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Today

Last week: the curse of stochasticity (slower convergence)

This week: the blesssing of stochasticity (implicit regularization)

Agenda

“Sharp and flat minima”
Disentangling implicit and explicit regularization
Explicit Bayesian inference
Implicit Bayesian inference

This lecture will have lots of ideas that connect to each other, but
no unifying message. This general topic is still messy!
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Explicit and Implicit Regularization

How I’ll use the terms in this course:

Explicit regularization imposes an explicit penalty on the
parameters of the model (typically some measure of complexity or
sensitivity)

`2 regularization (traditional view — weight decay is more
complicated, as we saw in Lecture 5)
dropout
batch norm (noisy statistics)
variational Bayes / MDL

Implicit regularization occurs when the dynamics of training lead
to certain minima rather than others

minimum norm solutions in linear regression (Lecture 1)
NTK dynamics (Lecture 6)
effects of gradient noise (still poorly understood)
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Sharp and Flat Minima
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Sharp and Flat Minima

Keskar et al., 2017. “On large batch training for machine learning:
Generalization gap and sharp minima”

Common observation: training with larger batch sizes often leads
to worse test error, even if the model can fit all the training data
Claims:

Training with larger batches leads to sharper minima
Caution: not necessarily “local minima”. Could be a continuous
manifold of minimizers.

Sharper minima generalize worse

Sharpness quantified using the largest eigenvalues of H
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Sharp and Flat Minima

The idea of sharp and flat minima is intuitive, but it’s notoriously
hard to fit everything together rigorously

Dinh et al., 2017. “Sharp minima can generalize for deep nets”

We can easily reparameterize the network to an equivalent one with
larger or smaller H, so the size of H can’t explain generalization
Note that some notions of sharpness don’t have this problem

Shallue et al., 2018. “Measuring the effects of data parallelism on
neural network training”

Their experiments considered validation loss for a wide variety of
tasks and architectures, and they never saw any degradation from
large batches
They identify 2 frequent confounds in the literature

Batch norm creates an explicit regularizer which is stronger for
smaller batch sizes
Some papers fix the number of epochs, so models with larger
batches were trained for fewer iterations
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Sharp and Flat Minima

Another complication: H is related to lots of other matrices, so
any apparent correlation between H and generalization might
mean the other matrix explains generalization

Speculation: the largest eigenvalue of G = E[J>J] is the largest
singular value of J.

Smaller ‖J‖2 implies less sensitivity to input perturbations (also
consider adversarial robustness)
Bounded ‖J‖2 implies a Lipschitz function, which was used in
classical generalization bounds
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Dropout
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Dropout

For a network to overfit, its computations need to be really precise. This
suggests regularizing them by injecting noise into the computations, a
strategy known as stochastic regularization.

Dropout is a stochastic regularizer which randomly deactivates a subset
of the units (i.e. sets their activations to zero).

hi =

{
φ(zi) with probability 1− ρ
0 with probability ρ,

where ρ is a hyperparameter.

Equivalently,
hi = mi · φ(zi),

where mi is a Bernoulli random variable, independent for each hidden
unit.

Backprop rule:
zi = hi ·mi · φ′(zi)
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Dropout

Dropout can be seen as training an ensemble of 2D different
architectures with shared weights (where D is the number of
units):

— Goodfellow et al., Deep Learning
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Dropout

Dropout at test time:

Most principled thing to do: run the network lots of times
independently with different dropout masks, and average the
predictions.

Individual predictions are stochastic and may have high variance,
but the averaging fixes this.

In practice: don’t do dropout at test time, but multiply the
weights by 1− ρ

Since the weights are on 1− ρ fraction of the time, this matches
their expectation.
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Dropout

Dropout is traditionally viewed as an explicit regularizer. If the
cost is the expectation with respect to the dropout mask, then:

Jreg(w) = J (w) +R(w)

J (w) = Ex,t[L(t, f(x,w))]

R(w) = Ex,t [Em[L(t, fdrop(x,w; m))]− L(t, f(x,w))]

Here, w represents the “test time weights” (i.e. after multiplying
by 1− ρ)

R is the amount the training predictions were hurt as a result of
the stochasticity

The original dropout paper (Srivastava et al., 2014) derived R
explicitly for linear regression. It’s equivalent to an `2 penalty
reweighted by the feature variance.
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Dropout

Wei, Kakade, and Ma, 2020, “The implicit and explicit regularization
effects of dropout”

Since dropout samples the mask stochastically, it adds noise to the
gradients

This noise might have an implicit regularization effect, in addition
to the explicit regularizer

Disentangling the implicit and explicit effects

Sample K independent dropout masks for each gradient
computation
This is still doing SGD on the same explicit objective
K = 1 is ordinary dropout training, and the dropout-induced
gradient noise decays as 1/K. So the implicit regularization effect
vanishes as K →∞

A further “knock-in” manipulation: compute the amount of
gradient noise that was removed, inject it back in, and see if the
algorithm behaves like ordinary dropout
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Dropout

Wei et al., 2020
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Variational Bayes and MDL
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BNN Posterior Inference

The cheapest and simplest way of training Bayesian neural nets is
probably maximum a-posteriori (MAP) inference, which simply
maximizes the posterior probability:

wMAP = arg max
w

log p(w | D)

= arg max
w

log p(w,D)

= arg max
w

likelihood︷ ︸︸ ︷∑
i

log p(t(i) |w,x(i)) +

prior︷ ︸︸ ︷
log p(w)

With an i.i.d. Gaussian prior on the weights, the prior term is equivalent
to `2 regularization (weight decay)

To get uncertainty estimates, we can use the Laplace approximation to
the posterior, which takes the second-order Taylor approximation to the
log-likelihood around wMAP:

p(w | D) ≈ N (w; wMAP, H̄
−1)

H̄ = NH = −∇2 log p(w | D)

This is like the Hessian of the training cost, up to a factor of N
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Variational BNNs

The problem with the Laplace approximation is that uncertainty
isn’t considered until training is finished
Variational Bayes is a more accurate posterior inference method
which accounts for uncertainty during training
We approximate a complicated posterior distribution with a
simpler variational approximation. E.g., assume a Gaussian
posterior with diagonal covariance (i.e. fully factorized Gaussian):

q(w) = N (w;µ,Σ)

=
D∏
j=1

N (θj ;µj , σj)

This means each weight of the
network has its own mean and
variance.

— Blundell et al.,
Weight uncertainty for neural

networks
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Posterior Inference: Variational Bayes

The marginal likelihood is the probability of the observed data
(targets given inputs), with all possible weights marginalized out:

p(D) =

∫
p(w) p(D |w) dw

=

∫
p(w) p({t(i)} | {x(i)},w) dw.

Analogously to VAEs, we define a variational lower bound:

log p(D) ≥ F(q) = Eq(w)[log p(D |w)]−DKL(q(w) ‖ p(w))

Unlike with VAEs, p(D) is fixed, and we are only maximizing F(q)
with respect to the variational posterior q (i.e. a mean and
standard deviation for each weight).
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Posterior Inference: Variational Bayes

log p(D) ≥ F(q) = Eq(w)[log p(D |w)]−DKL(q(w) ‖ p(w))

Same as for VAEs, the gap equals the KL divergence from the true
posterior:

F(q) = log p(D)−DKL(q(w) ‖ p(w | D)).

Hence, maximizing F(q) is equivalent to approximating the
posterior.
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Posterior Inference: Variational Bayes

Likelihood term:

Eq(w)[log p(D |w)] = Eq(w)

[
N∑
i=1

log p(t(i) |x(i),w)

]

This is just the usual likelihood term (e.g. minus classification
cross-entropy), except that w is sampled from q.

KL term:
DKL(q(w) ‖ p(w))

This term encourages q to match the prior, i.e. each dimension to
be close to N (0, η1/2).

Without the KL term, the optimal q would be a point mass on
wML, the maximum likelihood weights.

Hence, the KL term encourages q to be more spread out (i.e. more
stochasticity in the weights).
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Posterior Inference: Variational Bayes

We can train a variational BNN using the same reparameterization
trick as from VAEs.

θj = µj + σjεj ,

where εj ∼ N (0, 1).

Then the εj are sampled at the beginning, independent of the
µj , σj , so we have a deterministic computation graph we can do
backprop on.

If all the σj are 0, then θj = µj , and this reduces to ordinary
backprop for a deterministic neural net.

Hence, variational inference injects stochasticity into the
computations. This acts like a regularizer, just like with dropout.

The difference is that it’s stochastic activations, rather than
stochastic weights.
See Kingma et al., “Variational dropout and the local
reparameterization trick”, for the precise connections between
variational BNNs and dropout.
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Posterior Inference: Variational Bayes

Bad news: variational BNNs aren’t a good match to Bayesian
posterior uncertainty.

The BNN posterior distribution is complicated and high
dimensional, and it’s really hard to approximate it accurately with
fully factorized Gaussians.

— Hernandez-Lobato et al., Probabilistic Backpropagation

So what are variational BNNs good for?
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Description Length Regularization

What variational BNNs are really doing is regularizing the
description length of the weights.

Intuition: the more concentrated the posterior is, the more bits it
requires to describe the location of the weights to adequate
precision.

A more concentrated q generally implies a higher KL from the
prior.
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Description Length Regularization

The KL term DKL(q(w) ‖ p(w)) can be interpreted as the number
of bits required to describe w to adequate precision.

This can be made precise using the bits-back argument. This is
beyond the scope of the class, but see here for a great explanation:

https://youtu.be/0IoLKnAg6-s

A classic result from computational learning theory (“Occam’s
Razor”) bounded the generalization error a learning algorithm
that selected from K possible hypotheses.

It requires logK bits to specify the hypothesis.
PAC-Bayes gives analogous bounds for the generalization error of
variational BNNs, where DKL(q(w) ‖ p(w)) behaves analogously to
logK.

This is one of the few ways we have to prove that neural nets
generalize.
See Dziugaite et al., “Computing nonvacuous generalization bounds
for deep (stochastic) neural networks with many more parameters
than training data”.

NNTD (UofT) CSC2541-Lec8 24 / 45

https://youtu.be/0IoLKnAg6-s


Uses of BNNs

Guiding exploration

Bayesian optimization: Snoek et al., 2015, “Scalable Bayesian
optimization using deep neural networks”
Curriculum learning: Graves et al., 2017, “Automated
curriculum learning for neural networks”
Intrinsic motivation in reinforcement learning: Houthooft et
al., 2016, “Variational information maximizing exploration”

Network compression: Louizos et al., 2017, “Bayesian
compression for deep learning”

Predicting generalization: Jiang et al., 2019, “Fantastic
generalization measures and where to find them”: measures based
on PAC-Bayesian/MDL ideas were the most predictive of
generalization

Lots more references in CSC2541, “Scalable and Flexible Models
of Uncertainty”

https://csc2541-f17.github.io/
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Variational Bayes and Curvature
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Variational Bayes and Curvature

We introduced the Laplace approximation, where uncertainty
comes directly from the curvature:

p(w | D) ≈ N (w; wMAP,H
−1)

H = −∇2 log p(w | D)

But the Laplace approximation is often a very poor model of
uncertainty. Variational Bayes is often better (at least for
capturing a single mode).

(Bishop, PRML)
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Noisy Natural Gradient

Zhang et al., 2018, “Noisy natural gradient as variational inference”

Consider a proximal objective for variational Bayes, over a family
of probability distributions (say, multivariate Gaussians):

min
φ
−F(qφ) + DKL(qφ‖qφ0

)

As in Lecture 3, taking the infinitesimal limit gives the natural
gradient update, called Natural Gradient for Variational Inference
(NGVI):

φ(k+1) = φ(k) + αF−1φ ∇F(qφ(k))

Note: φ are the variational parameters, not the network weights.
Fφ is the Fisher information matrix for the multivariate Gaussian
distribution, not the pullback metric for the network.
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Noisy Natural Gradient

(Zhang et al., 2018)

Parameterize the multivariate Gaussian by mean µ and precision
matrix Λ = Σ−1

Stochastic NGVI update rule (derivable using the exponential
family identities from NNTD Chapter 3):

Sample the network weights w ∼ N (µ,Λ−1)
Update the variational parameters

µ← µ + αΛ−1
[
∇ log p(y |x,w)− λ

Nη
w

]
Λ←

(
1− λβ

N

)
Λ + β

[
−∇2

w log p(y |x,w) +
λ

Nη
I

]
Update for Λ: exponential moving average of the Hessian (justifies
the use of moving averages in second-order optimization!)

Update for µ: stochastic Newton update to the weights
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Noisy Natural Gradient

(Zhang et al., 2018)

All roads lead to H!

In practice, we approximate H with G so that it’s PSD

Imposing structure on Λ corresponds to imposing structure on the
variational posterior

Diagonal Λ ⇔ factorial (independent) Gaussian posterior (noisy
Adam)
K-FAC approximation for Λ ⇔ matrix variate Gaussian posterior
(noisy K-FAC)

Unlike the diagonal approximation, this can capture correlations
between different weights. So it’s not just about optimization!
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Variational Bayes and Flatness

Recall: sharp/flat minima claims

Gradient noise implicitly regularizes towards flat minima
Flat minima generalize better
Obvious sharpness measures based on H aren’t invariant to
reparameterization

Variational Bayes

Adds noise to the weights
KL term encourages flatness (high posterior volume)
Strong generalization bounds from PAC-Bayes
KL term is invariant to reparameterization

Is this the right way to think about flatness? I don’t know

Is ordinary SGD training doing anything Bayesian?
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SGD and Implicit Variatonal Bayes
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SGD and Implicit Variational Bayes

Welling and Teh, 2011, “Bayesian learning via stochastic gradient
Langevin dynamics”

Hamiltonian Monte Carlo (HMC), as pioneered by Neal (1993), is
still the gold-standard inference method for BNNs. But it doesn’t
scale to large datasets because it requires full batch computations.

Stochastic gradient Langevin dynamics (SGLD) is a scalable
alternative which uses stochastic gradients.

Update rule: compute the mini-batch gradient and add noise

w(k) = w(k−1) − αg(k) + η(k)

η(k) ∼ N (0, αI),

where g is a stochastic estimate of the log-likelihood gradient

As α→ 0, η(k) dominates the mini-batch noise, and the stationary
distribution approaches the true posterior
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SGD and Implicit Variational Bayes

In practice, α has to be very small for the gradient noise to be
negligible

Is ordinary SGD doing something like SGLD?

Only if the gradient noise has spherical covariance (unlikely!)
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SGD and Implicit Variational Bayes

Mandt, Hoffman, and Blei, 2017, “Stochastic gradient descent as
approximate Bayesian inference”

Analyzes SGD as an Ornstein-Uhlenbeck process, essentially a
continuous analogue of the NQM

Quadratic cost function J (w) = 1
2w>Hw, gradient g(t) = Hw(t),

gradient covariance C = AA>

Bayesian posterior: N (0, 1
NH−1)

Stochastic differential equation for the dynamics:

dw(t) = −αg(t) dt+
α√
B

A dW (t)

where W is a white noise process

Stationary distribution is N (0,Σ), where Σ satisfies

ΣH + HΣ =
α

B
C
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SGD and Implicit Variational Bayes

ΣH + HΣ =
α

B
C

(Mandt et al., 2017)

If H and C are codiagonalizable, then is simplifies to:

Σ =
α

2B
H−1C

If H = C (as in Lecture 7), then we get Σ = α
2B I. This is not

Bayesian! It ignores posterior uncertainty!

The optimal preconditioner from a Bayesian standpoint is C−1.
Preconditioned SGD converges to Σ = α

2BH−1.

Justifies the use of adaptive gradient methods, sort of (they

precondition by F
−1/2
emp , and arguably Femp ≈ C)

If H = C = F, then natural gradient descent is doing Bayesian
inference. (See also Ahn et al., 2012, “Bayesian posterior sampling via
stochastic gradient Fisher scoring”)
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SGD and Implicit Variational Bayes

(Mandt et al., 2017)
Empirical results (note: axis scale not uniform)
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Gradient Noise and Flatness
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Gradient Noise and Flatness

The preceding analysis tells us that if you run SGD for a long
time, the spread in the iterates tells us something about flatness or
uncertainty.
But SGD also encourages flatness in a way that isn’t captured by
that analysis.
Considering the following funnel-shaped cost function. If we run
gradient descent, it moves directly downhill.
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Gradient Noise and Flatness

Suppose we use stochastic gradients, where Gaussian noise with
variance σ2 is added to the gradient. Here are three trajectories:

Averaging over 100 trajectories, we can see a drift towards the
flatter region.
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Gradient Noise and Flatness

Larger amounts of noise create a stronger bias towards flatness.

=3.0
=5.0
=10.0

Can we characterize the implicit regularization effect of gradient
noise?
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Gradient Noise and Flatness

Smith et al., ICLR 2021. “On the origin of implicit regularization in
stochastic gradient descent”

Goal: find an explicit regularizer which can mimic the implicit
regularization effect of SGD in full batch mode.

In the limit of small learning rates and more steps, the SGD
trajectories approach a gradient flow:

ẇ(t) = −α∇J (w(t))

Want to find a regularizer R(w) such that the average SGD
trajectory for a typical learning rate is well approximated by:

ẇ(t) = −α∇[J (w(t)) +R(w(t))]

This is a strategy known as backwards analysis.
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Gradient Noise and Flatness

For SGD with learning rate α, batch size B, and dataset size N ,
they show that the regularizer is given by:

R(w) =
α

4
‖∇J (w)‖2 +

N −B
N − 1

α

4B
tr Cw,

where Cw is the covariance of the per-example gradients,
evaluated at w.

To the extent that Cw (similar to the empirical Fisher Femp) is
related to the Hessian H, this can be seen as a flatness regularizer.

Dependence on α and B

The second term is stronger for larger α or B, as we’d expect.
The first term is independent of B, so even full-batch GD
contributes some sort of implicit bias. I don’t know what is the
practical significance of this term.
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Gradient Noise and Flatness

For a Wide-ResNet on CIFAR10, with the original loss (left), the
learning rate which maximizes test accuracy is larger than the one
that maximizes training accuracy, indicating an implicit
regularization effect.

This goes away if the regularizer is added explicitly (right).
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Gradient Noise and Flatness

Under the original objective (left), there is a generalization
advantage to small batches. This goes away when the explicit
regularizer is added (right).
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