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Today

Last week: the curse of stochasticity (slower convergence)

This week: the blesssing of stochasticity (implicit regularization)

Agenda
e “Sharp and flat minima”
e Disentangling implicit and explicit regularization
e Explicit Bayesian inference
e Implicit Bayesian inference

This lecture will have lots of ideas that connect to each other, but
no unifying message. This general topic is still messy!
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Explicit and Implicit Regularization

How I’ll use the terms in this course:

o Explicit regularization imposes an explicit penalty on the
parameters of the model (typically some measure of complexity or
sensitivity)

o /5 regularization (traditional view — weight decay is more
complicated, as we saw in Lecture 5)

e dropout

o batch norm (noisy statistics)

o variational Bayes / MDL

o Implicit regularization occurs when the dynamics of training lead
to certain minima rather than others

e minimum norm solutions in linear regression (Lecture 1)
o NTK dynamics (Lecture 6)
o effects of gradient noise (still poorly understood)
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Sharp and Flat Minima
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Sharp and Flat Minima

Keskar et al., 2017. “On large batch training for machine learning;:
Generalization gap and sharp minima”
e Common observation: training with larger batch sizes often leads
to worse test error, even if the model can fit all the training data
o Claims:
o Training with larger batches leads to sharper minima
o Caution: not necessarily “local minima”. Could be a continuous
manifold of minimizers.
e Sharper minima generalize worse

e Sharpness quantified using the largest eigenvalues of H

.
! Testing Function

Sharp Minimum
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Sharp and Flat Minima

@ The idea of sharp and flat minima is intuitive, but it’s notoriously
hard to fit everything together rigorously

e Dinh et al., 2017. “Sharp minima can generalize for deep nets”

e We can easily reparameterize the network to an equivalent one with
larger or smaller H, so the size of H can’t explain generalization
e Note that some notions of sharpness don’t have this problem

o Shallue et al., 2018. “Measuring the effects of data parallelism on
neural network training”

o Their experiments considered validation loss for a wide variety of
tasks and architectures, and they never saw any degradation from
large batches

e They identify 2 frequent confounds in the literature

o Batch norm creates an ezplicit regularizer which is stronger for
smaller batch sizes

e Some papers fix the number of epochs, so models with larger
batches were trained for fewer iterations
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Sharp and Flat Minima

@ Another complication: H is related to lots of other matrices, so
any apparent correlation between H and generalization might

mean the other matrix explains generalization

T
K= Jiw‘]iw
NTK same eigenvalues
_mifT
A= —V?logp(w|D) sqpaorsquarsa 7 & = Elgudew]
osterior precision rrorlose classical Gauss-
P P Newton matrix
' G =EJ, H,J.w]
sampled weights, = LlJpwHzdzw
exponential . equal for
moving average Gauss-Newton Hessian ™\ gz for Bregman | Euclidean metric
divergence
linearized network;
equal at optimum if
2 outputs minimize loss
H=VJ(w) equal for exponential G= ]EJ wG2daw]

Hessian \ family NLL / pullback metric

o Speculation: the largest eigenvalue of G = E[JTJ] is the largest

singular value of J.

o Smaller ||J||2 implies less sensitivity to input perturbations (also

consider adversarial robustness)

o Bounded ||J]||2 implies a Lipschitz function, which was used in

classical generalization bounds
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Dropout
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Dropout

@ For a network to overfit, its computations need to be really precise. This
suggests regularizing them by injecting noise into the computations, a
strategy known as stochastic regularization.

@ Dropout is a stochastic regularizer which randomly deactivates a subset
of the units (i.e. sets their activations to zero).

b — @(z;) with probability 1 — p
710 with probability p,

where p is a hyperparameter.

@ Equivalently,
hi =m; - ¢(z:),

where m; is a Bernoulli random variable, independent for each hidden
unit.

@ Backprop rule:

Zi=hi -m; - ¢ (2)
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Dropout

e Dropout can be seen as training an ensemble of 2P different
architectures with shared weights (where D is the number of

units):
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Ensemble of subnetworks
— Goodfellow et al., Deep Learning
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Dropout

Dropout at test time:

@ Most principled thing to do: run the network lots of times
independently with different dropout masks, and average the
predictions.

e Individual predictions are stochastic and may have high variance,
but the averaging fixes this.

o In practice: don’t do dropout at test time, but multiply the
weights by 1 — p

e Since the weights are on 1 — p fraction of the time, this matches
their expectation.
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Dropout

e Dropout is traditionally viewed as an explicit regularizer. If the
cost is the expectation with respect to the dropout mask, then:

u7reg(w) = j(W) + R(W)
T (W) = Ext[L(t, f(x,W))]
R(w) = Ex ¢ [Em[L(t, farop(x, Ww;m))] — L(t, f(x,W))]

e Here, w represents the “test time weights” (i.e. after multiplying
by 1 —p)

@ R is the amount the training predictions were hurt as a result of
the stochasticity

e The original dropout paper (Srivastava et al., 2014) derived R
explicitly for linear regression. It’s equivalent to an ¢ penalty
reweighted by the feature variance.
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Dropout

Wei, Kakade, and Ma, 2020, “The implicit and explicit regularization
effects of dropout”

@ Since dropout samples the mask stochastically, it adds noise to the
gradients
o This noise might have an implicit regularization effect, in addition
to the explicit regularizer
e Disentangling the implicit and explicit effects
e Sample K independent dropout masks for each gradient
computation
o This is still doing SGD on the same explicit objective
e K =1 is ordinary dropout training, and the dropout-induced
gradient noise decays as 1/K. So the implicit regularization effect
vanishes as K — oo
o A further “knock-in” manipulation: compute the amount of
gradient noise that was removed, inject it back in, and see if the
algorithm behaves like ordinary dropout
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Dropout

Wei et al., 2020
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Variational Bayes and MDL
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BNN Posterior Inference

@ The cheapest and simplest way of training Bayesian neural nets is
probably maximum a-posteriori (MAP) inference, which simply
maximizes the posterior probability:

wmap = arg max log p(w | D)
= arg max log p(w, D)
w
likelihood

prior

) ) ——
= arg max Z log p(t” | w,x) + logp(w)
w N

@ With an i.i.d. Gaussian prior on the weights, the prior term is equivalent
to f5 regularization (weight decay)

@ To get uncertainty estimates, we can use the Laplace approximation to
the posterior, which takes the second-order Taylor approximation to the
log-likelihood around wyiap:

p(w|D) %./\/'(W;WMAP,I:I_l)
H=NH=-V?logp(w|D)

@ This is like the Hessian of the training cost, up to a factor of N
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Variational BNNs

@ The problem with the Laplace approximation is that uncertainty
isn’t considered until training is finished

e Variational Bayes is a more accurate posterior inference method
which accounts for uncertainty during training

e We approximate a complicated posterior distribution with a
simpler variational approximation. E.g., assume a Gaussian
posterior with diagonal covariance (i.e. fully factorized Gaussian):

a(w) = N(w; 1, %) /Q AN
:ﬁN(Gj;ijUj) 6( Q\Q

=1 o
5%
e This means each weight of the

network has its own mean and — Blundell et al.,

Weight uncertainty for neural
networks

variance.
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Posterior Inference: Variational Bayes

e The marginal likelihood is the probability of the observed data
(targets given inputs), with all possible weights marginalized out:

p(D) = / p(w) p(D | w) dw
— / p(w) p({tD} ] {xV}, w) dw.

e Analogously to VAEs, we define a variational lower bound:

logp(D) > F(q) = Eq(w)llogp(D | w)] — Dxr(g(w) || p(w))

e Unlike with VAEs, p(D) is fixed, and we are only maximizing F(q)
with respect to the variational posterior ¢ (i.e. a mean and
standard deviation for each weight).
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Posterior Inference: Variational Bayes

log p(D) > F(q) = Eq(w)[logp(D | w)] — Dkr(q(w) || p(w))

e Same as for VAEs, the gap equals the KL divergence from the true
posterior:

F(q) =logp(D) — Dkr(q(w) || p(w | D)).

Hence, maximizing F(q) is equivalent to approximating the
posterior.
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Posterior Inference: Variational Bayes

o Likelihood term:
Eq(w)[log p(D | w)] Zlogp V%D, w)

This is just the usual likelihood term (e.g. minus classification
cross-entropy), except that w is sampled from q.

e KL term:
Dkwr(q(w) [ p(w))
This term encourages ¢ to match the prior, i.e. each dimension to
be close to N(0,7'/2).

o Without the KL term, the optimal ¢ would be a point mass on
wL, the maximum likelihood weights.

o Hence, the KL term encourages g to be more spread out (i.e. more
stochasticity in the weights).
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Posterior Inference: Variational Bayes

e We can train a variational BNN using the same reparameterization
trick as from VAEs.
0; = pu; + o€,
where €; ~ N(0,1).
e Then the ¢; are sampled at the beginning, independent of the

i, 05, so we have a deterministic computation graph we can do
backprop on.

o If all the o; are 0, then 6; = p;, and this reduces to ordinary
backprop for a deterministic neural net.
e Hence, variational inference injects stochasticity into the
computations. This acts like a regularizer, just like with dropout.
e The difference is that it’s stochastic activations, rather than
stochastic weights.
e See Kingma et al., “Variational dropout and the local
reparameterization trick”, for the precise connections between
variational BNNs and dropout.
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Posterior Inference: Variational Bayes

e Bad news: variational BNNs aren’t a good match to Bayesian
posterior uncertainty.

@ The BNN posterior distribution is complicated and high
dimensional, and it’s really hard to approximate it accurately with
fully factorized Gaussians.

HMC VI

— Hernandez-Lobato et al., Probabilistic Backpropagation

e So what are variational BNNs good for?
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Description Length Regularization

e What variational BNNs are really doing is regularizing the
description length of the weights.

@ Intuition: the more concentrated the posterior is, the more bits it
requires to describe the location of the weights to adequate
precision.

@ A more concentrated ¢ generally implies a higher KL from the

prior.
p(z)
q(zlx)
small KL divergence, large KL divergence,
small description length large description length
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Description Length Regularization

e The KL term Dk, (¢(w) || p(w)) can be interpreted as the number
of bits required to describe w to adequate precision.

e This can be made precise using the bits-back argument. This is
beyond the scope of the class, but see here for a great explanation:

https://youtu.be/0IoLKnAg6-s

e A classic result from computational learning theory (“Occam’s
Razor”) bounded the generalization error a learning algorithm
that selected from K possible hypotheses.

e It requires log K bits to specify the hypothesis.

o PAC-Bayes gives analogous bounds for the generalization error of
variational BNNs, where Dk, (q(w) || p(w)) behaves analogously to
log K.

o This is one of the few ways we have to prove that neural nets
generalize.

@ See Dziugaite et al., “Computing nonvacuous generalization bounds
for deep (stochastic) neural networks with many more parameters
than training data”.
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Uses of BNNs

o Guiding exploration
o Bayesian optimization: Snoek et al., 2015, “Scalable Bayesian
optimization using deep neural networks”
o Curriculum learning: Graves et al., 2017, “Automated
curriculum learning for neural networks”
e Intrinsic motivation in reinforcement learning: Houthooft et
al., 2016, “Variational information maximizing exploration”
o Network compression: Louizos et al., 2017, “Bayesian
compression for deep learning”

e Predicting generalization: Jiang et al., 2019, “Fantastic
generalization measures and where to find them”: measures based
on PAC-Bayesian/MDL ideas were the most predictive of
generalization

o Lots more references in CSC2541, “Scalable and Flexible Models
of Uncertainty”

e https://csc2541-£17.github.io/
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Variational Bayes and Curvature
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Variational Bayes and Curvature

e We introduced the Laplace approximation, where uncertainty
comes directly from the curvature:

p(w|D) ~ N(w; wnap, H_l)
H=-V%logp(w|D)

e But the Laplace approximation is often a very poor model of
uncertainty. Variational Bayes is often better (at least for
capturing a single mode).
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Figure 10.1 lllustration of the variational approximation for the example considered earlier in Figure 4.14. The
left-hand plot shows the original distribution (yellow) along with the Laplace (red) and variational (green) approx-
imations, and the right-hand plot shows the negative logarithms of the corresponding curves.

(Bishop, PRML)
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Noisy Natural Gradient

Zhang et al., 2018, “Noisy natural gradient as variational inference”

e Consider a proximal objective for variational Bayes, over a family
of probability distributions (say, multivariate Gaussians):

min —F(q¢) + Dkr(qgllae,)

@ As in Lecture 3, taking the infinitesimal limit gives the natural
gradient update, called Natural Gradient for Variational Inference
(NGVI):

) = 6 + aF 'V F(gym)

@ Note: ¢ are the variational parameters, not the network weights.
Fy is the Fisher information matrix for the multivariate Gaussian
distribution, not the pullback metric for the network.
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Noisy Natural Gradient

(Zhang et al., 2018)

e Parameterize the multivariate Gaussian by mean p and precision
matrix A = X7}

e Stochastic NGVI update rule (derivable using the exponential
family identities from NNTD Chapter 3):

o Sample the network weights w ~ A (u, A™1)
e Update the variational parameters

p p+ad™! [V log p(y | x, w) — J\i\nw}
A8

A
_ o2
A<—(1 N)A—i—b’[ leogp(yx7w)+NnI}

e Update for A: exponential moving average of the Hessian (justifies
the use of moving averages in second-order optimization!)

o Update for p: stochastic Newton update to the weights
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Noisy Natural Gradient

(Zhang et al., 2018)
o All roads lead to H!

o In practice, we approximate H with G so that it’s PSD
e Imposing structure on A corresponds to imposing structure on the
variational posterior
o Diagonal A < factorial (independent) Gaussian posterior (noisy
Adam)
o K-FAC approximation for A < matrix variate Gaussian posterior
(noisy K-FAC)
o Unlike the diagonal approximation, this can capture correlations
between different weights. So it’s not just about optimization!
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Variational Bayes and Flatness

Recall: sharp/flat minima claims
e Gradient noise implicitly regularizes towards flat minima
e Flat minima generalize better
e Obvious sharpness measures based on H aren’t invariant to
reparameterization
e Variational Bayes
Adds noise to the weights
KL term encourages flatness (high posterior volume)
Strong generalization bounds from PAC-Bayes
KL term is invariant to reparameterization

@ Is this the right way to think about flatness? I don’t know
o Is ordinary SGD training doing anything Bayesian?
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SGD and Implicit Variatonal Bayes
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SGD and Implicit Variational Bayes

Welling and Teh, 2011, “Bayesian learning via stochastic gradient
Langevin dynamics”

e Hamiltonian Monte Carlo (HMC), as pioneered by Neal (1993), is
still the gold-standard inference method for BNNs. But it doesn’t
scale to large datasets because it requires full batch computations.

e Stochastic gradient Langevin dynamics (SGLD) is a scalable
alternative which uses stochastic gradients.

e Update rule: compute the mini-batch gradient and add noise

w®) = k=1 _ 4g®) | (k)

n(k) ~ N(O7 CVI),

where g is a stochastic estimate of the log-likelihood gradient

@ Asa— 0, n(k) dominates the mini-batch noise, and the stationary
distribution approaches the true posterior
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SGD and Implicit Variational Bayes

e In practice, a has to be very small for the gradient noise to be
negligible
o Is ordinary SGD doing something like SGLD?
o Only if the gradient noise has spherical covariance (unlikely!)
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SGD and Implicit Variational Bayes

Mandt, Hoffman, and Blei, 2017, “Stochastic gradient descent as
approximate Bayesian inference”

@ Analyzes SGD as an Ornstein-Uhlenbeck process, essentially a
continuous analogue of the NQM

Quadratic cost function J(w) = 3w Hw, gradient g(t) = Hw(t),
gradient covariance C = AA "

Bayesian posterior: N'(0, +H™!)

Stochastic differential equation for the dynamics:

dw(t) = —ag(t) dt + %A AW (t)

where W is a white noise process
Stationary distribution is A (0,X), where X satisfies

o
SH+HY =—-C
* B
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SGD and Implicit Variational Bayes

o
SH+HY =—-C
+ B

(Mandt et al., 2017)

o If H and C are codiagonalizable, then is simplifies to:
o
¥=_—_H'C
2B

o If H = C (as in Lecture 7), then we get ¥ = 5551. This is not
Bayesian! It ignores posterior uncertainty!
o The optimal preconditioner from a Bayesian standpoint is C1.
Preconditioned SGD converges to X = %Hfl.
o Justifies the use of adaptive gradient methods, sort of (they
precondition by Fe}lu/f, and arguably Fey,p, =~ C)
o If H= C =F, then natural gradient descent is doing Bayesian
inference. (See also Ahn et al., 2012, “Bayesian posterior sampling via
stochastic gradient Fisher scoring”)
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SGD and Implicit Variational Bayes

(Mandt et al., 2017)

Empirical results (note: axis scale not uniform)
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Gradient Noise and Flatness
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Gradient Noise and Flatness

@ The preceding analysis tells us that if you run SGD for a long
time, the spread in the iterates tells us something about flatness or
uncertainty.

e But SGD also encourages flatness in a way that isn’t captured by
that analysis.

o Considering the following funnel-shaped cost function. If we run
gradient descent, it moves directly downhill.

TN
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Gradient Noise and Flatness

@ Suppose we use stochastic gradients, where Gaussian noise with
variance o2 is added to the gradient. Here are three trajectories:

—

1)
WA

e Averaging over 100 trajectories, we can see a drift towards the

flatter region. P,
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Gradient Noise and Flatness

e Larger amounts of noise create a stronger bias towards flatness.

—

— 0=3.0
—— 0=5.0
— 0=10.0

e Can we characterize the implicit regularization effect of gradient

noise?
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Gradient Noise and Flatness

Smith et al., ICLR 2021. “On the origin of implicit regularization in
stochastic gradient descent”

e Goal: find an explicit regularizer which can mimic the implicit
regularization effect of SGD in full batch mode.

o In the limit of small learning rates and more steps, the SGD
trajectories approach a gradient flow:

W(t) = —aVJ (w(t))

e Want to find a regularizer R(w) such that the average SGD
trajectory for a typical learning rate is well approximated by:

w(t) = —aV[T(w(t)) + R(w(t))]

e This is a strategy known as backwards analysis.
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Gradient Noise and Flatness

e For SGD with learning rate «, batch size B, and dataset size N,
they show that the regularizer is given by:
N—-B «

N 145" Cw

R(w) = Z[ VI (w)[* +

where Cy, is the covariance of the per-example gradients,
evaluated at w.

e To the extent that Cy (similar to the empirical Fisher Fepp) is
related to the Hessian H, this can be seen as a flatness regularizer.
@ Dependence on o and B

e The second term is stronger for larger o or B, as we’d expect.

e The first term is independent of B, so even full-batch GD
contributes some sort of implicit bias. I don’t know what is the
practical significance of this term.
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Gradient Noise and Flatness

e For a Wide-ResNet on CIFAR10, with the original loss (left), the
learning rate which maximizes test accuracy is larger than the one
that maximizes training accuracy, indicating an implicit
regularization effect.

e This goes away if the regularizer is added explicitly (right).
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Gradient Noise and Flatness

e Under the original objective (left), there is a generalization
advantage to small batches. This goes away when the explicit
regularizer is added (right).
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