
CSC 2541: Neural Net Training Dynamics
Lecture 12 - Bilevel Optimization and Generalization

Roger Grosse

University of Toronto, Winter 2022

NNTD (UofT) CSC2541-Lec12 1 / 42

Empirical Deep Learning

Studying neural nets presents an unusual set of scientific challenges

AI used to feel like engineering

Start with a goal (optimization, prediction, etc.), ask how a rational
agent would solve it, and figure out how to implement that solution

Now we’re doing a lot more reverse engineering

The neural net somehow (apparently) solves a problem, and we
have to figure out how

This course didn’t give the answers, but it did cover some
conceptual tools we need to look for the answers

Linearization, metrics, implicit regularization, stochasticity, infinite
limits, dynamical systems, etc.

NNTD (UofT) CSC2541-Lec12 2 / 42

Bilevel Optimization

Much of the progress of AI has been about automating aspects of
AI engineering

Hand-coded knowledge ⇒ statistical learning
Hand-coded reasoning ⇒ SAT solvers, probabilistic inference
Feature engineering ⇒ deep learning

What’s next?

Hyperparameters, optimizers, architectures, regularizers, curricula,
data augmentation strategies, self-supervised learning objectives,
search algorithms, debiasing

In principle, much of this can be formulated as bilevel optimization

Our understanding of bilevel optimization is comparable to deep
learning circa 2008. Things sometimes work if we get lucky

NNTD (UofT) CSC2541-Lec12 3 / 42

Bilevel Optimization and NNTD

Understanding bilevel optimization, meta-learning, etc. requires
thinking about NNTD in both the inner and outer levels

NNTD (UofT) CSC2541-Lec12 4 / 42

This Lecture

Last week covered bilevel optimization from an optimization
perspective: how to find a Stackelberg equilibrium

This week: does your solution generalize...

...to unrolling the inner optimization for much longer?

...to restarting the inner optimization from scratch?

...beyond the training data?

Understanding these issues requires essentially everything we’ve
covered in this course.

NNTD (UofT) CSC2541-Lec12 5 / 42

Short-Horizon Bias

(Based on Wu et al., “Understanding short-horizon bias in stochastic

meta-optimization”)

NNTD (UofT) CSC2541-Lec12 6 / 42

Short-Horizon Bias

We saw that it’s possible (in principle) to learn an optimizer using
meta-descent

Can we solve the much easier problem of adapting the learning
rate? If we can’t even do this, then meta-optimization is hopeless!

We’ll even ignore the computational cost of the meta-optimization
itself and just ask if it gives a reasonable solution.

What actually happens?

NNTD (UofT) CSC2541-Lec12 7 / 42

Short-Horizon Bias

In online stochastic meta-descent (SMD), over the course of a
training run, we periodically update the learning rate with
unrolled differentiation with a short horizon (in this case, 5 steps).
In order to optimize the meta-objective well, we perform 10 steps
of meta-descent (using Adam) for each SGD step.

This is too expensive for practical use, but let’s ignore that.
Papers sometimes erroneously report successful results with SMD
because they failed to optimize the meta-objective well enough.

NNTD (UofT) CSC2541-Lec12 8 / 42

Short-Horizon Bias

In offline SMD, we unroll
many short training runs, and
adapt the hyperparameters of
a learning rate schedule.

αk =
α0

(1 + k/K)β

Hyperparameters α0, K, β

Estimate hypergradient with
unrolling

Evaluate the validation loss
after {100, 1000, 5000, 20000}
steps (the horizon)

MNIST dataset

NNTD (UofT) CSC2541-Lec12 9 / 42

Short-Horizon Bias

Hyperparameter trajectories for different horizons

Why does this happen?

NNTD (UofT) CSC2541-Lec12 10 / 42

Short-Horizon Bias

(He, 2015, “Deep residual learning for image recognition”)

The intuition: you get a big immediate reduction in training
error as soon as you decay the learning rate.

Therefore, an adaptive learning rate method with a short horizon
will decay it very quickly.

Can we model this phenomenon mathematically?
NNTD (UofT) CSC2541-Lec12 11 / 42

Short-Horizon Bias

If you are minimizing a deterministic quadratic objective using
gradient descent with momentum, then the greedy choice of α and
β is optimal!

This is because it’s equivalent to conjugate gradient (Lecture 9).

Remember the Noisy Quadratic Model? (Lecture 7)

If the curvature and the gradient noise are both spherical, then the
greedy choice of α for SGD is optimal!
Each coordinate evolves independently, so it reduces to the scalar
case.
The state of the system can be summarized with a single statistic,
E[θ2]. We’d always prefer for this to be smaller (in terms of the
achievable loss at some later iteration).
Therefore, choosing α to minimize E[θ2] one step later is always
optimal.

The short-horizon bias only arises if the objective is both
stochastic and ill-conditioned!

NNTD (UofT) CSC2541-Lec12 12 / 42

Short-Horizon Bias

The NQM captures the phenomenon

Over a short horizon, you want to use a small learning rate to
reduce the effects of gradient noise
Over a long horizon, you want to keep a high learning rate (to make
more progress in low-curvature directions) and then decay at the
end (to eliminate noise)

NNTD (UofT) CSC2541-Lec12 13 / 42

Short-Horizon Bias

Using dynamic programming, we can determine the expected loss
under any learning rate and momentum schdule (Lecture 7)
We can optimize the schedule using dynamic programming

NNTD (UofT) CSC2541-Lec12 14 / 42

Short-Horizon Bias

The NQM gives a clear model for why short horizons bias us
towards small learning rates

This is a tough problem to get around, since large learning rates
help by making progress in low-curvature directions, which is
invisible if you only measure the loss over the short term
Maybe measuring more information would make meta-descent
work? But what information?

I believe this is a fundamental problem not just for meta-descent
on learning rate (schedules), but also for any meta-optimizer that
can express a learning rate (schedule), e.g.

Rescaling a preconditioner is equivalent to changing the learning
rate
ε in RMSprop/Adam, damping parameter in K-FAC
Batch norm implicit decay effect

NNTD (UofT) CSC2541-Lec12 15 / 42

Implicit Bias in Bilevel Optimization

(Based on Vicol et al., “On implicit bias in overparameterized bilevel

optimization”)

NNTD (UofT) CSC2541-Lec12 16 / 42

Non-Uniqueness

So far, we’ve made a simplifying assumption that the inner
objective has a unique optimum:

λ∗ = arg min
λ

Jout(λ,w∗(λ)) s.t. w∗(λ) , arg min
w

Jin(λ,w).

In practice, the inner objective is often overparameterized,
e.g. training a neural net.

There’s an entire manifold of optima!

It’s hard to write down a general formulation, hence the scare
quotes:

λ∗ ∈ “ arg min
λ

”Jout(λ,w∗) s.t. w∗ ∈ arg min
w

Jin(λ,w),

NNTD (UofT) CSC2541-Lec12 17 / 42

Non-Uniqueness

Let S(λ) = arg minw Jin(λ,w) denote the optimal solution set.
Traditional ways to disambiguate the solution:

Optimistic: disambiguate by minimizing the outer cost

w∗(λ) = arg min
w∈S(λ)

Jout(λ,w)

Pessimistic: disambiguate by maximizing the outer cost

w∗(λ) = arg max
w∈S(λ)

Jout(λ,w)

Consider the example of dataset distillation. Neither solution
concept really makes sense here:

NNTD (UofT) CSC2541-Lec12 18 / 42

Non-Uniqueness

More relevant to deep learning is the cold-start solution: define
w∗(λ) to be the result of running an optimizer to convergence.
We can compute the hypergradient by unrolling the entire inner
optimization procedure (see Lecture 11).
Recall from Lectures 1 and 6:

Gradient descent prefers solutions that minimize the distance to the
initialization (exactly for linear regression, approximately for neural
nets).
For many feature maps and neural net architectures, this creates an
inductive bias towards smooth functions.

Problem: this is very expensive!

NNTD (UofT) CSC2541-Lec12 19 / 42

Non-Uniqueness

In practice, we usually do warm-start training: alternate between

Optimize w to convergence (or just for a handful of steps) starting
from its current value
Update λ using the hypergradient

Now w is implicitly regularized to be close to its previous value,
not the initialization. This gives the optimization procedure a
memory of past solutions.

NNTD (UofT) CSC2541-Lec12 20 / 42

Non-Uniqueness

NNTD (UofT) CSC2541-Lec12 21 / 42

Non-Uniqueness

Why does warm-start optimization have a memory?

For simplicity, suppose we’re not optimizing λ, but cycling
through a fixed set of values.

Inner problem: linear regression with one data point.

The warm-start procedure is equivalent to the Kaczmarz
algorithm, the alternating projection method from Lecture 7.

Under some conditions, it converges to the intersection of the
constraint set (i.e. the weights learn to fit all the training examples.)

NNTD (UofT) CSC2541-Lec12 22 / 42

Non-Uniqueness

NNTD (UofT) CSC2541-Lec12 23 / 42

Effect of Hypergradient Approximation

Another source of implicit bias is that the hypergradient is only
computed approximately.

Recall the IFT hypergradient formula:

d

dλ
[Jval(λ, r(λ))] =

∂Jval
∂λ

(λ, r(λ))︸ ︷︷ ︸
direct term

+

(
∂r

∂λ
(λ)

)>∂Jval
∂w

(λ, r(λ))︸ ︷︷ ︸
response term

∂r

∂λ
=

(
∂2Jtr
∂w2

)−1
︸ ︷︷ ︸

=H−1

∂2Jtr
∂w∂λ

This requires approximation because of the H−1!

NNTD (UofT) CSC2541-Lec12 24 / 42

Effect of Hypergradient Approximation

Neumann iterations are a method for solving high-dimensional
linear systems.

They are based on Neumann series: for any matrix A such that
I−A is invertible,

(I−A)−1 =

∞∑
k=0

Ak

Plugging in A = I− αH for H positive definite and
α < 1/λmax(H) (where λmax(H) is the largest eigenvalue of H):

H−1 = α

∞∑
k=0

(I− αH)k

NNTD (UofT) CSC2541-Lec12 25 / 42

Effect of Hypergradient Approximation

Truncating this to the first K terms:

H−1 ≈ α
K∑
k=0

(I− αH)k

Efficient recurrence for a polynomial I + A + · · ·+ AK−1:

C0 = I Ck = ACk−1 + I

Using this to approximate H−1b:
v0 ← αb
For k = 1, . . . ,K − 1,

vk ← αb+ (I− αH)vk−1 (= vk−1 + αb− αHvk−1)

Note that Hvk−1 is just a hessian-vector product.

This is equivalent to gradient descent on the quadratic:

J (v) =
1

2
v>Hv − b>v

NNTD (UofT) CSC2541-Lec12 26 / 42

Effect of the Hypergradient Approximation

Consider another toy problem, anti-distillation. For a 1-D
regression problem, we have 1 original training point and 13
distilled points.
Since the outer objective is overparameterized, there are many
global optima.
The inner objective is a Fourier basis regression with an inductive
bias for smoothness.
What do you think will happen if we optimize the distilled points
using the exact hypergradient?

NNTD (UofT) CSC2541-Lec12 27 / 42

Effect of the Hypergradient Approximation

Gradient descent on the outer objective tries to find the min-norm
solution (i.e. the one closest to the initialization).
Only the middle point matters, so the min-norm solution only
changes this point.
The inner optimizer has no choice but to fit this dataset, which it
can only do with great difficulty.

Now what do you think will happen if we approximate the
hypergradient with Neumann iterations?
NNTD (UofT) CSC2541-Lec12 28 / 42

Effect of the Hypergradient Approximation

NNTD (UofT) CSC2541-Lec12 29 / 42

Effect of the Hypergradient Approximation

What’s going on???

NNTD (UofT) CSC2541-Lec12 30 / 42

Effect of Hypergradient Approximation

Observation:

α

K∑
k=1

(I− αH)k ≈ (H + ηI)−1 for η =
1

αK

The RHS is just the damped inverse (Lecture 4).
Since the LHS and RHS are both matrix functions of H, they
share the same eigenvectors as H, and their eigenvalues are
functions of the eigenvalues of H.

10 5 10 4 10 3 10 2 10 1 100

Eigenvalue of H

100

101

102

103

104

105

Ei
ge

nv
al

ue
 o

f m
at

rix
 fu

nc
tio

n

= 0.1, K = 1000, = 0.01
exact inv
damped inv
Neumann

NNTD (UofT) CSC2541-Lec12 31 / 42

Effect of Hypergradient Approximation

What is the effect of approximation H−1 with (H + ηI)−1 in the
IFT formula?

This is the exact hypergradient for an approximate bilevel
program with a proximity term added to the inner objective:

λ∗ = arg min
λ

Jout(λ,w∗(λ))

s.t. w∗(λ) , arg min
w

Jin(λ,w) +
η

2
‖w −w0‖2,

where w0 are the current inner parameters, which are an optimal
solution to the original inner objective Jin.

Note that the proximity term is minimized at w0, so w0 is the
unique optimum of the proximal inner objective.

NNTD (UofT) CSC2541-Lec12 32 / 42

Effect of Hypergradient Approximation

Why doesn’t the proximal hypergradient match the exact
hypergradient?

= 1

= 0

= 1

Inner Objective and Response Function

||w w0||2

Proximity Term

= 1

= 0

= 1

Proximal Inner Objective and Response Function

The proximal best-response function (and hence the proximal
response Jacobian) is insensitive to low-curvature directions of the
inner objective.

NNTD (UofT) CSC2541-Lec12 33 / 42

Effect of Hypergradient Approximation

Farnia and Ozdaglar, ICML 2020, “Do GANs always have Nash
equilibria?”

This paper introduced the notion of proximal equilibrium, a
solution concept that interpolates between Nash and Stackelberg
equilibria.

A pair (λ∗,w∗) is a proximal equilibrium with parameter η if it is
a solution (Stackerlberg equilibrium) to the bilevel program with
the proximity term:

λ∗ ∈ arg min
λ

Jout(λ, r(λ))

s.t. w∗ = r(λ) , arg min
w

Jin(λ∗,w) +
η

2
‖w −w∗‖2,

For η = 0, this is just the Stackelberg equilibrium.

For η > 0, the follower can’t react as strongly to the leader.

As η →∞, the follower can’t react at all, so this reduces to the
Nash equilibrium.
NNTD (UofT) CSC2541-Lec12 34 / 42

Effect of Hypergradient Approximation

Recall the effect of min-norm bias in Fourier regression (Lecture 6):

NNTD (UofT) CSC2541-Lec12 35 / 42

Effect of Hypergradient Approximation

High curvature directions for inner optimizer = low frequencies

When approximating the hypergradient with Neumann iterations,
the response Jacobian doesn’t “know” that the inner optimizer is
able to fit high frequencies!

Hence, it only makes adjustments in the low frequency directions.

NNTD (UofT) CSC2541-Lec12 36 / 42

Effect of Hypergradient Approximation

Note: this is not the same as an inductive bias for smooth
functions. If the initialization is noisy, it remembers the noise.

NNTD (UofT) CSC2541-Lec12 37 / 42

Effect of Hypergradient Approximation

If we approximate the hypergradient by unrolling gradient descent
instead of IFT with Neumann iterations, the implicit bias is
similar.

= 1

= 0

= 1
Exact Response
Function

Unrolled Approximation

Current
 w

Exact Response vs. Unrolling

NNTD (UofT) CSC2541-Lec12 38 / 42

Effect of Hypergradient Approximation

Approximating the hypergradient with Neumann iterations or
unrolling (the two most common choices) creates an implicit bias
where it only accounts for high-curvature directions of the inner
objective.

The learned objective might not generalize well if you switch to a
different inner optimizer at test time, or optimize for more
iterations.

Influence functions (Lecture 11) are typically estimated with a
variant of Neumann iterations.

Hence, they may be insensitive to lower-curvature directions in
weight space.

While the min-norm bias has a strong effect on single-level
optimization, you at least have the same implicit bias regardless of
the learning rate, momentum, etc.

In bilevel optimization, the implicit bias seems to depend heavily on
the hyperparameter!

NNTD (UofT) CSC2541-Lec12 39 / 42

Summary: Bilevel Optimization and Generalization

Summary: Generalization phenomena in bilevel optimization

Meta-descent on the learning rate fails to generalize to long
horizons since it myopically lowers α to reduce the gradient noise.
Cold-start optimization encourages simple/smooth solutions to the
inner objective.
Warm-start optimization creates a memory of past iterates, leading
to outer solutions that fail to generalize under reinitialization.
Approximating the hypergradient with Neumann iterations or
unrolling only accounts for high-curvature directions of the inner
objective.

NNTD (UofT) CSC2541-Lec12 40 / 42

Closing Thoughts

NNTD (UofT) CSC2541-Lec12 41 / 42

Closing Thoughts

Some (mostly) open questions about bilevel optimization dynamics:

When is the outer objective smooth or chaotic?

When should we use a simultaneous vs. a Stackelberg game?

What are the effects of various ways of approximating H−1?

How is bilevel optimization affected by stochastic gradients?

Are we in the noise-dominated or curvature-dominated regime, and
are these even the right concepts to consider?

Can we understand and improve the game dynamics for STNs and
other approaches?

What do H, G, etc. for the inner and outer objectives tell us about
the game dynamics? (E.g., how to understand the centering effect
in ∆-STNs?)

NNTD (UofT) CSC2541-Lec12 42 / 42

