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Today

e What’s different about SGD?
e Empirical observations about stochasticity and parallelism
o Evidence for small batch (noise-dominated) and large batch
(curvature-dominated) regimes
e Two models of stochastic optimization (which make very different
predictions!)

o Noisy quadratic model (NQM)
o Interpolation regime / student-teacher
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Stochastic Gradient Descent

@ Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example:

0+ 0—avg(e)

@ SGD can make significant progress before it has even looked at all the
data!

@ Mathematical justification: if you sample a training example at random,
the stochastic gradient is an unbiased estimate of the batch gradient:

N
E, [VJ“)(O)} - % >_vI96) =IO
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Stochastic Gradient Descent

e Batch gradient descent moves directly downhill. SGD takes steps
in a noisy direction, but moves downhill on average.

D ©

batch gradient descent stochastic gradient descent
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Stochastic Gradient Descent

e Problem: if we only look at one training example at a time, we
can’t exploit efficient vectorized operations.

o Compromise approach: compute the gradients on a
medium-sized set of training examples, called a mini-batch.

e Each entire pass over the dataset is called an epoch.

@ Stochastic gradients computed on larger mini-batches have smaller

variance:
1 oL
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SGD Learning Rate

o In stochastic training, the learning rate also influences the amount
of noise due to the stochasticity of the gradients.

small learning rate large learning rate

e Typical strategy:

o Use a large learning rate early in training so you can get close to
the optimum
e Gradually decay the learning rate to reduce the noise

o This is in contrast to the deterministic setting, where learning rate
decay might not be necessary
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SGD Learning Rate

e It’s common to decay the learning rate by a large factor (e.g. 10x)
at specific points during training.
o This results in large, sudden drops in the loss due to the reduction

in gradient noise.

error (%)

ResNet-18 WA AN
—ResNet-34 34-layer
2G() 10 20 30 40 50
iter. (le4)

(He, 2015, “Deep residual learning for image recognition”)
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Stochastic Gradient Descent: Batch Size

o The mini-batch size S is a hyperparameter that needs to be set.
o Large batches: converge in fewer weight updates because each

stochastic gradient is less noisy.
e Small batches: perform more weight updates per second because

each one requires less computation.
e Claim: If the wall-clock time were proportional to the number of
FLOPs, then S = 1 would be optimal.
e 100 updates with S = 1 requires the same FLOP count as 1 update

with S = 100.
e Rewrite minibatch gradient descent as a for-loop:
S=1 S =100
For k=1,...,100: For k=1,...,100:
Or — 0,1 —aVI® (0, ) 6 —6,_1— I‘S—OVJ(’“)(BO)

e All else being equal, you'd prefer to compute the gradient at a
fresher value of 8. So S =1 is better.
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Stochastic Gradient Descent: Batch Size

@ The reason we don’t use S = 1 is that larger batches can take
advantage of fast matrix operations and parallelism.

e Small batches: An update with S = 10 isn’t much more
expensive than an update with § = 1.

e Large batches: Once S is large enough to saturate the hardware
efficiencies, the cost becomes linear in S.

e Cartoon figure, not drawn to scale:

GPU
time per CPU training
weight examples
update per second
GPU A cPU
batch size batch size

e Since GPUs afford more parallelism, they saturate at a larger
batch size. Hence, GPUs tend to favor larger batch sizes.
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Stochastic Gradient Descent: Batch Size

Distributed SGD:

e Synchronous SGD

o Weights stored centrally on a parameter
server, data divided between workers

o Parameter server sends weights to workers

o Workers separately compute gradients on a
batch of data and send them to the
parameter server

o Parameter server aggregates the gradients
and updates the weights

parameter
server

e Main advantage: efficiently compute
gradients on larger batches

-,
- -5

@ There’s also asynchronous SGD which gradients
improves data throughput by removing
locking. I believe the fundamental tradeoffs
are the same as for synchronous SGD.
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Stochastic Gradient Descent: Batch Size

e The convergence benefits of larger batches see diminishing returns.

e Small batches: large gradient noise, so large benefit from
increased batch size

e Large batches: SGD approximates the batch gradient descent
update, so no further benefit from variance reduction.

Small Batch Large Batch

full batch
cost

/

full batch
gradient

distribution
of stochastic
gradients T—a
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Stochastic Gradient Descent: Batch Size

Shallue et al., 2019. “Measuring the effects
of data parallelism on neural network
training.”

Steps to Reach 3.9 Validation Cross Entropy
T T T T T T T T T

e For each batch size, measure the 2%
number of steps required to reach a
target validation loss

e Hyperparameters (learning rates, etc.)
tuned separately for each batch size
(very expensive!)

e Clear separation into two regimes

Batch Size

e a small batch regime which is noise
dominated and achieves linear (f) Transformer on LM1B
scaling

e a large batch regime which is
curvature dominated and gets no
further benefit from parallelism
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Stochastic Gradient Descent: Batch Size

T
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Stochasticity and Curvature

Hypothesis: second order optimization will help more for large batch

First-order, small batch Second-order, small batch
First-order, large batch Second-order, large batch
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NNTD (UofT

Stochasticity and Curvature

Empirical scaling of different optimizers:
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Toy Models of Stochastic Optimization

@ In Lecture 1, we got a lot of insight from analyzing the dynamics
of convex quadratics, or equivalently, linear regression
e Two natural stochastic generalizations
o Noisy quadratic model (NQM): convex quadratic with noisy
gradient observations
o Linear regression with mini-batches
@ These two problems are not equivalent, and lead to interestingly
different predictions
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Toy Models of Stochastic Optimization

e Somewhat orthogonally: the field of optimization distinguishes
several settings

e Incremental optimization: finite dataset, compute gradients on
mini-batches for efficiency, minimize training cost

e Stochastic optimization: cost is stochastic, want to minimize its
expectation (think dropout, VAEs, etc.)

o Online optimization: cost function sampled in each iteration (not
necessarily i.i.d.), want to minimize regret, i.e. total loss compared
to the best parameters in retrospect

e We often blur these together in ML

o We use “stochastic” to refer to the incremental setting as well

o Unclear if there’s any advantage (on the validation set) to
exploiting the finiteness of the dataset

o Algorithms like Adagrad, Adam, Shampoo, etc. come from the
online setting

e The noisy quadratic model uses the stochastic setting, or online
learning with an i.i.d. assumption

e “infinite data”
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Noisy Quadratic Model
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Noisy Quadratic Model
Noisy Quadratic Model (NQM):
e Quadratic loss function:
LT
L£(6) = 50 HoO

o WLOG, we assume the optimum is at 0

Each gradient query is noisy: %
g=HO+c E[]=0 Cov(e) =C

@ We measure the loss on the deterministic objective
(so that the minimum is 0)

The gradient noise is independent between steps (so
this is essentially the infinite data setting)
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Noisy Quadratic Model

Three optimization runs with different learning rates:
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Noisy Quadratic Model

Taking the expectation (with respect to the gradient noise)

06 06

05 05

04 04
03 03
02 02

01 01

0.0 0.0
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Noisy Quadratic Model

e To simplify the derivations, we assume H and C are
codiagonalizable

e Then we can assume WLOG that they are diagonal

e Consider the SGD dynamics. Since H and C are assumed
diagonal, each coordinate evolves independently:

0§k+1) 05 ) _ og; Elei]
= (1—ah)0") + ay/ee Var(e;) =

o The risk (expected loss) can be decomposed as a sum of terms for
each individual dimension

0
1

@ These terms satisfy a bias-variance decomposition:

EILi(00)] = 5[E[B? + Var(6:)]
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Noisy Quadratic Model

@ The system is linear, so we can compute the first and second
(k)

moments of 6, for all time steps using dynamic programming

@ Assuming each ah; < 2, the loss for each dimension converges
exponentially to a steady state risk, or noise floor:

E[L:(0W)) = (1— ah)? EL:(0))+(1—(1—ah)?) 2%
¢ N —’ ¢ 2(2 - Oéhl)
convergence rate N——

steady state risk

e Tradeoff: Increasing o speeds up convergence, but increases the
noise floor
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Noisy Quadratic Model

1.0
— high curvature (0.5)
— lower curvature (0.01)
08 --- decay at step 100
Visualizing the training dynamics, --- decay at step 100
0.6
and the effect of decaying «, along ¥
o
a high-curvature and a 0.4
low-curvature eigendirection. 02 i
0.0 ) 50
Steps
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Noisy Quadratic Model

o How can we choose the curvature H and the gradient covariance
C?
o This makes a difference to the qualitative behavior!
@ Our choices (which I'll now justify):
e H=C
o h; =1/i (scale-free Hessian)
@ Note: the second assumption means there are a lot of
low-curvature directions that collectively contribute a lot to the
risk
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Noisy Quadratic Model

o First assumption: H = C. This is motivated by how the
“empirical Fisher matrix” is often used as a proxy for the Hessian
e The following scatterplots plot the Rayleigh quotients v Hv
vs. v Cv for different vectors v

e To get both high and low curvature directions, v is chosen using
the eigenvectors of the K-FAC approximation to H

CIFARI10 conv net transformer language model
/1
102 10" 10 10° 10° 10° 0 10T 10 105 10° 10°
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Noisy Quadratic Model

e We assume a power law eigenspectrum for H (and hence also for
C). In particular, h; = 1/i

@ While there are only a handful of high-curvature directions, the
many low-curvature directions are still important in aggregate

e This is a reasonably good match to the eigenspectrum of conv net
Hessians as estimated by K-FAC.

ResNgt§ vop‘(v:!FAFh 0

o I don’t know whether or not the true
Hessian has the same eigenspectrum,
and we don’t currently have good
tools to find out

Eigenvalue

o Consistent with recent estimates
using generalized trace estimation L T (L LS T LR TS
(e.g. Ghorbani et al., 2019) Index
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Noisy Quadratic Model

o By simulating the exact dynamics, we
can determine the number of SGD
steps required to reach a target risk

threshold -
L
e Each point on these curves is the min %in
. . 2%
over all choices of (fixed) learning 82
R
rate, analogous to Shallue et al.’s g2
. Q515
experiments 23
L
. . £

o This plot can be generated in seconds S R ———

Batch size

o We can clearly distinguish a “large
batch” and a “small batch” regime

@ Note: the training dynamics do not
change between these regimes!
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NQM: Preconditioning

Preconditioned SGD update:

o+t — k) _ P~ [HO + €]

Consider curvature-based preconditioners: P = HY with 0 <~ <1

e v =0: ordinary SGD
o v = 1: stochastic Newton

e Effect on convergence in each dimension:
. N acih; !
BILi(6{)]) = (1 —ah; )™ B0+ (1~ (1—ah] 7)) -t
—_— 2(w —ah;”7)

convergence rate ﬁ_/

noise floor

o Tradeoff: If h; < 1, then preconditioning speeds up convergence
in dimesion 7, but increases the noise floor. Whether or not this is
favorable depends on the specifics of H and C.
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Noisy Quadratic Model

o Large benefit of

e e —
preconditioning in the large =l
batch (curvature-dominated) — Ppow0.5

. pow 0.75 i
regime - lower bound

e Modest benefit, if any, in the

. [
small batch regime S
. . . &

e Dotted line = information ;
theoretic lower bound (exact 2 e e g g0 gm i g gn g
optimum for training data so Batch size

far)
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Noisy Quadratic Model

Optimal learning rate by batch size
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Batch size

Linear scaling in the noise dominated regime (agrees with a well-known
heuristic)
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Noisy Quadratic Model

Fitting optimal learning rate schedules at different batch sizes
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NQM: Momentum and Iterate Averaging

Two superficially similar algorithms:

e Heavy ball momentum (equivalent to an exponential moving
average of the stochastic gradients)
vE) = gyk=1) _ qgk)
o) = glk—1) | y(¥)

e Iterate averaging (in this case, exponential moving average of the
parameters)

o) — glh—1) _ ng(k)

é(k) (k—=1)

—uf" 7+ (1—p)o®
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NQM: Momentum and Iterate Averaging

But they have very different benefits:

HB Momentum Iterate Averaging

S o
g 28 pow 0 b 26 pow 0
@ pal| T POW 0.25 2 || — powoa2s )
b >l — pow 0.5 & 22 — pow 0.5 s——
[ — powo7s ) 2°H — pow 0.75 e
22 ----- lower bound 200 L. lower bound -
Yyr 37 35 3F v T g s g w0 255 38 5 3T 3 5 3 g%
Batch size Batch size
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Noisy Quadratic Model: Empirical Results

Empirical results (recap)

2% Target Accuracy: 0.920 24 Target Accuracy: 0.800
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- Target Accuracy: 0.930 Target cross entropy: 3.90
-
e
&
= 2Y
s
S,
a
a
Som
w
2ll
20 2
T3 S

Batch size Batch Size

(e) ResNet32 on CIFAR10 (f) Transformer on LM1B
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Stochastic Linear Regression
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Stochastic Linear Regression

I said the NQM was one of two natural generalizations of Lecture
1 to the stochastic setting

For the NQM, we made the simplifying assumption that the
gradient covariance C is independent of 6

In the NQM, this leads to an information theoretic lower bound of
O(1/k) on the risk

e Without this assumption, it may be possible to achieve
exponential convergence
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Stochastic Linear Regression

o Consider a linear regression problem where, under the data
generating distribution, the labels are sampled with Gaussian noise

t]x ~ N(fu(x),07),

T

, X is the true function, or teacher, and w, are

where f,(x) =w
the true weights
e Assume for simplicity batches of size 1 and x ~ N (0, Xx)

e Applying the Law of Total Covariance,

labelleoise batch noise
Cov(g) = E[Cov(g|x)] + Cov(E[g | x])

= E[Var(t — y | x)xx '] + Cov(x(fu(x) — f(x,W)))
T
(

= 023, + Cov(xx ' (W, —w))

e With no label noise, the first term vanishes
@ The second term vanishes when w = w,
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Stochastic Linear Regression

@ This implies that, with clean labels (or an
overparameterized model!) the noise
vanishes as you approach the optimum

@ Consider the proximal update which, in
each iteration, computes:

w) argmin  [jw— w2
w: f(x(F) ,w)=t(k)

@ This is equivalent to the randomized \
Kaczmarz method for solving linear
systems, which has long been known to
converge exponentially

@ See Mark Schmidt’s “Notes on
Randomized Kaczmarz”
(https://www.cs.ubc.ca/~nickhar/
W15/Lecture2iNotes.pdf)
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Exponential Convergence

o Ma et al., 2018, “The power of interpolation: Understanding the
effectiveness of SGD in modern over-parameterized learning”
o In the interpolation regime (i.e. overparameterized), there exists a
w, which correctly predicts the training labels
e Exponential convergence bound for SGD on convex losses

o Kidambi et al., 2018, “On the insufficiency of existing momentum
schemes for stochastic optimization”

o Shows that Nesterov Accelerated Gradient (Lecture 9) doesn’t
achieve acceleration in the stochastic setting, but provides an
alternative that does
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Two Models of Stochastic Optimization

e To summarize, we've seen two distinct models of stochastic
optimization.

Online learning, e.g. Noisy Quadratic Model

o Infinite data, each update is independent
e Exponential convergence is impossible

Interpolation regime, e.g. stochastic linear regression
e Finite dataset, possible to fit exactly
e Noise comes only from the choice of batch
e Exponential convergence is possible

Which one best describes neural net optimization?
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Two Models of Stochastic Optimization

o The interpolation regime would seem to be a better match to how
neural nets are actually trained.
@ On the other hand:

o Online learning has motivated lots of algorithms that work really
well for neural nets (natural gradient descent, adaptive gradient
methods).

e Optimization methods specifically designed to exploit the finiteness
of the dataset (e.g. Stochastic Variance Reduced Gradients) aren’t
used much for training neural nets.

o It’s often easy to minimize the training loss much faster than
current algorithms, and this rarely translates into better
generalization error.

o Arguably, the ability to fit a finite dataset faster will just help you
overfit.
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Deep Bootstrap
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Deep Bootstrap

Nakkiran et al., ICLR 2021. “The deep bootstrap framework: Good

online learners are good offline generalizers.”

e Intriguing claim: generalization error from training on a finite

dataset closely follows the loss in the online (infinite data) regime
until the point where you’ve fit the training set.

@ The following experiment uses a synthetic CIFAR-like dataset

generated by a deep generative model.
@ Real world = train on 50K samples for 100 epochs. Ideal world =
train on 5M samples for 1 epoch.

0.9
0.8

0.7

Real World (solid) vs. Ideal World (dashed)

----- Ideal World Test
—— Real World Test
Real World Train

ResNet18

0 5000 10000 15000 20000 25000 30000 35000 40000
SGD lIterations

CSC2541-Lecb

Real World:
SGD on empirical loss

Ideal World:
SGD on population loss

44 /47



Deep Bootstrap

Classical model of generalization:

TestError(f;) = TrainError(f;) + [TestError(f;) — TrainError(f;)

Generalization Gap

Since the training error can be very close to 0, this puts a lot of
burden on the “generalization gap” to exactly predict the test
error.

Their alternative decomposition:

TestError(f;) = TestError(fj) + [TestError(f;) — TestError(fji*)

Online Learning Bootstrap Error

Hypothesis: the bootstrap error is typically small, until the point
where the training loss is close to 0. Therefore, generalization
error is well modeled by online learning.
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Deep Bootstrap

o Left: online error vs. generalization from finite dataset

o Right: effect of dataset size. The dots indicate the point where the
training error reaches 1%.

Real vs. Ideal Worlds
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Deep Bootstrap

@ The Deep Bootstrap Hypothesis is still an empirical conjecture.
No proof yet.

o If it’s correct, then what appear to be generalization phenomena
may actually be optimization phenomena, even when training
error is small.

e Some surprising interpretations/consequences

e Increasing the dataset size helps generalization by making it harder
to reach low (e.g. 1%) training error, thereby keeping the bootstrap
error low for more epochs

e Dropout, data augmentation, etc. help for the same reason. One
trades off the increased online training loss (due to stochasticity)
with smaller bootstrap error.

NNTD (UofT) CSC2541-Lecb A7 /AT



