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Today

So far, we’ve focused entirely on gradient descent dynamics

In the remainder of the course, we’ll branch out to more general
dynamics

Today

What can happen in more general dynamical systems?
Momentum optimization

understanding your homework derivation
Nesterov Accelerated Gradient
accelerated convergence

A brief taste of what we can learn from linear systems and control
theory.

Lots of similar ideas used to understand differentiable game
dynamics
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Dynamical Systems

So far, all of our analysis has been based on a single recurrence:

w(k) = w(k−1) − α∇J (w(k−1))

(preconditioning = GD in another coordinate system)

Linear case (H symmetric):

w(k) = w(k−1) − αHw(k−1) ⇒ w(k) = (I− αH)kw(0)

Gradient flow

ẇ = −α∇J (w) = −αHw ⇒ w(t) = exp(−αtH)w(0)

What can happen?
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Dynamical Systems

Now let’s move beyond this and consider other sorts of dynamics

Today: momentum (accelerating convergence for ordinary
optimization)
Next week: simultaneous optimization for differential games
Weeks 11 and 12: bilevel optimization

Consider more general dynamics

Discrete time:

w(k) = w(k−1) − αf(w(k−1))

Continuous time:
ẇ = −αf(w)

f is a vector field which is not necessarily integrable, i.e. not
necessarily the gradient of any function
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Dynamical Systems

Linear case:
f(w) = Aw, with A not necessarily symmetric
Discrete time:

w(k) = w(k−1) − αAw(k−1) ⇒ w(k) = (I− αA)kw(0)

Continuous time:

ẇ = −αAw ⇒ w(t) = exp(−αtA)w(0)

If A is not symmetric, it can have complex and/or repeated
eigenvalues. This leads to more possible behaviors:

Image: https://en.wikipedia.org/wiki/Dynamical_system
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Dynamical Systems

What else can happen in the nonlinear case?

In 2 dimensions or higher, you can get limit cycles:

Image: By User:XaosBits at English
Wikipedia, CC BY 2.5, https://commons.
wikimedia.org/w/index.php?curid=732841

In 3 dimensions or higher, you can get chaotic dynamics, such as
strange attractors. Here’s the Lorenz system:

ẋ = a(y − x)

ẏ = x(b− z)− y
ż = xy − cz

Image: By Dschwen - Own work, CC BY
2.5, https://commons.wikimedia.org/w/index.
php?curid=494694

NNTD (UofT) CSC2541-Lec9 6 / 52

https://commons.wikimedia.org/w/index.php?curid=732841
https://commons.wikimedia.org/w/index.php?curid=732841
https://commons.wikimedia.org/w/index.php?curid=494694
https://commons.wikimedia.org/w/index.php?curid=494694


Dynamical Systems

For discrete mappings, chaos can arise even more easily.

f(x) = 3.5x (1− x)

fc(z) = z2 + c

Image: https:

//en.wikipedia.org/wiki/Mandelbrot_set
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Heavy Ball Momentum
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Heavy Ball Momentum

Heavy ball momentum is a simple and highly effective method for
speeding up convergence of gradient descent

v(k+1) ← βv(k) − α∇J (w(k))

w(k+1) ← w(k) + v(k+1)

α is the learning rate, just like in gradient descent.

β is a damping/viscosity parameter. It should be slightly less than
1 (e.g. 0.9 or 0.99). Why not exactly 1?

Continuous dynamics (ignore learning rate for simplicity):

v̇(t) = −µv(t)−∇J (w(t))

ẇ(t) = v(t)

Physical analogy: imagine a “heavy ball” rolling on a nearly flat
surface, where J represents height
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Heavy Ball Momentum

Why is this a good idea?

No one-sentence explanation that I’m aware of

Ordinary gradient descent corresponds to β = 0 (extremely high
damping/viscosity). This is like submerging the ball in a thick
fluid

In the high curvature directions, the
gradients cancel each other out, so
momentum dampens the oscillations.

In the low curvature directions, the
gradients point in the same direction,
allowing the parameters to pick up
speed.

Goodfellow et al., Deep Learning

For homework, you analyzed its convergence in the quadratic case
by computing the system’s eigenvalues. Let’s try to understand
why you got the answer that you did.
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Heavy Ball Momentum

In the problem set, you analyzed the dynamics of HB for convex
quadratics. Recap:

Fixed points: ∇J (w) = 0,v = 0

Rotation invariant

Can assume diagoal WLOG, in which case each coordinate evolves
independently

There’s a critical threshold T such that directions with 0 < hj < T
approach 0 monotonically (the overdamped case) and directions
with T < hj < hmax oscillate (the underdamped case)

Underdamped directions have only real eigenvalues, while
overdamped directions have complex eigenvalues
T = α−1(1−√β)2 = O(α−1(1− β)2)
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Heavy Ball Momentum

Dynamics of different eigendirections with β = 0.9 (all directions
overdamped)

And here’s β = 0.999 (all directions underdamped)

Figures from Lucas et al., “Aggregated momentum: Stability
through passive damping”
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Heavy Ball Momentum

Phase space visualization (plots both w and v) from Goh, “Why
momentum really works”
(https://distill.pub/2017/momentum/)
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Heavy Ball Momentum

The overdamped case:

If the gradient is constant (i.e. the cost surface is a plane), the
parameters will reach a terminal velocity of

− α

1− β∇J (w),

which resembles gradient descent with learning rate α̃ = α/(1− β). This
quantity is the effective learning rate.

If α̃h is very small (the highly overdamped case), the particle will move
slowly, and this should be a good approximation.

For a convex quadratic, the spectral radius for SGD with learning rate α̃
is |1− α̃h|.
In your homework, you probably derived an answer like:

1
2 (γ +

√
γ2 − 4β) γ = 1 + β − αh

With a bunch of algebra, you can show this is approximately 1− α̃h for
small α. (Try looking at the limit as α→ 0.)
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Heavy Ball Momentum
The underdamped case:

Let’s start with the continuous dynamics:

v̇(t) = −µv(t)−∇J (w(t))

ẇ(t) = v(t)

A common way to prove stability of a dynamical system is to find
a Lyapunov function, which is nonincreasing and is minimized at
the equlibrium point
For systems based on physics, this is often related to the energy
Define

E = J (w)︸ ︷︷ ︸
potential energy

+ 1
2‖v‖2︸ ︷︷ ︸

kinetic energy

Change in energy over time (i.e. dissipation):

Ė = ẇ>∇J (w) + v̇>v

= v>∇J (w)−∇J (w)>v − µv>v

= −µ‖v‖2
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Heavy Ball Momentum

Consider the dynamics for a convex quadratic along one
eigenvector with curvature h

Suppose there’s no damping, i.e. µ = 0. Then energy is conserved.

Eliminating v, we can rewrite the dynamics as

ẅ(t) = −hw

This is a simple harmonic oscillator. If w(0) > 0 and v(0) = 0,
then it has the solution

w(t) = A cosωt

v(t) = ẇ(t) = −ωA sinωt

A = w(0)

ω =
√
h

Observe that E = 1
2ω

2A2 = 1
2hA

2
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Heavy Ball Momentum

Now suppose µ is small. There are two timescales:
On the short timescale, it’s a harmonic oscillator with amplitude
A(t)
On the long timescale, energy dissipates

Instantaneous dissipation:

Ė(t) = −µ‖v(t)‖2 = −µω2A(t)2 sin2 ωt

On a long timescale, the rate of dissipation is the temporal average
of Ė , which is

−1
2µω

2A(t)2 = −1
2µhA(t)2 = −µE(t)

Differential equation:
Ė(t) = −µE ,

which is exponential decay with timescale 1/µ

Note: this is independent of h!
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Heavy Ball Momentum

Compare to the observed behavior

β = 0.9 (overdamped):

β = 0.999 (underdamped):
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Heavy Ball Momentum
For homework, you derived the spectral
radius

ρ =

{
1
2
(γ +

√
γ2 − 4β) if h ≤ T

√
β if h > T .

T = α−1(1−
√
β)2

This is plotted on the right (assuming
α = h−1max)

Based on this figure, you want to choose β such that the minimum
curvature direction is critically damped, i.e., T = hmin

Solving for β,

β =

(
1− 1√

κ

)2

Rate of convergence (all directions are underdamped):

− log ρ = − 1
2 log β ≈ 1/

√
κ

Compare to 1/κ for gradient descent
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Heavy Ball Momentum

An aside:

We analyzed the underdamped case for the continuous dynamics
(damped harmonic oscillator).

Why does this predict the behavior in the discrete case? Shouldn’t
the discretization error hurt convergence?

In particular, if β = 1, then the spectral radius is 1.

In the continuous case, we explained this using conservation of
energy. Does this extend to the discrete dynamics?

No! Energy is not conserved!
The actual reason is very deep.

I noticed this puzzle when typing up the homework solutions.
Thanks to Chris Maddison for pointing me to the answer!
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Heavy Ball Momentum

By shifting the “start” of the update by half a time step, we can
rewrite HB momentum as a leapfrog integrator, a kind of
symplectic integrator:

v(k+ 1
2 ) = v(k) − α

2
∇J (w(k))

w(k+1) = w(k) + v(k+ 1
2 )

v(k+1) = v(k+ 1
2 ) − α

2
∇J (w(k+1))

Symplectic integrators can be shown to approximately conserve a
different but related function called the shadow Hamiltonian. For
quadratics, it’s exact. See Hairer et al., “Geometric numerical
integration”
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Nesterov Accelerated Gradient

NNTD (UofT) CSC2541-Lec9 22 / 52



Nesterov Accelerated Gradient

Polyak invented HB momentum in 1964 (and discussed the physics
analogy)

Nesterov invented a similar update rule in 1983 now called the
Nesterov Accelerated Gradient (NAG) which he proved achieved
optimal convergence for convex quadratics

Even though Nesterov was Polyak’s student, he seems not to have
mentioned the physics analogy

Methods similar to HB and NAG are often called accelerated
methods. Ironically, the term “accelerated” has nothing to do with
the physics analogy and just refers to converging faster.

“Chebyshev acceleration” predated the HB paper by about a decade

Sutskever et al. (2013) popularized NAG in machine learning and
revived the momentum interpretation
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Nesterov Accelerated Gradient

NAG update rule (as presented in d’Aspremont et al.,
“Accelerated Methods”):

y(k) = w(k) + τk(z
(k) −w(k))

w(k+1) = y(k) − αk∇J (y(k))

z(k+1) = z(k) − γk∇J (y(k))

Nesterov used a carefully chosen schedule of αk, τk, and γk to
obtain optimal convergence rates. In DL, we tend to use constant
values.

NNTD (UofT) CSC2541-Lec9 24 / 52



Nesterov Accelerated Gradient

Sutskever et al. (2013) rewrote the update in
a way that emphasizes its similarity to HB:

v(k+1) = βv(k) − α∇J (w(k)+βv(k))

w(k+1) = w(k) + v(k+1)

This extrapolation trick is commonly used to
dampen oscillations in dynamical systems.
Some other examples:

The D term in PID controllers can be
interpreted as extrapolating the state, and
can dampen the oscillations created by the I
term.

See Hu and Lessard, 2017, “Control
interpretations for first-order optimization
methods”

Extragradient, an algorithm for solving
differentiable games (Lecture 10)

Top: HB momentum.

Bottom: NAG

(Sutskever et al., 2013)
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Nesterov Accelerated Gradient

Compared to HB, NAG dampens the high-frequency oscillations.

Figure from Lucas et al., “Aggregated momentum”. CM = classical
momentum (= HB).

This effect doesn’t affect the convergence rate for quadratics (since the
low frequency oscillations come to dominate), but I’d guess this is helpful
for non-quadratics (where high-frequency oscillations might cause bigger
problems)
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Aggregated Momentum

Lucas et al., ICML 2019, “Aggregated momentum: Stability through
passive damping”

Inspired by the idea of dampening oscillations, we came up with
Aggregated Momentum (AggMo).

This uses the heavy ball update, except that it additively
combines NV velocity vectors with different damping parameters.

v
(k+1)
i = βiv

(k)
i − α∇J (w(k)) for i = 1, . . . , NV

w(k+1) = w(k) +
1

NV

NV∑
i=1

v
(k+1)
i

Reasonable default: β = [0, 0.9, 0.99]

NAG with fixed damping parameter β̃ is very nearly equivalent to
AggMo with two velocity components, and β = [0, β̃]. (Details in
the paper — it’s just a few lines of algebra.) So AggMo may
provide a useful perspective on what NAG is doing.
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Aggregated Momentum
Intuition: suppose β = [0, 0.9, 0.999].
The velocity vector with damping parameter 0.999 will be the most
aggressive, and generally the largest in magnitude.
The velocity vector with parameter 0 points opposite the gradient
direction, i.e. towards 0.

It will therefore tend to dissipate energy (by reducing the potential
energy in each step.)
However, it is generally small in magnitude, so the dissipation effect
is small.

The velocity vector with parameter 0.9 will also tend to point inwards

and hence dissipate energy. But it’s larger in magnitude, and therefore

has a stronger effect.
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Aggregated Momentum

AggMo dampens oscillations even more strongly than NAG:
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Aggregated Momentum

The dampening effect seems useful even outside of quadratic problems:
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Accelerated Convergence
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Accelerated Convergence

Recall:

Condition number κ = hmax/hmin

Gradient descent on a convex quadratic requires O(κ) iterations to
reach a given loss (Lecture 1)
Conjugate gradient requires O(

√
κ) iterations

In the problem set, you showed much faster convergence was
possible using HB

How fast do HB and NAG converge?

Can we do better, e.g. with a fancier update rule, or using more
than 2 past iterates?
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Accelerated Convergence

Oracle model of optimization: in each iteration, you query a weight
vector w(k), and the oracle returns J (w(k)) and ∇J (w(k)).

Think of the oracle as an adversary (it can choose values and
gradients to make life hard for your algorithm)
You can’t query things like the sparsity pattern, curvature, etc., so
this rules out preconditioning
Captures iterative methods like GD, HB, NAG, CG

Strongly convex optimization:

Strong convexity: for all w and w′, and a parameter µ,

J (w) ≥ J (w′) +∇J (w′)>(w −w′) + µ
2 ‖w −w′‖2

Lipschitz smoothness: for all w and w′ and a parameter L,

‖∇J (w)−∇J (w′)‖ ≤ L‖w −w′‖

Condition number κ = L/µ (generalizes the quadratic case)
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Accelerated Convergence

The following function helps illustrate the difficulties of first-order
optimization:

J (w) = 1
2(1− w1)

2 +

D−1∑
j=1

1
2(wj+1 − wj)2

Observe: This is a quadratic objective J (w) = 1
2w>Aw − b>w,

with (for D = 5):

A =


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

 b =


1
0
0
0
0


Initialization: w1 = · · · = wD = 0
Optimal solution: w1 = · · · = wD = 1
Variants of this function can be used to show an O(

√
κ) lower

bound for convergence under the oracle model. See Nesterov,
“Introductory lectures on convex optimization”
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Accelerated Convergence

J (w) = 1
2(1− w1)

2 +

D−1∑
j=1

1
2(wj+1 − wj)2

Recall about conjugate gradient:

Krylov subspace

Kk(A, r) = span{r,Ar, . . . ,Ak−1r}

In iteration k, CG finds the minimum of J over Kk(A,b).
The kth iterate of CG achieves the minimum loss achievable in k
iterations by any algorithm based on gradients and linear
combinations. This includes GD and GD with momentum.

Here, A is tridiagonal and b = (1, 0, . . . , 0)>.

What is Kk(A,b)?
How do you think CG will behave?
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Accelerated Convergence

Here’s the behavior of CG for
N = 100.

Information diffuses slowly:

The Krylov subspace Kk is
spanned by the first k coordinate
vectors.
I.e., CG finds the optimal
solution subject to all
coordinates after k being 0.
The optimal solution
interpolates linearly from 1 to 0,
and achieves a loss of 1/(k + 1)
Subject to this constraint, the
minimum achievable loss in k
iterations is 1/k

Dashed line = speed of light.

step 20

step 40

step 60

step 80

step 100
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Accelerated Convergence

Here is gradient descent
with α = 0.5 (somewhat
close to optimal).

Intuition: the gradient
descent update is
somewhat like diffusion.
So the information
travels like

√
k instead

of like k.

Next slide: heavy ball

momentum with

α = 0.5 and β = 0.97

(somewhat close to

optimal).

step 20

step 60

step 100

step 200

step 400

Conjugate
Gradients

Gradient
Descent
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Accelerated Convergence

step 20

step 60

step 100

step 200

step 400

Conjugate
Gradients

Gradient
Descent

Heavy Ball
Momentum
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Accelerated Convergence

HB momentum achieves the optimal convergence rate for
quadratics (as we showed earlier in lecture)

But HB doesn’t achieve this convergence rate for general strongly
convex functions!

See Lessard et al., ”Analysis and design of optimization algorithms
via integral quadratic constraints”
This paper uses techniques from control theory to automatically
analyze convergence rates of first-order optimizers (including GD,
HB, NAG) by solving certain semidefinite programs
Among many interesting contributions, they exhibit a convex
function for which HB fails to achieve the optimal convergence rate

NAG achieves the optimal convergence rate for strongly convex
functions

Nesterov’s proof is very involved, and I haven’t yet seen an
explanation I could cover in the scope of this lecture

Conjugate gradient (which is exactly optimal for quadratics) often
behaves a lot like HB momentum for ill-conditioned quadratics
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A Controls Perspective
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A Controls Perspective

Control theory provides a powerful way to understand first-order
optimization methods, including gradient descent and the various
forms of momentum.
Disclaimer: I have no formal controls background. My knowledge
is limited to what Guodong and Jenny have explained to me.
Errors are my own.
In the basic control setup, one would like to choose a control signal
u as input to a process P such that P ’s output y matches a
reference signal r as closely as possible. I.e., we’d like to make the
error e as small as possible.
One does this by designing a controller K, which is typically a
linear time invariant (LTI) system.

K P
r e = r - y u y

NNTD (UofT) CSC2541-Lec9 41 / 52



A Controls Perspective

Suppose we are trying to minimize a scalar convex quadratic:

J (w) =
λ

2
(w − w∗)2

The control signal is the parameter w, and the reference signal is
the optimum w∗. While w∗ is fixed, for analysis it’s useful to treat
it as a time-varying signal.

The process computes the gradient of the cost, which in this case
is g = ∇J (w) = λ(w − w∗).
The controller is the optimization algorithm. It takes in the
gradient, and implicitly also has a memory of past values of w.

K
r = w* e = w* - w w<latexit sha1_base64="pNMqb62F2niDUfahffk3kiOeY/w="></latexit>

g = rJ (w)
<latexit sha1_base64="Wzg+xnCIr3yrQDx36s4Zz7ybxeg="></latexit>

P = ��
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A Controls Perspective

K
r = w* e = w* - w w<latexit sha1_base64="pNMqb62F2niDUfahffk3kiOeY/w=">AAAEMnicdVNLb9NAEN7UPEp4NIUT4rKiQipSFdmhgVyQKloE4iGKoE1FHUXr9Thedb1r7a7TRsbi13CFC38GbogrP4LdNEGt247k9Wi+b2a+He1EOWfa+P7PxoJ36fKVq4vXmtdv3Ly11Fq+vatloSjsUMml2ouIBs4E7BhmOOzlCkgWcehHB5sO749BaSbFRzPJYZCRkWAJo8TY0LB1d4Sf4lCQiBMcZsSklPDyVbV6+HDYWvHbnaAX+F3st7u94FHHOUGv013v4qDtT20FzWx7uOw1wljSIgNhKCda7wd+bgYlUYZRDlUzLDTkhB6QEexbV5AM9KCc3qHCD2wkxolU9hMGT6MnM0qSaT3JIst0MnUdc8HzsP3CJL1ByUReGBD0uFFScGwkdgPBMVNADZ9Yh1DFrFZMU6IINXZszWYo4JDKLCMiLsMDHrNxVZahyvBWNZz+X7+pqjrrGVG6KsO18HO4ZsEtsPNQ8NZqe5eDIkYqyxoDrUp3nM6Go9zqsdnuKlFUPq8uqrAprRZ31FTmVn2mncxI8tgNTXIcmhQMqUtNmE5B2bI19os6MU+Eo9jXgT/VMUHM9rktz2mYSfc8jpkJ1nVYF0kyw0Z1bATigyEGZvhRVb/3OGJkXvlM4/QEGNXBQ2Cj9L+qfh0eszk0PlOWxTModXrs0sw3A1/s7HbaweN28H59ZaM3W59FdA/dR6soQE/QBnqJttEOougL+oq+oe/eD++X99v7c0xdaMxy7qBT5v39B21ndEw=</latexit>

g = rJ (w)
<latexit sha1_base64="Wzg+xnCIr3yrQDx36s4Zz7ybxeg="></latexit>

P = ��

Since the objective is quadratic, the process is linear time
invariant (LTI).

For the controller, algorithms like GD, heavy ball momentum, and
NAG are all LTI.

Therefore, the entire system is linear, i.e. the trajectory of the
optimization variable w is a linear function of the reference signal
w∗.
It can be characterized in terms of things like the transfer
function, step response, impulse response, etc. See last week’s
tutorial for how to do this using the z-transform.
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A Controls Perspective

The system’s step response determines how it changes in response
to a sudden change in the reference signal. This tells us about the
convergence for a deterministic cost function.

The idea: w∗ = 0 for all times in the past, so the system has
“settled in” to the initial value of 0. Then we begin optimizing
with w∗ = 1.

Step responses of GD and heavy ball with various values of the
curvature λ and learning rate α:
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A Controls Perspective

The impulse response h of the system is the response to an
impulse (delta function).
The parameter trajectory is obtained by convolving the reference
signal with the impulse response, i.e.

w = w∗ ∗ h

w[t] =

∞∑
τ=0

h[τ ]w∗[t− τ ]

Impulse responses of various optimizers:
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A Controls Perspective
The impulse function helps us understand the noise sensitivity of the
optimizer. Suppose the reference signal is corrupted with i.i.d. noise ε:

ŵ∗[t] = w∗[t] + ε[t] ε[t] ∼ N (0, σ2) for t ≥ 0.

Analyzing the contribution of the noise:

w[t] =
t∑

τ=0

h[τ ]ŵ∗[t− τ ]

=

t∑
τ=0

h[τ ]w∗[t− τ ]︸ ︷︷ ︸
noiseless trajectory

+
t∑

τ=0

h[τ ]ε[t− τ ]︸ ︷︷ ︸
noise term

Evaluating the noise senitivity using the basic identities of variance:

variance of noise term = σ2
t∑

τ=0

h[τ ]2.

Therefore, the noise sensitivity depends on the L2 norm of h.

Note that h has to integrate to 1 in order for the optimizer to converge
in expectation. Therefore, to minimize noise, we’d like h to be as flat as
possible.
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A Controls Perspective

Impulse responses of various optimizers:

20 0 20 40 60 80 100
0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
Gradient Descent

 = 0.1
 = 0.03
 = 0.01

20 0 20 40 60 80 100
0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
Heavy Ball, = 0.9

 = 0.1
 = 0.03
 = 0.01

20 0 20 40 60 80 100
0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
Heavy Ball, = 0.99

 = 0.1
 = 0.03
 = 0.01

Unfortunately, the larger impulse response makes HB momentum
more sensitive to noise, compared with GD.
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A Controls Perspective
HB momentum can also be understood as GD with an exponential
moving average of the gradients.

Recall iterate averaging (Lecture 7): exponential moving average of the
parameters:

w(k) = w(k−1) − α∇J (w(k))

w̃(k) = µw̃(k−1) + (1− µ)w(k)

These algorithms essentially differ based on whether the EMA is inside
or outside the optimization loop:

P EMA GD

P EMAGD

Heavy Ball Momentum

GD with Iterate Averaging
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A Controls perspective

Since iterate averaging is applied outside the optimization loop,
the impulse response of the entire system is convolved with the
impulse response of the EMA.

= *

Full impulse response Original impulse response EMA impulse response

This tends to flatten the impulse response, which reduces the noise
sensitivity.

NNTD (UofT) CSC2541-Lec9 49 / 52



A Controls Perspective

Iterate averaging helps flatten the impulse response, reducing noise
sensitivity.
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A Controls Perspective

Recall from Lecture 7: HB momentum and iterate averaging, despite
their superficial similarity, have very different benefits.

HB Momentum Iterate Averaging
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A Controls Perspective

Everything I just showed you can be derived analytically using
frequency domain analysis, as discussed in last week’s tutorial.

While the analytical derivations only apply to the simplified
setting of quadratic objectives and i.i.d. noise, control theory has
developed powerful techniques for dealing with nonlinear systems,
non-i.i.d. noise, unknown dynamics, etc.

Hu and Lessard, 2017, “Control interpretations for first-order
optimization methods”

Interprets first-order optimization algorithms through the lens of
classical control theory, shows how this can be used to design
optimizers.

Lessard et al., 2016, “Analysis and design of optimization
algorithms via integral quadratic constraints”

Automatically analyzes the convergence rates of first-order
optimizers on convex functions using stability analysis techniques
from control theory.
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