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Differentiable Games

So far, we have been focusing on optimization, where the
parameters of a neural net are chosen to minimize a single cost
function.

What if multiple networks (or other optimization variables) are
being optimized simultaneously to different objectives?

z∗i ∈ arg min
zi

fi(zi, z
∗
−i)

The different networks are like players in a game.

This week: simultaneous games
Next two weeks: sequential games

NNTD (UofT) CSC2541-Lec10 2 / 50



Motivation: GANs
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Implicit Generative Models

Implicit generative models learn a mapping from random noise vectors
to things that look like, e.g., images:
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Generative Adversarial Networks

The advantage of implicit generative models: if you have some
criterion for evaluating the quality of samples, then you can
compute its gradient with respect to the network parameters, and
update the network’s parameters to make the sample a little better

The idea behind Generative Adversarial Networks (GANs): train
two different networks

The generator network tries to produce realistic-looking samples
The discriminator network tries to figure out whether an image
came from the training set or the generator network

The generator network tries to fool the discriminator network
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Generative Adversarial Networks
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Generative Adversarial Networks

Let D denote the discriminator’s predicted probability of being
data

Discriminator’s cost function: cross-entropy loss for task of
classifying real vs. fake images

JD = Ex∼D[− logD(x)] + Ez[− log(1−D(G(z)))]

One possible cost function for the generator: the opposite of the
discriminator’s

JG = −JD
= const + Ez[log(1−D(G(z)))]

This is called the minimax formulation, since the generator and
discriminator are playing a zero-sum game against each other:

max
G

min
D
JD
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Generative Adversarial Networks

Updating the discriminator:
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Generative Adversarial Networks

Updating the generator:
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Generative Adversarial Networks

Alternating training of the generator and discriminator:

(Goodfellow et al., “Generative adversarial nets”)
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GAN Samples

Bedrooms:

Karras et al., 2017. Progressive growing of GANs for improved quality, stability, and variation
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GAN Samples

ImageNet object categories (by BigGAN, a much larger model with a
bunch more engineering tricks):

Brock et al., 2019. Large scale GAN training for high fidelity natural image synthesis.
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Generative Adversarial Networks

Caveat: I introduced the minimax (zero-sum) formulation, which
is how GANs are typically introduced. This is why they’re often
used as a motivation for minimax optimization.
In practice, the generator is typically trained with a different
objective which doesn’t saturate. This is the non-saturating
formulation. Hence typical GANs aren’t actually zero-sum.

Original minimax cost:

JG = Ez[log(1−D(G(z)))]

Modified generator cost:

JG = Ez[− logD(G(z))]

This fixes the saturation problem.

A variant of GANs called the Wasserstein GAN (WGAN) uses a
genuine minimax formulation, and is also well-motivated from a
statistical standpoint.

While it doesn’t seem to work quite as well as ordinary GANs in
practice, it’s a useful test case for minimax optimization algorithms.
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Differentiable Games
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Differentiable Games

A differentiable game involves two or more players, indexed by i.
We use −i as a shorthand to denote all players except Player i.

Each player chooses a parameter vector zi, and wants to minimize
its own cost function fi(zi, z−i).

If the fi are all equal, this is a perfectly cooperative game, and
essentially reduces to ordinary optimization.

The next simplest case is the minimax, or perfectly competitive,
setting, as with GANs. Here, there are two players, typically
denoted x and y, and the losses are zero-sum, i.e.,
f2(x,y) = −f1(x,y).

I.e., player x minimizes a function f and player y maximizes f .
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Differentiable Games

In the most basic dynamics, each player simultaneously updates
their parameters opposite the gradient direction for their own loss,
treating the other players as fixed:

z
(k+1)
i ← z

(k)
i − η∇zifi(z

(k)
i , z

(k)
−i ) for all i.

In the minimax setting, this is known as gradient descent-ascent
(GDA):

x(k+1) ← x(k) − η∇xf(x(k),y(k))

y(k+1) ← y(k) + η∇yf(x(k),y(k))

As before, we can also consider the gradient flow:

żi = −η∇zifi(zi, z−i) for all i.
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Differentiable Games

Example: Matching Pennies

Each player secretly turns a penny to Heads or Tails, and then
reveals the choice. If the pennies match, then player x wins,
otherwise y wins.
This is a zero-sum game.
Each player chooses a mixed strategy parameterized by zi ∈ [0, 1],
the probability of choosing Heads.
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Differentiable Games

Example: Prisoner’s Dilemma
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Differentiable Games

Example: Prisoner’s Dilemma

Each player chooses a mixed strategy parameterized by zi ∈ [0, 1],
the probability of cooperation.
This is a non-zero-sum game. E.g., if both players cooperate, then
they’re both better off than if they both defect.
However, defection is a dominant strategy, i.e. each player is
better off defecting regardless of the opponent’s strategy.
Gradient dynamics lead to mutual defection:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prob. Player 1 Cooperates

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ob

. P
la

ye
r 2

 C
oo

pe
ra

te
s

NNTD (UofT) CSC2541-Lec10 19 / 50



Differentiable Games

Remember the Lorenz system?

ẋ = a(y − x)

ẏ = x(b− z)− y
ż = xy − cz

Image: By Dschwen - Own work, CC BY
2.5 https://commons.wikimedia.org/w/index.

php?curid=494694

It’s easy to write down a differentiable game such that the
gradient flow has these dynamics:

fx(x, y, z) = −a(xy − 1
2x

2)

fy(x, y, z) = −xy(b− z) + 1
2y

2

fz(x, y, z) = −xyz + c
2z

2
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Solving Differentiable Games

NNTD (UofT) CSC2541-Lec10 21 / 50



Solving Differentiable Games

In optimization, we were searching for a (local) optimum. What’s
the analogue for differentiable games?

Assume for simplicity that the action space is unconstrained.

The most basic requirement is to be at a fixed point:

∇zifi(zi, z−i) = 0 for all i

A Nash equilibrium occurs when each player minimizes their own
loss, i.e. no player has an incentive to deviate.

z∗i ∈ arg min
zi

fi(zi, z
∗
−i)

This may be too much to ask if each player’s loss is nonconvex
(and hence we can’t expect to find global optima).

A local Nash equilibrium occurs which each player minimizes their
loss within a neighborhood.
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Solving Differentiable Games

In the minimax case, we can distinguish several solution concepts:
Local Nash equilibrium (as before):

x∗ ∈ arg min
x∈N (x∗)

f(x,y∗)

y∗ ∈ arg max
y∈N (y∗)

f(x∗,y)

Local minimax, a solution concept for a sequential game where x
moves first. (Sequential games are covered next week.)
Stable limit points of GDA, i.e. fixed points where the GDA flow is
convergent.

Amazingly, these solution concepts are not equivalent!

Wang et al., “On solving minimax optimization locally”
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Solving Differentiable Games

The following function has a stable limit point of GDA which isn’t
a local Nash equilibrium:

f(x, y) = −1
8x

2 − 1
2y

2 + 6
10xy

10

Daskalakis and Panageas, “The limit points of (optimistic) gradient descent in min-max
optimization”

NNTD (UofT) CSC2541-Lec10 24 / 50



Solving Differentiable Games

To get efficient convergence guarantees, we
need stronger assumptions.

Let’s focus on two-player, strongly-convex
strongly-concave, zero-sum games.

min
x

max
y

f(x,y)

(many insights carry over to more general
settings)

Strong duality (minimax theorem) holds, i.e.,

min
x

max
y

f(x,y) = max
y

min
x
f(x,y)

Local Nash equilibrium is global and it is unique.

Even for this simple setting, convergence can be slow because the
“rotational force” necessitate extremely small learning rates.
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Solving Differentiable Games

Consider the general dynamics:

z(k+1) = z(k) − ηF (z(k))

(where F is a vector field)

Linear case: F (z) = Hz

Minimization: H is symmetric and all eigenvalues are real
Differentiable Games: H is non-symmetric and can have
complex eigenvalues (with large imaginary parts)

min f(x, y) = 0.5x2 + 0.5y2 minx maxy f(x, y) = 0.5x2 + 10xy− 0.5y2
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Simultaneous Gradient Descent-Ascent
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Simultaneous Gradient Descent-Ascent

Now I’ll refer to GDA as Simultaneous GDA (Sim-GDA) to emphasize
that both players update simultaneously:

x(k+1) ← x(k) − η∇xf(x(k),y(k))

y(k+1) ← y(k) + η∇yf(x(k),y(k))

We can compactly write it as z(k+1) ← z(k) − ηF (z(k)) where
z = [x>,y>]> and F (z) = [∇xf(x,y)>,−∇yf(x,y)>]>.

Assuming a quadratic problem f(x,y) = 1
2x>Ax + x>By − 1

2y>Cy

We have the dynamics:

z(k+1) ← (I− ηH)z(k)

where z = [x>,y>]> and H =

[
A B
−B> C

]
H is often called the game Hessian by analogy with the ordinary
Hessian, though in general it’s not symmetric.
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Convergence Analysis of Sim-GDA

Setting: Smooth and strongly-monotone games

Lipschitz Smooth: a vector field F is Lipschitz if for any z1, z2 and
a parameter L:

‖F (z1)− F (z2)‖ ≤ L‖z1 − z2‖

Strongly Monotone: a vector field F is strongly monotone if for any
z1, z2 and a parameter µ:

(F (z1)− F (z2))>(z1 − z2) ≥ µ‖z1 − z2‖2

This property is analogous to strong convexity.

Condition number: κ , L
µ

Quadratic case: F (z) = Hz where H � µI and ‖H‖ ≤ L
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Convergence Analysis of Sim-GDA

Recall that the dynamics of Sim-GDA: z(k+1) ← (I− ηH)z(k)

Its convergence rate is minη ρ(I− ηH) = minη maxλ∈Sp(H) ‖1− ηλ‖

Image Credit: Negative Momentum for
Improved Game Dynamics

Eigenvalues of H

The best convergence rate is limited by the eigenvalue
λ = µ+

√
L2 − µ2i.

The optimal convergence rate is 1− 1
κ2 , which implies that Sim-GDA

takes roughly O(κ2) steps to converge. Recall that gradient descent only
takes O(κ) steps to converge in minimizing a strongly-convex function!
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Can we accelerate the convergence of Sim-GDA?
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Rotational Dynamics: Games and Momentum

The culprit for slow convergence is the complex eigenvalues, which
cause rotational behavior.
This is closely analogous to the momentum dynamics discussed
last week:

Momentum

J (w) = 1
2w

2

v̇ = −∇J (w)

ẇ = v

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Position

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ve
lo

cit
y

Matching Pennies game
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Rotational Dynamics: Games and Momentum

Two ideas motivated by this momentum analogy:

1 If momentum creates oscillations, then can we remove oscillations
by doing the opposite of momentum?

2 Nesterov Accelerated Gradient dampens the oscillations by
computing the gradient at an extrapolated point. Can we do the
same thing for differentiable games?

(Sutskever et al., 2013)
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Negative Momentum

Negative momentum is basically Heavy-ball momentum with a negative
damping value:

z(k+1) ← (1 + β)z(k) − βz(k−1) − ηF (z(k))

Intuition: negative momentum reduces the imaginary parts of complex
eigenvalues, and hence suppresses the rotational behaviour. (recall the
rate of Sim-GDA was limited by the eigevalue λ = µ+

√
L2 − µ2i)

Negative momentum converges in O(κ1.5) steps, which is slightly faster than
Sim-GDA (recall the complexity of O(κ2)). However, this rate is suboptimal as
some other algorithms converge in O(κ) steps.

Proving this convergence rate is hard. Need to leverage the connection
between Chebyshev polynomial and Heavy-ball momentum. See “On the
suboptimality of negative momentum for minimax optimization”.
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Negative Momentum

Image Credit: Negative Momentum for Improved Game Dynamics
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Extra-Gradient Method

The Extra-gradient method computes the gradient with one-step
lookahead (extrapolated gradient):

z(k+1/2) ← z(k) − ηF (z(k))

z(k+1) ← z(k) − ηF (z(k+1/2))

It was first proposed by Korpelevich in 70’s to solve monotone
variational inequality problem.

It was recently re-introduced by Gidel, et.al (2019) and Mokhtari, et.al
(2019) in the context of differentiable games and minimax optimization.

Over the last three years, more than 10 papers discussed the
extra-gradient method in different settings.
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Extra-Gradient Method

Extra-gradient can be motivated as an approximation to the proximal
point method (Rockafeller, 1976), which is an implicit method:

z(k+1) ← z(k) − ηF (z(k+1))

Intuition: compute gradient at a future point, but it is not
implementable in many cases (chicken and egg situtation).

In optimization, the proximal point method is largely regarded as a
“conceptual” guiding principle for accelerating optimization algorithms.
NAG can be derived from the proximal point method (see “From
Proximal Point Method to Nesterov’s Acceleration” paper).

It can be shown that for smooth and strongly monotone games, the
proximal point method converges linearly for any η:

‖z(k) − z∗‖2 ≤
(

1

1 + 2ηµ

)k
‖z(0) − z∗‖2

check out the proof in “A Unified Analysis of First-Order Methods for Smooth Games via Integral
Quadratic Constraints”
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Extra-Gradient Method

The extra-gradient method computes the gradient with one-step
lookahead:

z(k+1/2) ← z(k) − ηF (z(k))

z(k+1) ← z(k) − ηF (z(k+1/2))

Intuition: approximate F (z(k+1)) with F (z(k+1/2)), hoping to inherit the
convergence properties of proximal point method.

Formally, it can shown that starting with the same z(k), the solution of

extra-gradient z
(k+1)
eg after one step is relatively close to the solution of

proximal point method z
(k+1)
ppm :

‖z(k+1)
eg − z(k+1)

ppm ‖ ≤ o(η2)

Under the same set of assumptions, the extra-gradient method converges
linearly

‖z(k) − z∗‖2 ≤
(

1− 1

2κ

)k
‖z(0) − z∗‖2

see more details in “A Unified Analysis of Extra-gradient and Optimistic Gradient Methods for Saddle
Point Problems: Proximal Point Approach”

NNTD (UofT) CSC2541-Lec10 38 / 50



Extra-Gradient Method

Negative momentum, Extra-gradient, and related methods are
easy to implement and have provably faster convergence rates than
Sim-GDA in the strongly-convex-strongly-concave setting.

Still, they’re not used much in practice for models like GANs.

Observation: models are typically trained with alternating, rather
than simultaneous, GDA updates.

Maybe alternating GDA is more efficient?

NNTD (UofT) CSC2541-Lec10 39 / 50



Alternating Gradient Descent-Ascent

Alt-GDA updates multiple players
sequentially:

x(k+1) ← x(k) − η∇xf(x(k),y(k))

y(k+1) ← y(k) + η∇yf(x(k+1),y(k))

Alt-GDA converges with O(κ) steps
(which matches the coarse lower-bound).

The result could be extended to n-player
setting (ongoing work).

In the bilinear case, Alt-GDA is a
symplectic integrator applied on the
continuous dynamic.

Left: f(x, y) = 10xy;

Right: 0.5x2 + 10xy − 0.5y2;
Top: Sim-GDA;

Bottem: Alt-GDA.

The discussion of simultaneous and alternating updates dates back to
the Jacobi and Gauss-Seidel methods in numerical linear algebra, see the
celebrated Stein-Rosenberg theorem.

see more details in “Don’t fix what ain’t broke: near-optimal local convergence of alternating gradient
descent-ascent for minimax optimization”
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Alternating Gradient Descent-Ascent

Consider the quadratic problem f(x,y) = 1
2x>Ax + x>By − 1

2y>Cy.

We have Alt-GDA as the following form:[
x(k+1)

y(k+1)

]
←
[

I− ηA −ηB
ηB>(I− ηA) I− ηC− η2B>B

]
︸ ︷︷ ︸

JAlt

[
x(k)

y(k)

]

Recall Sim-GDA dynamcis for the
quadratic case:[

x(k+1)

y(k+1)

]
←
[
I− ηA −ηB
ηB> I− ηC

]
︸ ︷︷ ︸

JSim

[
x(k)

y(k)

]

Alt-GDA allows us to use larger step
sizes. The optimal step size for
Sim-GDA is µ

L2 while the optimal one
for Alt-GDA is roughly 1

L .

Re

Im

Eigenvalues of JAlt (green dots) and JSim
(red dots) for the minimax problem

f(x, y) = 0.3x2 + 1.2xy − 0.3y2. Their
trajectories as η sweeps in [0, 1] are shown

from light colors to dark colors
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Alternating Gradient Descent-Ascent

We are implicitly using alternating updates in GAN training.
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DCGAN on CIFAR-10. Left: SGD as base optimizer; Right: AMSGrad as base optimizer.
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Comparison between different algorithms
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Distances to the optimum as a function of iterations on a quadratic minimax problem.
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Opponent Shaping
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Opponent Shaping

So far, our updates have all treated the opponents’ strategies as
fixed. Our only concern was faster convergence.

However, some equilibria may be better than others. It can be
advantageous to consider the opponent’s learning process in order
to land in a more advantageous equilibrium.

Recall: in the (single-shot) Prisoner’s Dilemma, the unique Nash
equilibrium is (Defect, Defect), which is suboptimal for both
players.

In the Iterated Prisoner’s Dilemma (IPD), the players play each
other for multiple rounds, and can condition their action on the
opponent’s previous action.

Unlike the single-shot case, it’s possible for cooperation to emerge
in the IPD.
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Opponent Shaping

Consider the Tit-for-Tat (TFT) strategy:

Cooperate in the first round.
In subsequent rounds, copy the opponent’s action from the previous
round.

What is your optimal strategy if your opponent is playing TFT?

Two players playing TFT will cooperate with each other, and
hence improve the social welfare (average payoff). This is a Nash
equilibrium.

This is an instance of reciprocity: agents settle on an equilibrium
where cooperation is individually beneficial.
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Opponent Shaping

To make the IPD into a differentiable game, consider the following
tabular policy representation:

There are 4 possible observations from the previous time step,
depending if each player cooperated or defected.
The policy is represented as a vector in R4, with the probability of
cooperation for each of the 4 possible observations.

GDA usually lands in the bad Nash equilibrium.

Defection is usually the best response to a fixed opponent policy,
unless that policy specifically rewards cooperation. Most randomly
chosen policies don’t do this.
Need to account for the opponent’s learning behavior!
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Opponent Shaping

Opponent shaping algorithms consider the opponent’s learning rule
when determining an agent’s update.

Ordinary gradient dynamics:

z
(k+1)
1 ← z

(k)
1 − η∇z1f1(z

(k)
1 , z

(k)
2 ) for all i.

Learning with Opponent Learning Awareness (LOLA)
differentiates through one gradient descent update of the opponent:

z
(k+1)
1 ← z

(k)
1 − η∇z1

[
f1(z1, z

(k)
2 + ∆z2(z1))

]
∆z2(z1) , −η′∇z2f2(z1, z

(k)
2 )

Intuition: the opponent’s learning gradient update will tend to
move towards its best response. So LOLA favors parameters for
which the opponent’s best response is to cooperate.
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Opponent Shaping

In the Iterated Prisoner’s Dilemma, gradient dynamics (“naive
learning”) converges to defection, while LOLA converges to
Tit-for-Tat.

Left: conditional probabilities of cooperation for naive learner.

Middle: conditional probabilities of cooperation for LOLA.

Right: average returns when playing against a LOLA agent.

Foerster et al., “Learning with opponent learning awareness”
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Opponent Shaping

Most of this lecture has focused on simultaneous games, where the
relevant solution concept is a Nash equilibrium.

In a Nash equilibrium, all players choose their best response
assuming the opponents’ parameters are fixed.

LOLA doesn’t find Nash equilibria in general, since each player is
considering how the opponents will respond to their policy. It’s
hard to characterize the solutions it actually converges to.

It sort of hints at sequential games, which we’ll cover in the next 2
weeks.

One player (the leader) goes first, and has to consider how the other
player will react to its choice of parameters.
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