
CSC2541: Neural Net Training Dynamics
Tutorial 1 - Backpropagation & Automatic Differentiation

University of Toronto, Winter 2022

Slides adapted from CSC421

NNTD (UofT) CSC2541-Tut1 1 / 39



Overview

Backpropagation is the central algorithm in training neural
networks.

▶ It’s is an algorithm for computing gradients.
▶ Really it’s an instance of reverse mode automatic differentiation,

which is much more broadly applicable than just neural networks.
⋆ This is “just” a clever and efficient use of the Chain Rule for

derivatives.
⋆ We’ll see how to implement an automatic differentiation system in

this tutorial.

NNTD (UofT) CSC2541-Tut1 2 / 39



Recap: Gradient Descent

Recall: Gradient descent moves opposite the gradient (the direction of
steepest descent)

We want to compute the cost gradient dJ /dw, which is the vector of
partial derivatives.

▶ This is the average of dL/dw over all the training examples, so in
this lecture we focus on computing dL/dw.

NNTD (UofT) CSC2541-Tut1 3 / 39



Univariate Chain Rule

Recall: if f(x) and x(t) are univariate functions, then

d

dt
f(x(t)) =

df

dx

dx

dt
.

NNTD (UofT) CSC2541-Tut1 4 / 39



Univariate Chain Rule

Recall: Univariate logistic least squares model

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Let’s compute the loss derivatives.

NNTD (UofT) CSC2541-Tut1 5 / 39



Univariate Chain Rule

How you would have done it in calculus class

L =
1

2
(σ(wx+ b)− t)2

∂L
∂w

=
∂

∂w

[
1

2
(σ(wx+ b)− t)2

]
=

1

2

∂

∂w
(σ(wx+ b)− t)2

= (σ(wx+ b)− t)
∂

∂w
(σ(wx+ b)− t)

= (σ(wx+ b)− t)σ′(wx+ b)
∂

∂w
(wx+ b)

= (σ(wx+ b)− t)σ′(wx+ b)x

∂L
∂b

=
∂

∂b

[
1

2
(σ(wx+ b)− t)2

]
=

1

2

∂

∂b
(σ(wx+ b)− t)2

= (σ(wx+ b)− t)
∂

∂b
(σ(wx+ b)− t)

= (σ(wx+ b)− t)σ′(wx+ b)
∂

∂b
(wx+ b)

= (σ(wx+ b)− t)σ′(wx+ b)

What are the disadvantages of this approach?

NNTD (UofT) CSC2541-Tut1 6 / 39



Univariate Chain Rule

A more structured way to do it

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

dL
dy

= y − t

dL
dz

=
dL
dy

σ′(z)

∂L
∂w

=
dL
dz

x

∂L
∂b

=
dL
dz

Remember, the goal isn’t to obtain closed-form solutions, but to be
able to write a program that efficiently computes the derivatives.

NNTD (UofT) CSC2541-Tut1 7 / 39



Univariate Chain Rule

We can diagram out the computations using a computation graph.

The nodes represent all the inputs and computed quantities, and
the edges represent which nodes are computed directly as a
function of which other nodes.

NNTD (UofT) CSC2541-Tut1 8 / 39



Univariate Chain Rule

A slightly more convenient notation:

Use y to denote the derivative dL/dy, sometimes called the error signal.

This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

This is not a standard notation, but I couldn’t find another one that I
liked.

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

y = y − t

z = y σ′(z)

w = z x

b = z

NNTD (UofT) CSC2541-Tut1 9 / 39



Multivariate Chain Rule

Problem: What if the computation graph has fan-out > 1?
This requires the multivariate Chain Rule!

L2-Regularized regression

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w2

Lreg = L+ λR

Multiclass logistic
regression

zℓ =
∑
j

wℓjxj + bℓ

yk =
ezk∑
ℓ e

zℓ

L = −
∑
k

tk log yk

NNTD (UofT) CSC2541-Tut1 10 / 39



Multivariable Chain Rule

In the context of backpropagation:

In our notation:

t = x
dx

dt
+ y

dy

dt

NNTD (UofT) CSC2541-Tut1 11 / 39



Backpropagation

Full backpropagation algorithm:

Let v1, . . . , vN be a topological ordering of the computation graph
(i.e. parents come before children.)

vN denotes the variable we’re trying to compute derivatives of (e.g. loss).

NNTD (UofT) CSC2541-Tut1 12 / 39



Backpropagation

Example: univariate logistic least squares regression

Forward pass:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w2

Lreg = L+ λR

Backward pass:

Lreg = 1

R = Lreg
dLreg

dR
= Lreg λ

L = Lreg
dLreg

dL
= Lreg

y = L dL
dy

= L (y − t)

z = y
dy

dz

= y σ′(z)

w= z
∂z

∂w
+RdR

dw

= z x+Rw

b = z
∂z

∂b

= z

NNTD (UofT) CSC2541-Tut1 13 / 39



Backpropagation

Multilayer Perceptron (multiple outputs):

Forward pass:

zi =
∑
j

w
(1)
ij xj + b

(1)
i

hi = σ(zi)

yk =
∑
i

w
(2)
ki hi + b

(2)
k

L =
1

2

∑
k

(yk − tk)
2

Backward pass:

L = 1

yk = L (yk − tk)

w
(2)
ki = yk hi

b
(2)
k = yk

hi =
∑
k

ykw
(2)
ki

zi = hi σ
′(zi)

w
(1)
ij = zi xj

b
(1)
i = zi

NNTD (UofT) CSC2541-Tut1 14 / 39



Vector Form

Computation graphs showing individual units are cumbersome.

As you might have guessed, we typically draw graphs over the
vectorized variables.

We pass messages back analogous to the ones for scalar-valued
nodes.

NNTD (UofT) CSC2541-Tut1 15 / 39



Vector Form

Consider this computation graph:

Backprop rules:

zj =
∑
k

yk
∂yk
∂zj

z =
∂y

∂z

⊤
y,

where ∂y/∂z is the Jacobian matrix:

∂y

∂z
=


∂y1
∂z1

· · · ∂y1
∂zn

...
. . .

...
∂ym
∂z1

· · · ∂ym
∂zn


NNTD (UofT) CSC2541-Tut1 16 / 39



Vector Form

Examples

Matrix-vector product

z = Wx
∂z

∂x
= W x = W⊤z

Elementwise operations

y = exp(z)
∂y

∂z
=

exp(z1) 0

. . .

0 exp(zD)

 z = exp(z) ◦ y

Note: we never explicitly construct the Jacobian. It’s usually
simpler and more efficient to compute the VJP directly.

NNTD (UofT) CSC2541-Tut1 17 / 39



Vector Form

Full backpropagation algorithm (vector form):

Let v1, . . . ,vN be a topological ordering of the computation graph
(i.e. parents come before children.)

vN denotes the variable we’re trying to compute derivatives of (e.g. loss).

It’s a scalar, which we can treat as a 1-D vector.

NNTD (UofT) CSC2541-Tut1 18 / 39



Vector Form

MLP example in vectorized form:

Forward pass:

z = W(1)x+ b(1)

h = σ(z)

y = W(2)h+ b(2)

L =
1

2
∥t− y∥2

Backward pass:

L = 1

y = L (y − t)

W(2) = yh⊤

b(2) = y

h = W(2)⊤y

z = h ◦ σ′(z)

W(1) = zx⊤

b(1) = z

NNTD (UofT) CSC2541-Tut1 19 / 39



Some Thoughts

Backprop is used to train the overwhelming majority of neural nets
today.

▶ Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

Despite its practical success, backprop is believed to be neurally
implausible.

▶ No evidence for biological signals analogous to error derivatives.
▶ All the biologically plausible alternatives we know about learn much

more slowly (on computers).
▶ So how on earth does the brain learn?

NNTD (UofT) CSC2541-Tut1 20 / 39



Confusing Terminology

Automatic differentiation (autodiff) refers to a general way of
taking a program which computes a value, and automatically
constructing a procedure for computing derivatives of that value.

▶ Today, we focus on reverse mode autodiff. There is also a forward
mode, which is for computing directional derivatives.

Backpropagation is the special case of autodiff applied to neural
nets

▶ But in machine learning, we often use backprop synonymously with
autodiff

Autograd is the name of a particular autodiff package.
▶ But lots of people, including the PyTorch developers, got confused

and started using “autograd” to mean “autodiff”

NNTD (UofT) CSC2541-Tut1 21 / 39



What Autodiff Is Not: Finite Differences

We often use finite differences to check our gradient calculations.
One-sided version:

∂

∂xi
f(x1, . . . , xN ) ≈ f(x1, . . . , xi + h, . . . , xN )− f(x1, . . . , xi, . . . , xN )

h

Two-sided version:
∂

∂xi
f(x1, . . . , xN ) ≈ f(x1, . . . , xi + h, . . . , xN )− f(x1, . . . , xi − h, . . . , xN )

2h

NNTD (UofT) CSC2541-Tut1 22 / 39



Autodiff Is Not: Finite Differences

Autodiff is not finite differences.
▶ Finite differences are expensive, since you need to do a forward pass

for each derivative.
▶ It also induces huge numerical error.
▶ Normally, we only use it for testing.

Autodiff is both efficient (linear in the cost of computing the
value) and numerically stable.

NNTD (UofT) CSC2541-Tut1 23 / 39



Autodiff Is Not: Symbolic Differentiation

Autodiff is not symbolic differentiation (e.g. Mathematica).
▶ Symbolic differentiation can result in complex and redundant

expressions.
▶ Mathematica’s derivatives for one layer of soft ReLU (univariate

case):

▶ Derivatives for two layers of soft ReLU:

▶ There might not be a convenient formula for the derivatives.

The goal of autodiff is not a formula, but a procedure for
computing derivatives.

NNTD (UofT) CSC2541-Tut1 24 / 39



Autodiff Is

Recall how we computed the derivatives of logistic least squares
regression. An autodiff system should transform the left-hand side into
the right-hand side.

Computing the loss:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

L = 1

y = y − t

z = y σ′(z)

w = z x

b = z

NNTD (UofT) CSC2541-Tut1 25 / 39



What Autodiff Is

An autodiff system will convert the program into a sequence of primitive
operations (ops) which have specified routines for computing derivatives.

In this representation, backprop can be done in a completely mechanical way.

Original program:

z = wx+ b

y =
1

1 + exp(−z)

L =
1

2
(y − t)2

Sequence of primitive operations:

t1 = wx

z = t1 + b

t3 = −z

t4 = exp(t3)

t5 = 1 + t4

y = 1/t5

t6 = y − t

t7 = t26

L = t7/2

NNTD (UofT) CSC2541-Tut1 26 / 39



What Autodiff Is

NNTD (UofT) CSC2541-Tut1 27 / 39



Autograd

The rest of this tutorial covers how Autograd is implemented.

Source code for the original Autograd package:
▶ https://github.com/HIPS/autograd

Autodidact, a pedagogical implementation of Autograd — you are
encouraged to read the code.

▶ https://github.com/mattjj/autodidact
▶ Thanks to Matt Johnson for providing this!

NNTD (UofT) CSC2541-Tut1 28 / 39

https://github.com/HIPS/autograd
https://github.com/mattjj/autodidact


Building the Computation Graph

Most autodiff systems, including Autograd, explicitly construct the
computation graph.

▶ Some frameworks like TensorFlow provide mini-languages for building
computation graphs directly. Disadvantage: need to learn a totally new
API.

▶ Autograd instead builds them by tracing the forward pass computation,

allowing for an interface nearly indistinguishable from NumPy.

The Node class (defined in tracer.py) represents a node of the
computation graph. It has attributes:

▶ value, the actual value computed on a particular set of inputs
▶ fun, the primitive operation defining the node
▶ args and kwargs, the arguments the op was called with
▶ parents, the parent Nodes

NNTD (UofT) CSC2541-Tut1 29 / 39



Building the Computation Graph

Autograd’s fake NumPy module provides primitive ops which look
and feel like NumPy functions, but secretly build the computation
graph.

They wrap around NumPy functions:

NNTD (UofT) CSC2541-Tut1 30 / 39



Building the Computation Graph

Example:

NNTD (UofT) CSC2541-Tut1 31 / 39



Recap: Vector-Jacobian Products

Recall: the Jacobian is the matrix of partial derivatives:

J =
∂y

∂x
=


∂y1
∂x1

· · · ∂y1
∂xn

...
. . .

...
∂ym
∂x1

· · · ∂ym
∂xn


The backprop equation (single child node) can be written as a
vector-Jacobian product (VJP):

xj =
∑
i

yi
∂yi
∂xj

x = y⊤J

That gives a row vector. We can treat it as a column vector by
taking

x = J⊤y

NNTD (UofT) CSC2541-Tut1 32 / 39



Recap: Vector-Jacobian Products

Examples

Matrix-vector product

z = Wx J = W x = W⊤z

Elementwise operations

y = exp(z) J =

exp(z1) 0

. . .

0 exp(zD)

 z = exp(z) ◦ y

Note: we never explicitly construct the Jacobian. It’s usually
simpler and more efficient to compute the VJP directly.

NNTD (UofT) CSC2541-Tut1 33 / 39



Backprop as Message Passing

Consider a näıve backprop implementation where the z module
needs to compute z using the formula:

z =
∂r

∂z
r+

∂s

∂z
s+

∂t

∂z
t

This breaks modularity, since z needs to know how it’s used in the
network in order to compute partial derivatives of r, s, and t.

NNTD (UofT) CSC2541-Tut1 34 / 39



Backprop as Message Passing

Backprop as message
passing:

Each node receives a bunch
of messages from its
children, which it
aggregates to get its error
signal. It then passes
messages to its parents.

Each of these messages is a VJP.

This formulation provides modularity: each node needs to know
how to compute its outgoing messages, i.e. the VJPs
corresponding to each of its parents (arguments to the function).

The implementation of z doesn’t need to know where z came from.

NNTD (UofT) CSC2541-Tut1 35 / 39



Vector-Jacobian Products

For each primitive operation, we must specify VJPs for each of its
arguments. Consider y = exp(x).
This is a function which takes in the output gradient (i.e. y), the
answer (y), and the arguments (x), and returns the input gradient
(x)
defvjp (defined in core.py) is a convenience routine for
registering VJPs. It just adds them to a dict.
Examples from numpy/numpy vjps.py

NNTD (UofT) CSC2541-Tut1 36 / 39



Backward Pass

The backwards pass is defined in core.py.

The argument g is the error signal for the end node; for us this is always L = 1.

NNTD (UofT) CSC2541-Tut1 37 / 39



Backward Pass

grad (in differential operators.py) is just a wrapper around make vjp (in
core.py) which builds the computation graph and feeds it to backward pass.

grad itself is viewed as a VJP, if we treat L as the 1× 1 matrix with entry 1.

∂L
∂w

=
∂L
∂w

L

NNTD (UofT) CSC2541-Tut1 38 / 39



Recap

We saw three main parts to the code:
▶ tracing the forward pass to build the computation graph
▶ vector-Jacobian products for primitive ops
▶ the backwards pass

Building the computation graph requires fancy NumPy
gymnastics, but other two items are basically what I showed you.

You’re encouraged to read the full code (< 200 lines!) at:

https://github.com/mattjj/autodidact/tree/master/autograd

NNTD (UofT) CSC2541-Tut1 39 / 39

https://github.com/mattjj/autodidact/tree/master/autograd

