L =—logp(tly) = —tlogy — (1 —t)log(1 —y)
Corresponding label distribution: Bernoulli
ptly) =y*(1—y)'"

= (1 - y) exp{(log 1

)t}

We have

nzloglfyﬂb(y)

Then we should choose activation:



GLM example: linear regression

Squared loss (negative log-likelihood):

L= —logp(tly) = %(f —y)°

Corresponding label distribution: Gaussian (with fixed o, WLOG assume
o=1)

plely) = —= exp{—5(t = ?)
We have
n=y=1v(y)

Then we should choose activation:

az)=vN2) =z



Summary

Exponential family

p(x|n) = %h(x) exp(n " u(x))

» Many common distributions belong to this family (Bernoulli,
multinomial, Gaussian, Poisson, gamma, ...)
» Sufficient statistics for maximume-likelihood estimation

» Many useful identities stemming from Z(n)

» Moments & empirical moments, MLE as moment matching
» Convenient way to compute the Fisher information matrix F,

» Used to derive the generalized linear models (GLM)



