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Today

Most of this course considered the optimization setting:
minimizing a single cost function

Last lecture considered differential games, where two or more
“players” or “agents” simultaneously minimize/maximize different
functions

Goal was to find a Nash equilibrium (no player can improve its
utility by deviating from its current action, given the other players’
actions)

Now we consider bilevel optimization: minimize a cost function
defined in terms of the optimal solution to another cost function

In game theory, this is a Stackelberg game, or leader-follower game.
The difference is that one player moves first.
The analogous solution concept is a Stackelberg equilibrium.

NNTD (UofT) CSC2541-Lec11 2 / 45



Bilevel Optimization

In bilevel (or nested) optimization, the outer (or upper) objective
is defined in terms of the optimal solution to an inner (or lower)
objective.

λ∗ ∈ “ arg min
λ

”Jout(λ,w∗) s.t. w∗ ∈ arg min
w

Jin(λ,w),

where λ are the outer variables and w are the inner variables.

I’ll use hyperparameter optimization as a running example. Here,
λ are the hyperparameters, and w are the network weights. Jout is
the validation loss, and Jin is the regularized training loss.

Here, I write ∈ because the optimum may not be unique.

There are scare quotes around the arg min since it’s hard to write
down a precise definition for the general case.
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Bilevel Optimization

For most of this lecture, I’ll make the simplifying assumption that
the optima are unique. In this case, we can define the
best-response function, or rational reaction function,

w∗ = r(λ) = arg min
w

Jin(λ,w)

The Implicit Function Theorem (IFT) proves existence under
conditions which we won’t worry about

We can rewrite the optimization problem as:

λ∗ = arg min
λ

Jout(λ, r(λ)) where r(λ) , arg min
w

Jin(λ,w).
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Bilevel Optimization

Example best-response function (green)
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Black-Box Approaches

One approach is to treat the outer objective as a black box: we
can query function values, but not gradients, Hessians, etc.

Each query: train the network and measure the validation loss

The simplest algorithms are non-adaptive, like grid search and
random search

There are also adaptive algorithms which make use of information
from past evaluations, like Bayesian optimization

Drawbacks: can’t use gradient information, each query is expensive

I won’t cover black-box methods since they don’t raise any new
NNTD issues
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Hypergradient
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Hypergradient

Gradient-based optimizers are usually much more efficient than
black-box ones
To do gradient descent on λ, we need the total gradient of Jval
with respect to λ. This is often called the hypergradient, to
distinguish it from the inner gradient.

total gradient︷ ︸︸ ︷
d

dλ
[Jval(λ, r(λ))] =

∂Jval
∂λ

(λ, r(λ))︸ ︷︷ ︸
direct gradient

+

response Jacobian︷ ︸︸ ︷(
∂r

∂λ
(λ)

)> ∂Jval
∂w

(λ, r(λ))︸ ︷︷ ︸
response gradient

This is just the Chain Rule. In CSC2516 backprop notation,

Jval = 1

w =
∂Jval
∂w

>
Jval

λ =
∂Jval
∂λ

>
Jval +

∂w

∂λ

>
w

<latexit sha1_base64="nde0J/J4N6EXzxaR422Vda5tKIg="></latexit>

�
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Hypergradient: Direct Term

d

dλ
[Jval(λ, r(λ))] =

∂Jval
∂λ

(λ, r(λ))+

(
∂r

∂λ
(λ)

)> ∂Jval
∂w

(λ, r(λ)) <latexit sha1_base64="nde0J/J4N6EXzxaR422Vda5tKIg="></latexit>

�
<latexit sha1_base64="RvFRUPFImQWR4tqHYAxmyUE3tqs="></latexit>w

<latexit sha1_base64="bnJNHsLNJOp6DmDiraU6HqpE3BI="></latexit>Jval

For optimizing regularization hyperparameters, the direct term is
typically not very interesting

Regularizers like dropout or data augmentation aren’t applied at
validation time
Therefore, the direct term is 0

Example where we’d use a direct term: λ parameterizes a neural
net architecture (# layers, # units, etc.), and we want to penalize
the amount of memory or the number of arithmetic operations
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Hypergradient: Response Term

d

dλ
[Jval(λ, r(λ))] =

∂Jval
∂λ

(λ, r(λ))+

(
∂r

∂λ
(λ)

)> ∂Jval
∂w

(λ, r(λ)) <latexit sha1_base64="nde0J/J4N6EXzxaR422Vda5tKIg="></latexit>

�
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The response term is more interesting: it says how changing λ
influences the Jval by way of changing w∗

The response Jacobian ∂r/∂λ measures how the optimal solution
changes due to infinitesimal perturbations to λ

NNTD (UofT) CSC2541-Lec11 10 / 45



Hypergradient: Response Term

Formula for the response gradient (also given in Lecture 2):

∂r

∂λ
(λ) = −

(
∂2Jtr
∂w2

(λ, r(λ))

)−1
︸ ︷︷ ︸

=H−1

∂2Jtr
∂λ∂w

(λ, r(λ))

Sanity check from Lecture 2:

J (w;λ) = g(w) + λw for λ = 0 and λ = 3

How on earth do we wind up with H−1?
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Hypergradient: Response Term

We can derive the response Jacobian using a neat trick called
implicit differentiation

At a minimum r(λ) of the inner objective, ∂Jtr/∂w = 0

Since this holds for any λ, the total derivative w.r.t. λ must be 0:

d

dλ

[
∂Jtr
∂w

(λ, r(λ))

]
= 0

We expand this total derivative using the Chain Rule:

d

dλ

[
∂Jtr
∂w

(λ, r(λ))

]
=

∂2Jtr
∂λ∂w

(λ, r(λ))︸ ︷︷ ︸
direct term

+

(
∂r

∂λ
(λ)

)> ∂2Jtr
∂w2

(λ, r(λ))︸ ︷︷ ︸
response term

Set this equal to 0 and solve for ∂r/∂λ:

∂r

∂λ
(λ) = −

(
∂2Jtr
∂w2

(λ, r(λ))

)−1
∂2Jtr
∂λ∂w

(λ, r(λ))
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Computing the Hypergradient
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Computing the Hypergradient

Want to compute:

d

dλ
[Jval(λ, r(λ))] =

∂Jval
∂λ

(λ, r(λ)) +

(
∂r

∂λ
(λ)

)>∂Jval
∂w

(λ, r(λ))

The direct term and ∂Jval/∂w are easy to compute

The hard part is multiplying by the response Jacobian, which
requires the inverse Hessian:

∂r

∂λ
=

(
∂2Jtr
∂w2

)−1
︸ ︷︷ ︸

=H−1

∂2Jtr
∂w∂λ

The hypergradient is almost always estimated in one of two ways:
1 Approximately solve the linear system using an iterative algorithm

(e.g. CG), like many examples from this class
2 Unroll the inner optimization, and backprop through it as if it were

a neural net
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Computation: Solving the Linear System

Approach 1: Iteratively solve the linear system

First, optimize the inner objective to convergence

In practice, we usually settle for approximate solutions, but the
theoretical justification is unclear

We can solve the linear system using algorithms like CG,
computing the Hessian-vector products in the usual way (see
Lecture 2)
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Computation: Solving the Linear System

Examples:

Bengio (2000) used implicit differentiation to optimize ML
hyperparameters (exact solution for small models)

Lorraine et al. (2020): optimizing millions of hyperparameters

Influence functions (Koh and Liang, 2017) (coming up)

Optimization layers (Amos and Kolter, 2017): neural net layers
defined implicitly in terms of the solution to an optimization
problem

generalized the IFT trick to constrained optimization

Deep equilibrium models (Bai et al., 2019)

Implicit MAML (Rajeswaran et al., 2019): a variant of MAML
that uses implicit differentiation

The original MAML uses unrolling (covered next)
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Computation: Unrolling

Approach 2: Unroll the inner optimization

Computation graph for gradient descent:

Backprop through this graph in the usual way

Figure Credit: David Duvenaud
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Computation: Unrolling

In contrast to implicit differentiation, unrolling can be used to
tune optimization hyperparameters (this is known as
meta-optimization)

Here’s the computation graph for adapting the learning rate
(known as meta-descent)

Just because you can do this doesn’t mean it’s a good idea. We’ll
see in just a bit what actually happens.

Figure: Wu et al., 2018, “Understanding short-horizon bias”
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Computation: Unrolling

Examples:

Domke (2012): learning energy-based models

Maclaurin et al. (2015): hyperparameter optimization (student
presentation next week)

This was also the paper that introduced Autograd, the predecessor
to JAX

MAML (Finn et al., 2017): student presentation next week

adapting learning rates (Baydin et al., 2018)

“Learning to learn by gradient descent by gradient descent”
(Andrychowicz et al., 2016): tried to use unrolling to learn an
optimization algorithm (represented as an RNN)

differentiable neural architecture search (DARTS) (Liu et al.,
2019) (unrolls only one iteration???)
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Implicit Differentiation vs. Unrolling
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Implicit Differentiation vs. Unrolling

Which method to use?

Lorraine et al. (2020) related the two methods to each other.

Suppose we unroll the inner optimization and train it to
covergence. Then we use truncated backprop through time, which
only backprops through the last K time steps

They showed that this method is equivalent to approximately
solving the IFT system by doing gradient descent on a quadratic
objective

1
2∆w>H∆w +∇λ∇wJtr(w)>∆w

This is also equivalent to Neumann iterations, a method for
solving linear systems
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Implicit Differentiation vs. Unrolling

Educated guess: implicit differentiation using Neumann
iterations will behave similarly to unrolling gradient descent, for
problems where they’re both applicable

I’m not aware of any rigorous investigation of this
Implicit differentiation using CG should converge more efficiently
for deterministic inner objectives
For stochastic inner objectives (e.g. neural net training), stochastic
Neumann iterations (SGD on the quadratic) should be more
efficient than (batch) CG in practice, if it’s noise dominated rather
than curvature dominated (Lecture 7)

This was the approach taken by Koh et al. (2017) for influence
functions
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Implicit Differentiation vs. Unrolling

Implicit differentiation uses much less memory than unrolling
Unrolling requires storing the individual iterates (parameter
vectors) along the optimziation trajectory
A big piece of Maclaurin et al. (2015)’s work on hyperparameter
optimization was a scheme for cheaply storing the parameter vectors

Figure: Bai et al., “Deep equilibrium models”
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Implicit Differentiation vs. Unrolling

To summarize:

Unrolled SGD is closely related to implicit differentiation with
Neumann iterations

Some advantages of implicit differentiation:

Lower memory costs
Can use faster-converging algorithms for solving the linear system
(e.g. CG, Broyden’s method)

Some advantages of unrolling:

Trivial to implement (in JAX)
Can adapt optimization hyperparameters
Still makes sense if the inner minimization is approximate

In practice, they’re largely interchangeable, in cases where they’re
both applicable

Both methods have the drawback that you have to do an inner
optimization for every outer update
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Influence Functions
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Influence Functions

Koh and Liang, 2017, “Understanding black-box predictions via
influence functions.”

Goal: understand which training examples are most important by
determining which ones, if removed, result in the largest change to
a prediction, or to the test loss.

Abstractly, we determine the effect of an infinitesimal change to a
dataset by computing the hypergradient of the following bilevel
program:

η∗ = arg min
η

f(w∗(η))

w∗(η) = arg min
w

Jη(w,Dη),

where Jη is the training objective, and Dη is the training set,
parameterized by η.
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Influence Functions

If we are interested in estimating the impact of removing training
examples, we can let η represent the weightings on each of the
training examples:

Jη(w) =
1

N

N∑
i=1

ηiL(f(w,x(i)), t(i))

The influence is given by the hypergradient, evaluated at ηi = 1
for all i.

Conceptually, this is a first-order Taylor approximation to the
effect of removing the training example.

Additional error is introduced by the fact that the hypergradient
can only be computed approximately. (They use LiSSA, a variant
of stochastic Neumann iterations.)
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Influence Functions

Conceptually, the influence of a training example approximates the
effect of training the network with that example removed.

Why is this computationally advantageous?

The näıve approach requires separately re-training the network for
each training example you want to compute the influence of.
By computing the hypergradient, we get the influence for all
training examples by solving a single linear system.
Their method, using LiSSA, requires K Hessian-vector products on
mini-batches. Each one is about as expensive as an SGD update.
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Influence Functions

They measure the accuracy of the approximation by comparing
the influence estimate against the results of retraining the model
with the data point removed.

Caution: more recent work showed that influence estimates are
often inaccurate. More work is needed to determine when you can
expect accurate results. See Basu et al., “Influence functions in
deep learning are fragile.”
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Influence Functions

We can understand the difference between two models (in this
case, an RBF model vs. Inception CNN) by seeing which training
examples are the most relevant to a prediction:
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Influence Functions

They use the same algorithmic technique for data poisoning.

Goal: modify a training example in a way that makes the learned
classifier perform poorly on a set of test images.

Here, η parameterizes a training image, rather than the weightings
of the training examples. Otherwise, the algorithm is identical.
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Hypernetworks
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Hypernetworks

Another approach we’re starting to explore is to learn a
hypernetwork which tries to approximate the best-response
function

Takes in λ, outputs w

At any time, we have a guess of the optimal λ. We want the
hypernet to be accurate in the vicinity of λ

Figures: Lorraine and Duvenaud, “Stochastic hyperparameter optimization through hypernetworks”
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Hypernetworks

Best-response function approximated in a parametric form (linear):
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Hypernetworks

Suppose we’ve somehow learned a hypernetwork rφ. We can
compute the hypergradient by computing the derivatives of:

J φ
val(λ) = Jval(λ, rφ(λ))

This is just ordinary backprop. No inverse Hessian required!

Computing the gradient requires the value and Jacobian of rφ(λ).
Our goal in training the hypernetwork is to make sure these are
accurate at λ.

In contrast to implicit differentiation and unrolling, this lets us
amortize the cost of computing the hypergradient.
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Hypernetworks

Training iteration for the hypernetwork:

Sample perturbed hyperparameters λ′ = λ + ε, ε ∼ N (0,Σ)
Sample a training batch (index i)
Do the gradient update:

φ← φ− α∇φJtr(λ′, rφ(λ′))

Note: the perturbation scale Σ is important

Figure: MacKay et al., “Self-tuning networks”
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Self-Tuning Networks

Problem: the hypernetwork is an extremely high-dimensional
mapping

Input dimension is H (number of hyperparameters), output
dimension is D (number of network parameters)

We can linearize the network, but it’s still size HD

Self-tuning networks (STNs) (MacKay et al., 2019) are the first
scalable approach to bilevel optimization using hypernetworks.
The trick is a compact and efficient representation of the hypernet
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Self-Tuning Networks

Some inspiration: the following architecture exactly represents
the global best-response function for linear regression

We have an ordinary network (the base network) whose
activations are modulated based on λ

This modulation can be equivalently interpreted as rescaling the
rows of the weight matrix:

Q(λ) = σ(λv + c)�row Q0

This is essentially how STN layers are defined (details in the
paper)
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Self-Tuning Networks

The hyperparameters λ and the hypernetwork parameters φ are
trained jointly

This converts the bilevel optimization problem into a simultaneous
game (as in Lecture 10)

The perturbation scale σ is also adapted simultaneously
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Self-Tuning Networks

Training 15 hyperparameters of a CIFAR-10 classifier

layer-specific dropout

input noise

discrete data augmentation (cutout)

continuous data augmentation (perturb hue, saturation,
brightness, contrast)
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Self-Tuning Networks

Adapting the dropout rate for an LSTM PTB language model

Yields a schedule that seems to outperform any particular
hyperparameter

Note that the initialization is unlearned quickly
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∆-STN

Remember how it’s a good idea to center the inputs? (Lecture 1)

Our original STN used an uncentered parameterization of the
hypernetwork:

w = rφ(λ) = Φλ + φ0

The ∆-STN (Bae and Grosse, 2020) makes several algorithmic
improvements, including a centered parameterization:

rφ(λ) = Φ(λ − λ0) + w0

In Lecture 1, we understood this trick in terms of conditioning and
outlier eigenvalues.

That explanation still applies, but for hypernetworks uncentering
causes an even bigger problem.
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∆-STN

STN parameterization:

rφ(λ) = Φλ + φ0

Gradient descent update for Φ:

Φ← Φ− α[∇wJtr(λ,w)]λ>

So early in training, approximately Φ ∝ −gλ>, where g is the
weight gradient.

The response Jacobian mistakenly thinks that adjusting λ in the
direction λ will cause w∗(λ) to move opposite the gradient
direction!
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∆-STN

Illustrative Example:

Jval(λ,w) =
1

10
λ2 + w

Jtr(λ,w) = w2

This is an easy problem, since
the inner objective doesn’t
depend on λ.

The response Jacobian is 0, so
λ and w can be optimized
separately.

Optimum: λ = w = 0.

Uncentered parameterization:

Centered parameterization:

NNTD (UofT) CSC2541-Lec11 44 / 45



∆-STN

Centering eliminates some pathological choices of hyperparameters
early in training
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