CSC 2541: Neural Net Training Dynamics

Lecture 9 - Momentum

Roger Grosse

University of Toronto, Winter 2022

NNTD (UofT) CSC2541-Lec9 1/52

Today

@ So far, we’ve focused entirely on gradient descent dynamics

@ In the remainder of the course, we’ll branch out to more general
dynamics
o Today

e What can happen in more general dynamical systems?
e Momentum optimization

o understanding your homework derivation
o Nesterov Accelerated Gradient
o accelerated convergence

e A brief taste of what we can learn from linear systems and control
theory.
o Lots of similar ideas used to understand differentiable game
dynamics

NNTD (UofT) CSC2541-Lec9 2 /52

Dynamical Systems

@ So far, all of our analysis has been based on a single recurrence:
wF) = k=1 _ avj(w(k—l))
(preconditioning = GD in another coordinate system)
@ Linear case (H symmetric):
wh) = whkD _oHwkD o wk) = (I - o H)Fw(©
o Gradient flow
w=—-aVJ(w)=—-aoHw = w(t) = exp(—atH)w(0)

@ What can happen?

NNTD (UofT) CSC2541-Lec9 3/52

Dynamical Systems

e Now let’s move beyond this and consider other sorts of dynamics

o Today: momentum (accelerating convergence for ordinary
optimization)

o Next week: simultaneous optimization for differential games

e Weeks 11 and 12: bilevel optimization

o Consider more general dynamics
e Discrete time:

wk) = wk=D _ of (wk=1)

o Continuous time:
w = —af(w)

o f is a vector field which is not necessarily integrable, i.e. not
necessarily the gradient of any function

NNTD (UofT) CSC2541-Lec9 4/52

Dynamical Systems

e Linear case:
o f(w) = Aw, with A not necessarily symmetric
e Discrete time:

wh) = wk=1) _ g Awk—D = w®) = (I — aA)rFw©
e Continuous time:
W= —aAw = w(t) = exp(—atA)w(0)

e If A is not symmetric, it can have complex and/or repeated
eigenvalues. This leads to more possible behaviors:

Image: https://en.wikipedia.org/wiki/Dynamical_system
NNTD (UofT) CSC2541-Lec9 5Y/452

https://en.wikipedia.org/wiki/Dynamical_system

Dynamical Systems

What else can happen in the nonlinear case?

@ In 2 dimensions or higher, you can get limit cycles:

, —
2 / “
. / /)‘ Image: By User:XaosBits at English

Wikipedia, CC BY 2.5, https://commons.
W wikimedia.org/w/index.php?curid=732841
A = -
-1 0 1

o In 3 dimensions or higher, you can get chaotic dynamics, such as
strange attractors. Here’s the Lorenz system:

=a(y —xz)
y=alb—z2) -y
zZ=xy—cz

Image: By Dschwen - Own work, CC BY

2.5, https://commons.wikimedia.org/w/index.
php?curid=494694

CSC2541-Lec9 6/52

https://commons.wikimedia.org/w/index.php?curid=732841
https://commons.wikimedia.org/w/index.php?curid=732841
https://commons.wikimedia.org/w/index.php?curid=494694
https://commons.wikimedia.org/w/index.php?curid=494694

Dynamical Systems

For discrete mappings, chaos can arise even more easily.
fx)=35z(1—=x)

fe(z) = 22+

y= () =@

9 Image: https:
(,Ty large //en.wikipedia.org/wiki/Mandelbrot_set
T

%

y= GG Y=o o ()

6 times

NNTD (UofT) CSC2541-Lec9 7/52

https://en.wikipedia.org/wiki/Mandelbrot_set
https://en.wikipedia.org/wiki/Mandelbrot_set

Heavy Ball Momentum

NNTD (UofT) CSC2541-Lec9 8 /52

Heavy Ball Momentum

e Heavy ball momentum is a simple and highly effective method for
speeding up convergence of gradient descent

v gy _ v 7 (wh)

k+1) k+1)

w —wh 4yl

@ « is the learning rate, just like in gradient descent.

e [is a damping/viscosity parameter. It should be slightly less than
1 (e.g. 0.9 or 0.99). Why not exactly 17

e Continuous dynamics (ignore learning rate for simplicity):

V(t) = —pv(t) = VI (w(t))
w(t) = v(t)

o Physical analogy: imagine a “heavy ball” rolling on a nearly flat
surface, where J represents height

NNTD (UofT) CSC2541-Lec9 9/52

Heavy Ball Momentum

Why is this a good idea?
e No one-sentence explanation that I'm aware of
e Ordinary gradient descent corresponds to 8 = 0 (extremely high

damping/viscosity). This is like submerging the ball in a thick
fluid

o In the high curvature directions, the 20
gradients cancel each other out, so 10
momentum dampens the oscillations. 0

@ In the low curvature directions, the _10

gradients point in the same direction,
allowing the parameters to pick up
speed. 0 10 0 10 2

—-20

Goodfellow et al., Deep Learning
e For homework, you analyzed its convergence in the quadratic case

by computing the system’s eigenvalues. Let’s try to understand
why you got the answer that you did.

NNTD (UofT) CSC2541-Lec9 10 /52

Heavy Ball Momentum

In the problem set, you analyzed the dynamics of HB for convex
quadratics. Recap:

Fixed points: VJ(w) =0,v =0
Rotation invariant

Can assume diagoal WLOG, in which case each coordinate evolves
independently
There’s a critical threshold 7" such that directions with 0 < h; < T

approach 0 monotonically (the overdamped case) and directions
with T' < hj < hmax oscillate (the underdamped case)

e Underdamped directions have only real eigenvalues, while
overdamped directions have complex eigenvalues

o T=a'(1-yB)?2=0('(1-75)?

NNTD (UofT) CSC2541-Lec9 11 /52

NNTD (UofT)

Heavy Ball Momentum

e Dynamics of different eigendirections with 5 = 0.9 (all directions

overdamped)
!'u | __7__‘—*——__,____7
5 lk . e B —
® oo — A=0.01
e A=0.001
A=0.0001
s — A=1le-05
—!ﬂ.DO =00 1000 2500 i 200

00
Iterations (t)

e And here’s 5 = 0.999 (all directions underdamped)

15 | |
% w
as H
5.0 |
(YN

|V

-100
5

U INOU M B 1

e Figures from Lucas et al., “Aggregated momentum: Stability

through passive damping”
CSC2541-Lec9

7000)
Iterations (t}

12 /52

Heavy Ball Momentum

e Phase space visualization (plots both w and v) from Goh, “Why

momentum really works”
(https://distill.pub/2017/momentum/)

Momentum g

Underdamping

When A is too large we're
under-damping. Here the
resistance is too small, and
spring oscillates up and down
forever, missing the optimal
value over and over.

Critical Damping
The best value of § lies in the
middle of the two extremes.
This sweet spot happens when
the eigenvalues of R are
repeated, when

B=(1-yaX)

AN

reaches
optimum

CSC2541-Lec9

Overdamping

When A is too small (e.g. in
Gradient Descent, 8 = 0),
we're over-damping. The
particle is immersed in a
viscous fluid which saps it of
its kinetic energy at every
timestep.

13 /52

https://distill.pub/2017/momentum/

Heavy Ball Momentum

The overdamped case:

o If the gradient is constant (i.e. the cost surface is a plane), the
parameters will reach a terminal velocity of

o
—1C BV](W),

which resembles gradient descent with learning rate & = /(1 —). This
quantity is the effective learning rate.

@ If &h is very small (the highly overdamped case), the particle will move
slowly, and this should be a good approximation.

@ For a convex quadratic, the spectral radius for SGD with learning rate &
is |1 — ahl.

@ In your homework, you probably derived an answer like:

s(Y+V2—48) y=1+pB-ah

With a bunch of algebra, you can show this is approximately 1 — &h for
small a. (Try looking at the limit as a — 0.)

NNTD (UofT) CSC2541-Lec9 14 /52

Heavy Ball Momentum

The underdamped case:
o Let’s start with the continuous dynamics:

W(t) = —pv(t) — VI (w(2)
w(t) = v(t)

e A common way to prove stability of a dynamical system is to find
a Lyapunov function, which is nonincreasing and is minimized at
the equlibrium point

For systems based on physics, this is often related to the energy
Define

E= Jw) o+ VP

potential energy kinetic energy

Change in energy over time (i.e. dissipation):
E=w'VI(wW)+v'v
=v'VI(w) - VI(w) ' v—pv'v
= —pllv|

NNTD (UofT) CSC2541-Lec9 15 /52

Heavy Ball Momentum

e Consider the dynamics for a convex quadratic along one
eigenvector with curvature h

@ Suppose there’s no damping, i.e. © = 0. Then energy is conserved.

e Eliminating v, we can rewrite the dynamics as
w(t) = —hw

e This is a simple harmonic oscillator. If w(0) > 0 and v(0) = 0,
then it has the solution

w(t) = Acoswt
v(t) = w(t) = —wAsinwt
A =w(0)

I
>

@ Observe that £ = %w2A2 = %hA2

NNTD (UofT) CSC2541-Lec9 16 / 52

Heavy Ball Momentum

o Now suppose u is small. There are two timescales:
e On the short timescale, it’s a harmonic oscillator with amplitude

A(t)

e On the long timescale, energy dissipates

e Instantaneous dissipation:
E(t) = —pllv(D)II* = —pw?A(t)? sin® wi

e On a long timescale, the rate of dissipation is the temporal average
of £, which is

— 3P A(t)? = —phA(t)? = —pé(t)

o Differential equation:
5(2’:) = _/'Lga
which is exponential decay with timescale 1/u

e Note: this is independent of h!

NNTD (UofT) CSC2541-Lec9 17 /52

Heavy Ball Momentum

o Compare to the observed behavior
e 5 =0.9 (overdamped):

2000
Iterations (t)

NNTD (UofT) CSC2541-Lec9 18 /52

— =07

Heavy Ball Momentum 101|500 /7

— p=097

@ For homework, you derived the spectral o B J
radius = E’“”/
Sy+vr2—4B) ifh<T gr0°
r VB ifh>T on
T=a '(1-+/B)?

@ This is plotted on the right (assuming
_h—l) 10% 107° 107* 107% 1072 107! 10°
Q= Npax hihmax

@ Based on this figure, you want to choose § such that the minimum
curvature direction is critically damped, i.e., T = hyin

1\2
=(1- %)
@ Rate of convergence (all directions are underdamped):
—logp=—3logB~1/Vk

e Compare to 1/ for gradient descent
NNTD (UofT) CSC2541-Lec9 19 /52

@ Solving for 3,

Heavy Ball Momentum

An aside:

o We analyzed the underdamped case for the continuous dynamics
(damped harmonic oscillator).

e Why does this predict the behavior in the discrete case? Shouldn’t
the discretization error hurt convergence?
e In particular, if 3 = 1, then the spectral radius is 1.
o In the continuous case, we explained this using conservation of
energy. Does this extend to the discrete dynamics?
e No! Energy is not conserved!
e The actual reason is very deep.
o I noticed this puzzle when typing up the homework solutions.
Thanks to Chris Maddison for pointing me to the answer!

NNTD (UofT) CSC2541-Lec9 20 /52

Heavy Ball Momentum

e By shifting the “start” of the update by half a time step, we can
rewrite HB momentum as a leapfrog integrator, a kind of
symplectic integrator:

v+3) — k) _ %Vj(w(k))
W+) o yk+d)
v+ = y+d) _ %Vj(w(kJrl))
e Symplectic integrators can be shown to approximately conserve a
different but related function called the shadow Hamiltonian. For

quadratics, it’s exact. See Hairer et al., “Geometric numerical
integration”

NNTD (UofT) CSC2541-Lec9 21 /52

Nesterov Accelerated Gradient

NNTD (UofT) CSC2541-Lec9 22 /52

Nesterov Accelerated Gradient

e Polyak invented HB momentum in 1964 (and discussed the physics
analogy)
o Nesterov invented a similar update rule in 1983 now called the

Nesterov Accelerated Gradient (NAG) which he proved achieved
optimal convergence for convex quadratics

e Even though Nesterov was Polyak’s student, he seems not to have
mentioned the physics analogy

@ Methods similar to HB and NAG are often called accelerated
methods. Ironically, the term “accelerated” has nothing to do with
the physics analogy and just refers to converging faster.

e “Chebyshev acceleration” predated the HB paper by about a decade

e Sutskever et al. (2013) popularized NAG in machine learning and
revived the momentum interpretation

NNTD (UofT) CSC2541-Lec9 23 /52

Nesterov Accelerated Gradient

e NAG update rule (as presented in d’Aspremont et al.,
“Accelerated Methods”):
wktl) = (k) _ aij(y(k))
ZFD) (k) _ ’y;CVj(y(k))
o Nesterov used a carefully chosen schedule of ay, 7, and v to

obtain optimal convergence rates. In DL, we tend to use constant
values.

NNTD (UofT) CSC2541-Lec9 24 /52

Nesterov Accelerated Gradient

e Sutskever et al. (2013) rewrote the update in
a way that emphasizes its similarity to HB:

wlk+D) — k) | D)

o This extrapolation trick is commonly used to
dampen oscillations in dynamical systems.
Some other examples:

o The D term in PID controllers can be
interpreted as extrapolating the state, and
can dampen the oscillations created by the I

Top: HB momentum.

term. Bottom: NAG
e See Hu and Lessard, 2017, “Control (Sutskever et al., 2013)
interpretations for first-order optimization
methods”

o Extragradient, an algorithm for solving
differentiable games (Lecture 10)
NNTD (UofT) CSC2541-Lec9 25 /52

Nesterov Accelerated Gradient

@ Compared to HB, NAG dampens the high-frequency oscillations.

o ———— | il Mo
i “rzs Huuu,‘mf L
— A=1le-05 s fl:le—OS
- - o \kera;;:ns(t) - = wun : V = o \kerat’i’:ns(k) " un
@ CM (B =0.9 (b) CM (5 = 0.999)

Iterations (t)

(c) Nesterov (8 = 0.999)

o Figure from Lucas et al., “Aggregated momentum”. CM = classical
momentum (= HB).

@ This effect doesn’t affect the convergence rate for quadratics (since the
low frequency oscillations come to dominate), but I'd guess this is helpful

for non-quadratics (where high-frequency oscillations might cause bigger
problems)
NNTD (UofT) CSC2541-Lec9 26 /52

Aggregated Momentum

Lucas et al., ICML 2019, “Aggregated momentum: Stability through
passive damping”
o Inspired by the idea of dampening oscillations, we came up with
Aggregated Momentum (AggMo).

@ This uses the heavy ball update, except that it additively
combines Ny velocity vectors with different damping parameters.

v — gy ® v 7w®) fori=1,...,Ny

1 Ny ()

(k+1) _ o (k) k+1
W =w\" + E v
Ny P v

e Reasonable default: 8 =[0,0.9,0.99]

o NAG with fixed damping parameter 3 is very nearly equivalent to
AggMo with two velocity components, and 8 = [0, B] (Details in
the paper — it’s just a few lines of algebra.) So AggMo may
provide a useful perspective on what NAG is doing.

NNTD (UofT) CSC2541-Lec9 27 /52

Aggregated Momentum

@ Intuition: suppose 3 = [0,0.9,0.999].

@ The velocity vector with damping parameter 0.999 will be the most
aggressive, and generally the largest in magnitude.

@ The velocity vector with parameter 0 points opposite the gradient
direction, i.e. towards 0.

o It will therefore tend to dissipate energy (by reducing the potential
energy in each step.)

o However, it is generally small in magnitude, so the dissipation effect
is small.

@ The velocity vector with parameter 0.9 will also tend to point inwards
and hence dissipate energy. But it’s larger in magnitude, and therefore
has a stronger effect.

AggMo Velocities During Optimization of Quadratic

Iterations (t)
NNTD (UofT) CSC2541-Lec9 28 /52

Aggregated Momentum

AggMo dampens oscillations even more strongly than NAG:

N]
\ I —
b :& — A=0.01 *
==
- - Iterat,r:nsm - - - - b IleratT:nsm 00 00 E
@CM (5 =09 (b) CM (8 = 0.999)
i =
1 T AN COUA SN g [T —
NI =T YRS — seom
AV =i o B
B -) |[€ral,|°:nstt) - N) - - - Iterat?:ns:r) - - -
(c) Nesterov (5 = 0.999) (d) AggMo (8 = [0,0.9,0.99,0.999])

NNTD (UofT) CSC2541-Lec9 29 /52

Aggregated Momentum

The dampening effect seems useful even outside of quadratic problems:

Optimization Toy Problem

\”

NNTD (UofT) CSC2541-Lec9 30/52

Accelerated Convergence

NNTD (UofT) CSC2541-Lec9 31/52

Accelerated Convergence

o Recall:
o Condition number & = hmax/Pmin
o Gradient descent on a convex quadratic requires O(k) iterations to
reach a given loss (Lecture 1)
o Conjugate gradient requires O(/k) iterations
e In the problem set, you showed much faster convergence was
possible using HB
o How fast do HB and NAG converge?

e Can we do better, e.g. with a fancier update rule, or using more
than 2 past iterates?

NNTD (UofT) CSC2541-Lec9 32 /52

Accelerated Convergence

e Oracle model of optimization: in each iteration, you query a weight
vector w¥)| and the oracle returns J(w*)) and V.7 (w(¥)).

o Think of the oracle as an adversary (it can choose values and
gradients to make life hard for your algorithm)
e You can’t query things like the sparsity pattern, curvature, etc., so

this rules out preconditioning
o Captures iterative methods like GD, HB, NAG, CG

e Strongly convex optimization:
o Strong convexity: for all w and w’, and a parameter pu,

J(w) = T (W) + VI (W) (w—w)+ §w—w|?
o Lipschitz smoothness: for all w and w’ and a parameter L,
VT (w) = VI (W) < Llw — w'|

o Condition number x = L/u (generalizes the quadratic case)

NNTD (UofT) CSC2541-Lec9 33YA52)

Accelerated Convergence

e The following function helps illustrate the difficulties of first-order
optimization:

)

—1
TJ(w)=31-w)*+ > F(wjr1 —w;)?

<.
I
—_

o Observe: This is a quadratic objective J(w) = 3w ' Aw —b'w,
with (for D = 5):

o
I
coc oo

A=|0 -1 2 -1
0 o -1 2 -1
0 0 0o -1 1

@ Initialization: wy =---=wp =0
e Optimal solution: w; =---=wp =1

e Variants of this function can be used to show an O(y/k) lower
bound for convergence under the oracle model. See Nesterov,

“Introductory lectures on convex optimization”
NNTD (UofT) CSC2541-Lec9 34 /52

Accelerated Convergence

)

—1
TJ(w)=31—w)’+) F(wjp1 —wj)?
1

.
Il

@ Recall about conjugate gradient:
e Krylov subspace

Ki(A,r) =span{r, Ar,..., A" Ir}

o In iteration k, CG finds the minimum of J over Kr(A,b).

o The kth iterate of CG achieves the minimum loss achievable in k
iterations by any algorithm based on gradients and linear
combinations. This includes GD and GD with momentum.

e Here, A is tridiagonal and b = (1,0,...,0) .

o What is (A, b)?

e How do you think CG will behave?

NNTD (UofT) CSC2541-Lec9 35052

Accelerated Convergence

@ Here’s the behavior of CG for ep 20 o
N = 100.
@ Information diffuses slowly: oM @@
e The Krylov subspace Ky is o
spanned by the first k£ coordinate step40
vectors. R
o I.e., CG finds the optimal
solution subject to all o7
coordinates after k£ being 0. step 60
o The optimal solution B e
interpolates linearly from 1 to 0, 100
and achieves a loss of 1/(k + 1) S, o
e Subject to this constraint, the o
minimum achievable loss in & N
iterations is 1/k i
@ Dashed line = speed of light. step 100

NNTD (UofT) CSC2541-Lec9 36 /52

Accelerated Convergence

Conjugate Gradient
Gradients Descent
@ Here is gradient descent 20 o o
. step
with o = 0.5 (somewhat o= o
Close tO Optimal). [0 40 60 s 10 [0 40 60 s 10
100 1.00
° ition: .
Intuition: the glfadlent w60 o
descent update is o o
somewhat like diffusion. Cor oo R S
So the information
. . tep 100 o
travels like vk instead ST o
of like k. R] R R R
@ Next slide: heavy ball
momentum with L
step 200 °*° 050
025 025
a=0.5and 5 =0.97
0 20 40 6 80 100 G 20 40 e 8 100
(somewhat close to
optimal). e
075 075
step 400 °* 030 \¥
025 025
0.00 0.00

CSC2541-Lec9 37 /52

Accelerated Convergence

Conjugate Gradient Heavy Ball

Gradients Descent Momentum
00 100 100
075 015 015
step20 o 050 050
025 025 025
000 e ——— 000 e ———— 000

0 0 @ & & 10 o 4 & @ 1w o @ & @ 1

100 1.00 1.00
0.75 0.75 0.75
step 60 °%° 050 050
0 025 025
0.00 I — 0.00 r— 0.00 r—

° 20 40 0 80 100 o 20 40 0 80 100 o 20 40 0 80 100
= 100 100
o015 o015 o075
step 100 o= 030 030
025 025 025
000 000 000
T % @ @ % T B h % @ o T B ® % @ o
e —— ™ 100
075 075 075 \
step 200 ©°s° 050 050
025 025 025
000 000 000
T @ @ % o e] IR S R

wf{—m— 100 100
0rs o5 075
step 400 0% 050 050
025 025 025
000 000 000

CSC2541-Lec9 38 /52

|

Accelerated Convergence

e HB momentum achieves the optimal convergence rate for
quadratics (as we showed earlier in lecture)

o But HB doesn’t achieve this convergence rate for general strongly
convex functions!

e See Lessard et al., ” Analysis and design of optimization algorithms
via integral quadratic constraints”

e This paper uses techniques from control theory to automatically
analyze convergence rates of first-order optimizers (including GD,
HB, NAG) by solving certain semidefinite programs

o Among many interesting contributions, they exhibit a convex
function for which HB fails to achieve the optimal convergence rate

@ NAG achieves the optimal convergence rate for strongly convex
functions

e Nesterov’s proof is very involved, and I haven’t yet seen an
explanation I could cover in the scope of this lecture
e Conjugate gradient (which is exactly optimal for quadratics) often
behaves a lot like HB momentum for ill-conditioned quadratics

NNTD (UofT) CSC2541-Lec9 39 /52

A Controls Perspective

NNTD (UofT) CSC2541-Lec9 40 / 52

A Controls Perspective

e Control theory provides a powerful way to understand first-order
optimization methods, including gradient descent and the various
forms of momentum.

@ Disclaimer: I have no formal controls background. My knowledge
is limited to what Guodong and Jenny have explained to me.
Errors are my own.

@ In the basic control setup, one would like to choose a control signal
u as input to a process P such that P’s output y matches a
reference signal 7 as closely as possible. L.e., we’d like to make the

as small as possible.

@ One does this by designing a controller /&, which is typically a
linear time invariant (LTI) system.

r =r-y u y
—(O—— K

|

NNTD (UofT) CSC2541-Lec9 41 /52

\
av)
A\

A Controls Perspective

@ Suppose we are trying to minimize a scalar convex quadratic:

T w) = 2w —w)?

@ The control signal is the parameter w, and the reference signal is
the optimum w*. While w* is fixed, for analysis it’s useful to treat
it as a time-varying signal.

@ The process computes the gradient of the cost, which in this case
is g =VJ(w) = AMw — w").

@ The controller is the optimization algorithm. It takes in the
gradient, and implicitly also has a memory of past values of w.

r=w* =w'-w g=VJT(w) w
P=-) > K

\/

NNTD (UofT) CSC2541-Lec9 42 /52

A Controls Perspective

r=w" =w"-w g=VJI(w) w
P=-\ > K

\

@ Since the objective is quadratic, the process is linear time
invariant (LTT).

e For the controller, algorithms like GD, heavy ball momentum, and
NAG are all LTI

@ Therefore, the entire system is linear, i.e. the trajectory of the
optimization variable w is a linear function of the reference signal
w.

o It can be characterized in terms of things like the transfer
function, step response, impulse response, etc. See last week’s
tutorial for how to do this using the z-transform.

NNTD (UofT) CSC2541-Lec9 43 / 52

A Controls Perspective

@ The system’s step response determines how it changes in response
to a sudden change in the reference signal. This tells us about the
convergence for a deterministic cost function.

o The idea: w* = 0 for all times in the past, so the system has
“settled in” to the initial value of 0. Then we begin optimizing
with w* = 1.

@ Step responses of GD and heavy ball with various values of the
curvature A and learning rate a:

Gradient Descent Heavy Ball, B=0.9 Heavy Ball, B =0.99
2.00 — aA=0.1 2.00 —_ aA =01 2.00 — aA =01
—— aA =0.03 —— aA =0.03 —— aA =0.03

175 ar =0.01 175 ar = 0,01 1751 ah=0.01

CSC2541-Lec9 44 /52

A Controls Perspective

@ The impulse response h of the system is the response to an
impulse (delta function).

e The parameter trajectory is obtained by convolving the reference
signal with the impulse response, i.e.

w=w*"xh

w[t]:Zh [t — 7]

e Impulse responses of various optimizers:

Gradient Descent Heavy Ball, B=0.9 Heavy Ball, B =0.99
0.20 0.20 0.20
— aA =01
—— aA = 0.03
0.15
A = 0.01 0.15 0.15
010 [0.10 010
0.05 0.05 0.05
0.00 0.00 0.00
—0.05 —-0.05 —0.05
— aA =01
-0.10 -0.10 -0.10 aA = 0.03
ar =0.01
-0.15 -0.15 -0.15 L
-20 0 20 40 60 80 100 =20 0 20 40 60 80 100 -20 0 20 40 60 80 100

CSC2541-Lec9 45 / 52

A Controls Perspective

@ The impulse function helps us understand the noise sensitivity of the
optimizer. Suppose the reference signal is corrupted with i.i.d. noise ¢:

W [t] = w*[t] + et] e[t] ~ N(0,5°) for t > 0.

@ Analyzing the contribution of the noise:

Zh t—T
—Zh -] + Y hlrlelt — 7]

noiseless trajectory noise term

@ Evaluating the noise senitivity using the basic identities of variance:

. . 2 2
variance of noise term = o E h[7]
7=0

@ Therefore, the noise sensitivity depends on the L? norm of h.
@ Note that h has to integrate to 1 in order for the optimizer to converge
in expectation. Therefore, to minimize noise, we’d like h to be as flat as

possible.
NNTD (UofT) CSC2541-Lec9 46 / 52

A Controls Perspective

o Impulse responses of various optimizers:

Gradient Descent Heavy Ball, B=0.9 Heavy Ball, B =0.99
0.20 0.20 0.20
— aA =01
—— aA =0.03
0.15
oA = 0.01 0.15 0.15
0.10 0.10 0.10
0.05 E 0.05 0.05
0.00 0.00 0.00
-0.05 —-0.05 -0.05
— aA =01
-0.10 -0.10 —0.107] — g2 =0.03
aA =0.01
-0.15 -0.15 -0.15 L

o Unfortunately, the larger impulse response makes HB momentum
more sensitive to noise, compared with GD.

NNTD (Uo

CSC2541-Lec9 47 /52

A Controls Perspective

@ HB momentum can also be understood as GD with an exponential
moving average of the gradients.

@ Recall iterate averaging (Lecture 7): exponential moving average of the
parameters:

w(k) — W(kfl) _ avj(w(k))
VNV(k) _ ‘u‘x](’c*U + (1 _ M)W(k)

@ These algorithms essentially differ based on whether the EMA is inside
or outside the optimization loop:

Heavy Ball Momentum

T’ P el cun [o0

GD with Iterate Averaging
‘T" P }—* GD }——>’ EMA’—>

NNTD (UofT) CSC2541-Lec9 48 / 52

A Controls perspective

@ Since iterate averaging is applied outside the optimization loop,
the impulse response of the entire system is convolved with the
impulse response of the EMA.

S| = /MNJ\

Full impulse response Original impulse response EMA impulse response

@ This tends to flatten the impulse response, which reduces the noise
sensitivity.

NNTD (UofT) CSC2541-Lec9 49 / 52

A Controls Perspective

o Iterate averaging helps flatten the impulse response, reducing noise

0 Gradient Descent Heavy Ball, 3=0.9 Heavy Ball, B=0.99
020 020
— wm=01
— @ =003
015
piSapiet 015 015
010 010 010
0.05 0.05 005
0.00 0.00 0.00
~0.05 ~0.05 -0.05
— @=01
-010 -010 ~010{ — aa=003
ar=0.01
-015 -0.15 -015
-20 0 20 40 60 80 100 20 0 20 40 60 8 100 -20 0 20 40 60 80 100
o Gradient Descent + EMA Heavy Ball + EMA, B=0.9 0 Heavy Ball + EMA, B =0.99
020
— m=01 — a@=01 — @=01
— @ =003 — @ =003
018 ar =001 013 o1 ar =001
010 010 010
0.05 005 005
000] — e ———— 0.00 M 0.00 J%/W\
~0.05 ~0.05 ~0.05
-0.10 -0.10 -0.10
-015 -0.15

-015

CSC2541-Lec9

50 /52

A Controls Perspective

Recall from Lecture 7: HB momentum and iterate averaging, despite
their superficial similarity, have very different benefits.

HB Momentum Iterate Averaging

o o
-~ e S
— pow 0 \ + 0
n 26 D g (LELLLELEEE n 26 pow
§ 2| — powoas R a2l — powoas
& [— powos R LI EErE & 21— powos R e tenen:
2°H — pow 0.75 RGN 2H . pow 0.75 i
20H L. lower bound 204 L. lower bound
2 -)
2 2 2T 26 > 510 2.12 i ZiE 20 2 222 2% 26 38 W0 317 3@ 36 318 320
Batch size Batch size
NNTD (U CSC2541-Lec9 Bil /57

A Controls Perspective

o Everything I just showed you can be derived analytically using
frequency domain analysis, as discussed in last week’s tutorial.

e While the analytical derivations only apply to the simplified
setting of quadratic objectives and i.i.d. noise, control theory has
developed powerful techniques for dealing with nonlinear systems,
non-i.i.d. noise, unknown dynamics, etc.

e Hu and Lessard, 2017, “Control interpretations for first-order
optimization methods”

o Interprets first-order optimization algorithms through the lens of
classical control theory, shows how this can be used to design
optimizers.

o Lessard et al., 2016, “Analysis and design of optimization
algorithms via integral quadratic constraints”

o Automatically analyzes the convergence rates of first-order
optimizers on convex functions using stability analysis techniques
from control theory.

NNTD (UofT) CSC2541-Lec9 52 /52

