(CSC2541: Neural Net Training Dynamics
Tutorial 1 - Backpropagation & Automatic Differentiation

University of Toronto, Winter 2022

Slides adapted from CSC421
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Overview

e Backpropagation is the central algorithm in training neural
networks.

» It’s is an algorithm for computing gradients.
» Really it’s an instance of reverse mode automatic differentiation,
which is much more broadly applicable than just neural networks.
* This is “just” a clever and efficient use of the Chain Rule for
derivatives.
* We'll see how to implement an automatic differentiation system in
this tutorial.
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Recap: Gradient Descent

@ Recall: Gradient descent moves opposite the gradient (the direction of
steepest descent)
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@ We want to compute the cost gradient d.7/dw, which is the vector of
partial derivatives.

» This is the average of dL/dw over all the training examples, so in
this lecture we focus on computing d£/dw.
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Univariate Chain Rule

e Recall: if f(x) and z(t) are univariate functions, then

d dfds
&f(x(t)) “ L
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Univariate Chain Rule

Recall: Univariate logistic least squares model

z=wx+b
y=o(z)

1 2
E—Q(y—t)

Let’s compute the loss derivatives.
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Univariate Chain Rule

How you would have done it in calculus class
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ﬁ:i(a(warb)*t)Q aL o1 2
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What are the disadvantages of this approach?
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Univariate Chain Rule

A more structured way to do it

Computing the derivatives:

Computing the loss: drc
z=wr+b dy
dc dC
y=o0(z) T qG (2)
L= oL _dcL
ow dz
oL _ dL
ob  dz

Remember, the goal isn’t to obtain closed-form solutions, but to be
able to write a program that efficiently computes the derivatives.
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Univariate Chain Rule

@ We can diagram out the computations using a computation graph.

@ The nodes represent all the inputs and computed quantities, and
the edges represent which nodes are computed directly as a
function of which other nodes.

Compute Loss
—_—

t
w>>‘z—>y—> L

e

Compute Derivatives
—

X

NNTD (UofT) CSC2541-Tutl 8/ 39



Univariate Chain Rule

A slightly more convenient notation:
@ Use 7 to denote the derivative d£/dy, sometimes called the error signal.

@ This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

@ This is not a standard notation, but I couldn’t find another one that I
liked.

Computing the loss: Computing the derivatives:

z=wr+b

y=y—t

y:U(Z) Z:ygl(z)
1 . _
L=5y—t7 T=za
b=7%
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Multivariate Chain Rule

Problem: What if the computation graph has fan-out > 17
This requires the multivariate Chain Rule!
Multiclass logistic

Ls-Regularized regression regression
t wy w2
.’L‘\ [)1 ;
72_’y_’£_’£reg T1——% —>yl\k£
w =R/ TSz Sy f
e I t2
z=wz+b 1)2‘ Wy
y=o(z) w22
L=t 2= wew; +be
2 J
1 5 ek
R=av TTE e
Licg = L+ AR
& L=— Z tx log yr
k
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Multivariable Chain Rule

@ In the context of backpropagation:

Mathematical expressions
to be evaluated

df _ofde ofdy

dt Oz dt  oydt N, 7
\ NN f
Values already computed | \ -
by our program / y/

@ In our notation:

Q.

Y

ez g
= r— _—
a YA
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Backpropagation

Full backpropagation algorithm:

Let v1,...,vy be a topological ordering of the computation graph
(i.e. parents come before children.)

vy denotes the variable we're trying to compute derivatives of (e.g. loss).

Fori=1,...,N
forward pass
Compute v; as a function of Pa(v;)

T UN:]_

backward pass | Fori=N—1,...,1

7 — 7 Ov;
Vi = ZjeCh(vi) Ui Bo;
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Backpropagation

Example: univariate logistic least squares regression

" t Backward pass:
gz_’y_’ﬁ_’ﬁrog -
/ g Lreg =1 4
w :R = _ 7 dLreg zZ=1 &
reg dR — yo_/ Z)
Forward pass: = Loz A 0 ar
z=wx+b L =LCres dLreg T ow du
y=0o(2) dac =zZx+Ruw
r 1 2 - [freg E % 82
= — —t o = Z =
2 (v ) g=L di b
S dy =z
— 2" =L(y—1)
Lreg = L+ AR
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Backpropagation

Multilayer Perceptron (multiple outputs):

(2)
u'El) (1) Wy ,(2)

NI

Ti—>21—>hi— Y1
\
E

T 2—»22—>h2—>y2

z)gl’/ T | @ // t2

K¢l
(1) Wa1 (7) w >1
W

Forward pass:

hi = a(zi)
Z w(Q)h + b(2)

= ) Z(yk - tk)z
k
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Backward pass:

L=1
T = L (yr — tr)
wi? =ik
b® =
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Vector Form

e Computation graphs showing individual units are cumbersome.

@ As you might have guessed, we typically draw graphs over the
vectorized variables.
w® w2 f\‘

b b2
e We pass messages back analogous to the ones for scalar-valued

nodes.
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Vector Form

o Consider this computation graph:

z 1
2 Ya Z— Yy
Z3—»lY3
e Backprop rules:
S-Ywge =gy
Yk 9z, oz 7

where Jy/0z is the Jacobian matrix:

o .. On
ay [ Ozn
oz ym .. Oym

0z1 Ozn
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Vector Form

Examples
@ Matrix-vector product

0z

7 = WX - = W X = WTE
ox
e Elementwise operations
exp(z1) 0
0 _ —
y = exp(z) a—)zr = . Z=exp(z)oy
0 exp(zp)

e Note: we never explicitly construct the Jacobian. It’s usually
simpler and more efficient to compute the VJP directly.
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Vector Form

Full backpropagation algorithm (vector form):
Let vq,..., vy be a topological ordering of the computation graph

(i.e. parents come before children.)

vy denotes the variable we’re trying to compute derivatives of (e.g. loss).

It’s a scalar, which we can treat as a 1-D vector.

forward pass

backward pass
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Fori=1,...,N

Compute v; as a function of Pa(v;)

vy =1

Fori=N-1,...,1

— v, |
, — -1 .
Vi= Zje(;h(w) av: Vi
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Vector Form

MLP example in vectorized form:

w) Wij) Backward pass:
/‘ y=~L(y—t)
b(l) b(Z) W(z) — yhT
Forward pass: b® =y
z=WWUx +pD h=wO®Ty
h=o0(z) Z=hoo'(z)
y = wW®h + b® WO — zx "
L=l -yl b =z
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Some Thoughts

@ Backprop is used to train the overwhelming majority of neural nets
today.

» Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

@ Despite its practical success, backprop is believed to be neurally
implausible.

» No evidence for biological signals analogous to error derivatives.

» All the biologically plausible alternatives we know about learn much
more slowly (on computers).

» So how on earth does the brain learn?
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Confusing Terminology

e Automatic differentiation (autodiff) refers to a general way of
taking a program which computes a value, and automatically
constructing a procedure for computing derivatives of that value.

» Today, we focus on reverse mode autodiff. There is also a forward
mode, which is for computing directional derivatives.

e Backpropagation is the special case of autodiff applied to neural
nets

» But in machine learning, we often use backprop synonymously with
autodiff

o Autograd is the name of a particular autodiff package.

» But lots of people, including the PyTorch developers, got confused
and started using “autograd” to mean “autodiff”
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What Autodiff Is Not: Finite Differences

e We often use finite differences to check our gradient calculations.
@ One-sided version:
f(xl,...7xi+h,...,acN)—f(:ch...,xi,...,xN)

h

flza,...,zN) =

896,-
@ Two-sided version:

f(xl,...7:ci+h7...,x1v)—f(ml,...,mi—h,.4.7xN)
2h

flx1,...,zN) =

8131'

— exact
— one-sided
— two-sided

xz—h T x+h
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Autodiff Is Not: Finite Differences

e Autodiff is not finite differences.
» Finite differences are expensive, since you need to do a forward pass
for each derivative.
» It also induces huge numerical error.
» Normally, we only use it for testing.
e Autodiff is both efficient (linear in the cost of computing the
value) and numerically stable.
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Autodiff Is Not: Symbolic Differentiation

e Autodiff is not symbolic differentiation (e.g. Mathematica).

» Symbolic differentiation can result in complex and redundant
expressions.
» Mathematica’s derivatives for one layer of soft ReLU (univariate
case):
D[Log[l + Exp[w*x+b]], w]

eb-wx W
oufit}ls ——————

1+ ebtvx

» Derivatives for two layers of soft ReLLU:
mie- D[Log[1 + Exp[w2 #Log[1l + Exp[wl*x +bl]] +b2]], wl]

. . N [1.4+gblewlx]
ebl b2+wlx w2Log_l e lw2 X

Outf19]= — -
. + pblwl
(1+eb1-wlx) (1+en2 w2 Log[lee wx_)

» There might not be a convenient formula for the derivatives.

@ The goal of autodiff is not a formula, but a procedure for
computing derivatives.
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Autodiff Is

Recall how we computed the derivatives of logistic least squares

regression. An autodiff system should transform the left-hand side into

the right-hand side.

Computing the loss:

z=wxr+b

y=o(z)

L=3w-0
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What Autodiff Is

@ An autodiff system will convert the program into a sequence of primitive
operations (ops) which have specified routines for computing derivatives.

@ In this representation, backprop can be done in a completely mechanical way.

Sequence of primitive operations:

t1 = wx
Original program: bt b
Z =11
z=wr+b ts = —z
— 1 ta = exp(ts)
y =
1+ exp(—=2) =14ty
1
£:§(y7t)2 y:l/ts
te =Y — t
tr =g
L=tr/2

NNTD (UofT) CSC2541-Tutl 26 / 39



What Autodiff Is

import autograd.numpy as np -
from autograd import grad very sneaky!

def sigmoid(x):
return 0.5%(np.tanh(x) + 1)

def logistic_predictions(weights, inputs):
# Outputs probability of a label being true according to logistic model.
return sigmoid(np.dot(inputs, weights))

def training_loss(weights):
# Training loss is the negative log-likelihood of the training labels.
preds = logistic_predictions(weights, inputs)
label_probabilities = preds * targets + (1 - preds) * (1 - targets)
return -np.sum(np.log(label_probabilities))

... (load the data) ...

# Define a function that returns gradients of training loss using Autograd.
training_gradient_fun = grad(training_loss)

¥~ Autograd constructs a

# Optimize weights using gradient descent. function for computing derivatives

weights = np.array([0.0, 0.0, 0.0])
print "Initial loss:", training_loss(weights)
for i in xrange(100):

weights —= training_gradient_fun(weights) * 0.01

print "Trained loss:", training_loss(weights)
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Autograd

@ The rest of this tutorial covers how Autograd is implemented.
@ Source code for the original Autograd package:
» https://github.com/HIPS/autograd

e Autodidact, a pedagogical implementation of Autograd — you are
encouraged to read the code.

» https://github.com/mattjj/autodidact
» Thanks to Matt Johnson for providing this!
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https://github.com/HIPS/autograd
https://github.com/mattjj/autodidact

Building the Computation Graph

w w®)
b b®@

@ Most autodiff systems, including Autograd, explicitly construct the
computation graph.
» Some frameworks like TensorFlow provide mini-languages for building
computation graphs directly. Disadvantage: need to learn a totally new
API.
> Autograd instead builds them by tracing the forward pass computation,
allowing for an interface nearly indistinguishable from NumPy.

@ The Node class (defined in tracer.py) represents a node of the
computation graph. It has attributes:
> value, the actual value computed on a particular set of inputs
> fun, the primitive operation defining the node
» args and kwargs, the arguments the op was called with
> parents, the parent Nodes
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Building the Computation Graph

o Autograd’s fake NumPy module provides primitive ops which look
and feel like NumPy functions, but secretly build the computation

graph.

@ They wrap around NumPy functions:

primitive

value: a

function: F

autograd.numpy.sum

parents: [X]

unbox

numpy . sum box

NNTD (UofT)
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value: b
function: anp.sum

parents: [d]

30 / 39



Building the Computation Graph

Example:

def logistic(z):
return 1. / (1. + np.exp(-2))

# that is equivalent to:
def logistic2(z):

return np.reciprocal(np.add(1l, np.exp(np.negative(z})))

z=1.5
= logistic(z)
node z node t1 node t2 node t3 nodey
value: 1.5 value: -1.5 value: 0.223 value: 1.223 value: 0.818
function: None function: negative function: exp function: add function: reciprocal
parents: [| parents: [z] parents: [t1] parents: [t2] parents: [t3]

/
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Recap: Vector-Jacobian Products

@ Recall: the Jacobian is the matrix of partial derivatives:

Oy1 .. gyl
Oxq T
dy
J = 8 =
X . .
OYm - OYm
oz Oxp

e The backprop equation (single child node) can be written as a
vector-Jacobian product (VJP):

0y; - =T
Z 8x] Xx=yJ

e That gives a row vector. We can treat it as a column vector by

taking
x=J'y
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Recap: Vector-Jacobian Products

Examples
@ Matrix-vector product

z = Wx J=W xX=W'z
o Elementwise operations

exp(z1) 0
y = exp(z) J= Z=exp(z)oy
0 exp(zp)

e Note: we never explicitly construct the Jacobian. It’s usually
simpler and more efficient to compute the VJP directly.
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Backprop as Message Passing

<
o
-

t_-—-b

e Consider a naive backprop implementation where the z module
needs to compute z using the formula:

z = @*Jr%ﬂr 9t
Z= 8zr 8zs 0z

@ This breaks modularity, since z needs to know how it’s used in the
network in order to compute partial derivatives of r, s, and t.
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Backprop as Message Passing

Backprop as message

passing: >h gh .
e Each node receives a bunch 9z
of messages from its ;Z\\ d r
children, which it Waz—>
aggregates to get its error o Z
signal. It then passes '"°°m'23,{,“f;,ssages

messages to its parents. b
e Each of these messages is a VJP.

@ This formulation provides modularity: each node needs to know
how to compute its outgoing messages, i.e. the VJPs
corresponding to each of its parents (arguments to the function).

@ The implementation of z doesn’t need to know where z came from.
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Vector-Jacobian Products

e For each primitive operation, we must specify VJPs for each of its
arguments. Consider y = exp(x).

e This is a function which takes in the output gradient (i.e. g), the
answer (y), and the arguments (z), and returns the input gradient

(7)

e defvjp (defined in core.py) is a convenience routine for

registering VJPs. It just adds them to a dict.
e Examples from numpy/numpy_vjps.py

defvijp(negative, lambda g, ans, x:
defvip(exp, lambda g, ans, x:
defvip(log, lambda g, ans, x:
defvip(add, lambda g, ans,

lambda g, ans,
defvip(multiply, lambda g, ans,

lambda g, ans,
defvjp(subtract, lambda g, ans,

lambda g, ans,
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x"y:g’
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Backward Pass

@ The backwards pass is defined in core.py.

@ The argument g is the error signal for the end node; for us this is always £ = 1.

def backward_pass(g, end_node):
outgrads = {end_node: g}
for node in toposort(end_node):
outgrad = outgrads.pop(node)
fun, value, args, kwargs, argnums = node.recipe
for argnum, parent in zip(argnums, node.parents):
vijp = primitive_vjps[fun] [argnum]
parent_grad = vjp(outgrad, value, *args, sxkwargs)
outgrads [parent] = add_outgrads(outgrads.get(parent), parent_grad)

return cutgrad

def add_outgrads(prev_g, g):
if prev_g is None:
return g
return prev_g + g
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Backward Pass

@ grad (in differential operators.py) is just a wrapper around make_vjp (in
core.py) which builds the computation graph and feeds it to backward_pass.

@ grad itself is viewed as a VJP, if we treat £ as the 1 x 1 matrix with entry 1.

oL _ L

ow  ow

def make_vjp(fun, x):
"""Trace the computation to build the computation graph, and return
a function which implements the backward pass."""
start_node = Node.new_root()
end_value, end_node = trace(start_node, fun, x)
def vip(g):
return backward_pass(g, end_node)
return vjp, end_value

def grad(fun, argnum=@):
def gradfun(*args, **kwargs):
unary_fun = lambda x: fun(*subwal(args, argnum, x), **kwargs)
vip, ans = make_vjp(unary_fun, args[argnum])
return vip(np.ones_like(ans))
return gradfun
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Recap

e We saw three main parts to the code:

» tracing the forward pass to build the computation graph
» vector-Jacobian products for primitive ops
» the backwards pass

o Building the computation graph requires fancy NumPy
gymnastics, but other two items are basically what I showed you.
@ You're encouraged to read the full code (< 200 lines!) at:
https://github.com/mattjj/autodidact/tree/master/autograd
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