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Overview

The Exponential Family

I Formula & basics

I Examples: Bernoulli, Gaussian, ...

I Useful identities

Generalized Linear Models



The Exponential Family

p(x |η) = 1

Z(η)
h(x) exp(η>u(x))

I η: natural parameters

I u(x): su�cient statistic

I Z(η): partition function, ensures the distribution p(x |η) is
normalized.

continuous: Z(η) =
∫

h(x) exp(η>u(x))dx

discrete: Z(η) =
∑
x

h(x) exp(η>u(x))



Example 1: Bernoulli

p(x |η) = 1

Z(η)
h(x) exp(η>u(x))

Bernoulli distribution:

p(x |µ) = Bern(x |µ) = µx(1− µ)1−x

Put in the exponential family form:

Bern(x |µ) = (1− µ)
( µ

1− µ
)x

= (1− µ︸ ︷︷ ︸
1

Z(η)

) · 1︸︷︷︸
h(x)

· exp
{(

log
µ

1− µ︸ ︷︷ ︸
η

)
· x︸︷︷︸
u(x)

}

I =⇒ µ = σ(η), Z(η) = σ(−η)



Exercise: put the multinomial distribution in the standard form for
exponential family



Example 2: Gaussian (µ)

p(x |η) = 1

Z(η)
h(x) exp(η>u(x))

Gaussian distribution (treating only µ as parameter, assuming σ is
constant):

p(x |µ, σ2) =
1√
2πσ2

exp(− 1

2σ2
(x − µ)2)

=
1√
2πσ2

exp(− 1

2σ2
x2 +

µ

σ2
x − µ2

2σ2
)

=
1√
2πσ2

exp(− x2

2σ2
)︸ ︷︷ ︸

h(x)

· exp(− µ2

2σ2
)︸ ︷︷ ︸

1
Z(η)

exp(
µ

σ2︸︷︷︸
η>

x︸︷︷︸
u(x)

)



Example 3: Gaussian (µ and σ)

p(x |η) = 1

Z(η)
h(x) exp(η>u(x))

Gaussian distribution (treating both µ and σ as parameters):

p(x |µ, σ2) =
1√
2π
σ−1 exp(− 1

2σ2
(x − µ)2)

=
1√
2π
σ−1 exp(− 1

2σ2
x2 +

µ

σ2
x − µ2

2σ2
)

=
1√
2π︸ ︷︷ ︸

h(x)

·σ−1 exp(− µ2

2σ2
)︸ ︷︷ ︸

1
Z(η)

exp(

[ µ
σ2

− 1
2σ2

]>
︸ ︷︷ ︸

η>

[
x

x2

]
︸︷︷︸
u(x)

)



The Exponential Family

Other members of the exponential family:

I Poisson, gamma, exponential, beta, Dirichlet, ...



Why studying the exponential family?

Many convenient properties

I Su�cient statistics for maximum likelihood

I Many convenient identities for Z(η) (the partition function)
I Relates concepts such as the Fisher information matrix

Can be used to derive the Generalized Linear Models (GLM)



Maximum likelihood & su�cient statistics

Consider i.i.d. data X = {x1, . . . , xN}. Find η to maximize p(X |η)
(maximum likelihood).

p(X |η) =
N∏
i=1

1

Z(η)

(
h(x i ) exp(η

>
u(x i ))

)

=

(
1

Z(η)

)N( N∏
i=1

h(x i )

)
exp(η>

N∑
i=1

u(x i ))

Take derivative of the log-likelihood and set it to 0.

∇η log p(X |η) = −N∇η logZ(η) +
N∑
i=1

u(x i ) = 0

=⇒ ∇η logZ(η) = 1

N

N∑
i=1

u(x i )



Maximum likelihood & su�cient statistics

∇η logZ(η) = 1

N

N∑
i=1

u(x i )

The maximum-likelihood solution η only depends on
∑N

i=1 u(x i ).

I Hence u(x) is called the su�cient statistic

Examples:

I Bernoulli: u(x) = x . Only need to store
∑

i xi .

I Gaussian (µ and σ): u(x) =
[
x x2

]>
. Need to store both

∑
i xi

and
∑

i x
2
i .



Identities

p(x |η) = 1

Z(η)
h(x) exp(η>u(x))

1. ∇η logZ(η) = Ex∼p(x|η)[u(x)] =: ξ (moments)

Derivation:

∇η logZ(η) = 1

Z(η)
∇η

∫
h(x) exp(η>u(x))dx

=
1

Z(η)

∫
h(x) exp(η>u(x))u(x)dx

=

∫
1

Z(η)
h(x) exp(η>u(x))u(x)dx

= Ex∼p(x|η)[u(x)]



Identities

p(x |η) = 1

Z(η)
h(x) exp(η>u(x))

1. ∇η logZ(η) = Ex∼p(x|η)[u(x)] =: ξ (moments)

I There's a 1-to-1 mapping between η ↔ ξ

I ξ is an alternative parameterization for the exponential family

p(x |η)↔ p(x |ξ)



Identities

p(x |η) = 1

Z(η)
h(x) exp(η>u(x))

1. ∇η logZ(η) = Ex∼p(x|η)[u(x)] =: ξ (moments)

2. ∇η log p(x |η) = u(x)− Ex∼p(x|η)[u(x)]

Derivation:

∇η log p(x |η) = −∇η logZ(η) +∇η(η
>
u(x))

= −Ex∼p(x|η)[u(x)] + u(x)



Identities

p(x |η) = 1

Z(η)
h(x) exp(η>u(x))

1. ∇η logZ(η) = Ex∼p(x|η)[u(x)] =: ξ (moments)

2. ∇η log p(x |η) = u(x)− Ex∼p(x|η)[u(x)]

Recall, in maximum likelihood, we have

∇η

N∑
i=1

log p(x i |η) = N

(
1

N

N∑
i=1

u(x i )︸ ︷︷ ︸
empirical moments ξ̂

−∇η logZ(η)︸ ︷︷ ︸
moments ξ

)

= N · (ξ̂ − ξ) = 0

Maximum likelihood → moment matching



Identities

p(x |η) = 1

Z(η)
h(x) exp(η>u(x))

1. ∇η logZ(η) = Ex∼p(x|η)[u(x)] =: ξ (moments)

2. ∇η log p(x |η) = u(x)− Ex∼p(x|η)[u(x)]

3.1. ∇2
η logZ(η) = Cov(u(x)) = −∇2

η log p(x |η)

Derivation: ∇2
η log p(x |η) = ∇ηu(x)−∇2

η logZ(η) = −∇2
η logZ(η)

∇2
η logZ(η) = ∇ηEx∼p(x|η)[u(x)]

the grad-log trick→ = Ex∼p(x|η)[∇η log p(x |η)u(x)>]
= Ex∼p(x|η)[

(
u(x)− Ex∼p(x|η)[u(x)]

)
u(x)>]

E[
(
u − E[u]

)
E[u]] = 0→ = E[

(
u(x)− E[u(x)]

)(
u(x)−E[u(x)]

)>
]

= Cov(u(x))



Identities

p(x |η) = 1

Z(η)
h(x) exp(η>u(x))

1. ∇η logZ(η) = Ex∼p(x|η)[u(x)] =: ξ (moments)

2. ∇η log p(x |η) = u(x)− Ex∼p(x|η)[u(x)]

3.1. ∇2
η logZ(η) = Cov(u(x)) = −∇2

η log p(x |η)

3.2. ∇2
η logZ(η) = Fη (Fisher information matrix)

3.3. Fη = ∇ηξ = Jξ,η (Jacobian of mapping η → ξ)

We will skip the details for now, as the Fisher information matrix will be
covered in lecture 3. Also, discussion on these identities are in Chapter 3
of the course notes.



Generalized Linear Models

Consider two familiar models

Linear regression: L = 1
2N

∑N

i=1(ti − yi )
2, where yi = w

>
x i

=⇒ ∇wL = − 1

N

N∑
i=1

(ti − yi )xi

Logistic regression: L = 1
N

∑N

i=1−ti log yi − (1− ti ) log(1− yi ), where
yi = σ(w>x i )

=⇒ ∇wL = − 1

N

N∑
i=1

(ti − yi )xi

Their gradients have the same form (!!!) Why?

(Images taken from CSC311 lecture slides).



Generalized Linear Models

I Linear regression, logistic regression, softmax regression all belong to
a broader class of models called generalized linear models (GLM).

I GLM is derived from the exponential family.



Generalized Linear Models

Consider the linear model with features:

z = w
>φ(x)

y = a(z) (activation)

Assume the labels are distributed according to the exponential family
(implied in the loss function)

p(t|η) = 1

Z(η)
h(t) exp(η>u(t))

We focus on a special case of the exponential family where u(t) = t.

p(t|η) = 1

Z(η)
h(t) exp(η>t)



Generalized Linear Models

z = w
>φ(x), y = a(z)

p(t|η) = 1

Z(η)
h(t) exp(η>t)

Recall, the moments can be computed by di�erentiating the partition
function:

∇η logZ(η) = Et∼p(t|η)[u(t)] = Et∼p(t|η)[t] = y (Prediction probability)

There is a 1-to-1 mapping between η ↔ y . Let

η = ψ(y)



Generalized Linear Models

z = w
>φ(x), y = a(z)

η = ψ(y)

p(t|η) = 1

Z(η)
h(t) exp(η>t)

Gradient of log-likelihood w.r.t weights w :

∂

∂w

N∑
i=1

log p(ti |ηi ) =
N∑
i=1

∂

∂ηi
log p(ti |ηi )

∂ηi
∂yi

∂yi
∂zi

∂zi
∂w

=
N∑
i=1

(u(ti )− Eti∼p(ti |ηi )[u(ti )])ψ
′(yi )a

′(zi )φ(x i )

=
N∑
i=1

(ti − yi )ψ
′(yi )a

′(zi )φ(x i )

This greatly simpli�es if we choose a = ψ−1.

η = ψ(a(z)) = ψ(ψ−1(z)) = z =⇒ ψ′(y)a′(z) =
∂η

∂y

∂y

∂z
= 1



Generalized Linear Models
To summarize, when the following conditions are met:

I Linear model with activation

z = w
>φ(x), y = a(z)

I The label distribution belongs to the exponential family

p(t|η) = 1

Z(η)
h(t) exp(η>t)

where y = ∇η logZ(η), and η = ψ(y)

I Activation is chosen as:

a(·) = ψ−1(·)

Then we have:

∂

∂w

N∑
i=1

log p(ti |η) =
N∑
i=1

(ti − yi )φ(x i )



GLM example: logistic regression

Cross-entropy loss (negative log-likelihood):

L = − log p(t|y) = −t log y − (1− t) log(1− y)

Corresponding label distribution: Bernoulli

p(t|y) = y t(1− y)1−t

= (1− y) exp{(log y

1− y
)t}

We have

η = log
y

1− y
= ψ(y)

Then we should choose activation:

a(z) = ψ−1(z) = σ(z) X



GLM example: linear regression

Squared loss (negative log-likelihood):

L = − log p(t|y) = 1

2
(t − y)2

Corresponding label distribution: Gaussian (with �xed σ, WLOG assume
σ = 1)

p(t|y) = 1√
2π

exp{−1
2
(t − y)2}

We have

η = y = ψ(y)

Then we should choose activation:

a(z) = ψ−1(z) = z X



Summary

Exponential family

p(x |η) = 1

Z(η)
h(x) exp(η>u(x))

I Many common distributions belong to this family (Bernoulli,
multinomial, Gaussian, Poisson, gamma, ...)

I Su�cient statistics for maximum-likelihood estimation

I Many useful identities stemming from Z(η)
I Moments & empirical moments, MLE as moment matching
I Convenient way to compute the Fisher information matrix Fη

I Used to derive the generalized linear models (GLM)


