
CSC 2541: Neural Net Training Dynamics
Lecture 7 - Stochasticity and Parellelism

Roger Grosse

University of Toronto, Winter 2022

NNTD (UofT) CSC2541-Lec5 1 / 47



Today

What’s different about SGD?

Empirical observations about stochasticity and parallelism

Evidence for small batch (noise-dominated) and large batch
(curvature-dominated) regimes

Two models of stochastic optimization (which make very different
predictions!)

Noisy quadratic model (NQM)
Interpolation regime / student-teacher

NNTD (UofT) CSC2541-Lec5 2 / 47



Stochastic Gradient Descent

Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example:

θ ← θ − α∇J (i)(θ)

SGD can make significant progress before it has even looked at all the
data!

Mathematical justification: if you sample a training example at random,
the stochastic gradient is an unbiased estimate of the batch gradient:

Ei
[
∇J (i)(θ)

]
=

1

N

N∑
i=1

∇J (i)(θ) = ∇J (θ).

NNTD (UofT) CSC2541-Lec5 3 / 47



Stochastic Gradient Descent

Batch gradient descent moves directly downhill. SGD takes steps
in a noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent

NNTD (UofT) CSC2541-Lec5 4 / 47



Stochastic Gradient Descent

Problem: if we only look at one training example at a time, we
can’t exploit efficient vectorized operations.

Compromise approach: compute the gradients on a
medium-sized set of training examples, called a mini-batch.

Each entire pass over the dataset is called an epoch.

Stochastic gradients computed on larger mini-batches have smaller
variance:

Var

[
1

S

S∑
i=1

∂L(i)

∂θj

]
=

1

S2
Var

[
S∑
i=1

∂L(i)

∂θj

]
=

1

S
Var

[
∂L(i)

∂θj

]

NNTD (UofT) CSC2541-Lec5 5 / 47



SGD Learning Rate

In stochastic training, the learning rate also influences the amount
of noise due to the stochasticity of the gradients.

Typical strategy:

Use a large learning rate early in training so you can get close to
the optimum
Gradually decay the learning rate to reduce the noise

This is in contrast to the deterministic setting, where learning rate
decay might not be necessary

NNTD (UofT) CSC2541-Lec5 6 / 47



SGD Learning Rate

It’s common to decay the learning rate by a large factor (e.g. 10x)
at specific points during training.

This results in large, sudden drops in the loss due to the reduction
in gradient noise.

(He, 2015, “Deep residual learning for image recognition”)

NNTD (UofT) CSC2541-Lec5 7 / 47



Stochastic Gradient Descent: Batch Size

The mini-batch size S is a hyperparameter that needs to be set.

Large batches: converge in fewer weight updates because each
stochastic gradient is less noisy.
Small batches: perform more weight updates per second because
each one requires less computation.

Claim: If the wall-clock time were proportional to the number of
FLOPs, then S = 1 would be optimal.

100 updates with S = 1 requires the same FLOP count as 1 update
with S = 100.
Rewrite minibatch gradient descent as a for-loop:

All else being equal, you’d prefer to compute the gradient at a
fresher value of θ. So S = 1 is better.

NNTD (UofT) CSC2541-Lec5 8 / 47



Stochastic Gradient Descent: Batch Size

The reason we don’t use S = 1 is that larger batches can take
advantage of fast matrix operations and parallelism.

Small batches: An update with S = 10 isn’t much more
expensive than an update with S = 1.

Large batches: Once S is large enough to saturate the hardware
efficiencies, the cost becomes linear in S.

Cartoon figure, not drawn to scale:

Since GPUs afford more parallelism, they saturate at a larger
batch size. Hence, GPUs tend to favor larger batch sizes.

NNTD (UofT) CSC2541-Lec5 9 / 47



Stochastic Gradient Descent: Batch Size

Distributed SGD:

Synchronous SGD

Weights stored centrally on a parameter
server, data divided between workers
Parameter server sends weights to workers
Workers separately compute gradients on a
batch of data and send them to the
parameter server
Parameter server aggregates the gradients
and updates the weights

Main advantage: efficiently compute
gradients on larger batches

There’s also asynchronous SGD which
improves data throughput by removing
locking. I believe the fundamental tradeoffs
are the same as for synchronous SGD.

NNTD (UofT) CSC2541-Lec5 10 / 47



Stochastic Gradient Descent: Batch Size

The convergence benefits of larger batches see diminishing returns.
Small batches: large gradient noise, so large benefit from
increased batch size
Large batches: SGD approximates the batch gradient descent
update, so no further benefit from variance reduction.

NNTD (UofT) CSC2541-Lec5 11 / 47



Stochastic Gradient Descent: Batch Size

Shallue et al., 2019. “Measuring the effects
of data parallelism on neural network
training.”

For each batch size, measure the
number of steps required to reach a
target validation loss

Hyperparameters (learning rates, etc.)
tuned separately for each batch size
(very expensive!)

Clear separation into two regimes

a small batch regime which is noise
dominated and achieves linear
scaling
a large batch regime which is
curvature dominated and gets no
further benefit from parallelism

NNTD (UofT) CSC2541-Lec5 12 / 47



Stochastic Gradient Descent: Batch Size

NNTD (UofT) CSC2541-Lec5 13 / 47



Stochasticity and Curvature

Hypothesis: second order optimization will help more for large batch
sizes:

NNTD (UofT) CSC2541-Lec5 14 / 47



Stochasticity and Curvature

Empirical scaling of different optimizers:

NNTD (UofT) CSC2541-Lec5 15 / 47



Toy Models of Stochastic Optimization

In Lecture 1, we got a lot of insight from analyzing the dynamics
of convex quadratics, or equivalently, linear regression

Two natural stochastic generalizations

Noisy quadratic model (NQM): convex quadratic with noisy
gradient observations
Linear regression with mini-batches

These two problems are not equivalent, and lead to interestingly
different predictions

NNTD (UofT) CSC2541-Lec5 16 / 47



Toy Models of Stochastic Optimization

Somewhat orthogonally: the field of optimization distinguishes
several settings

Incremental optimization: finite dataset, compute gradients on
mini-batches for efficiency, minimize training cost
Stochastic optimization: cost is stochastic, want to minimize its
expectation (think dropout, VAEs, etc.)
Online optimization: cost function sampled in each iteration (not
necessarily i.i.d.), want to minimize regret, i.e. total loss compared
to the best parameters in retrospect

We often blur these together in ML
We use “stochastic” to refer to the incremental setting as well
Unclear if there’s any advantage (on the validation set) to
exploiting the finiteness of the dataset
Algorithms like Adagrad, Adam, Shampoo, etc. come from the
online setting

The noisy quadratic model uses the stochastic setting, or online
learning with an i.i.d. assumption

“infinite data”
NNTD (UofT) CSC2541-Lec5 17 / 47



Noisy Quadratic Model

NNTD (UofT) CSC2541-Lec5 18 / 47



Noisy Quadratic Model

Noisy Quadratic Model (NQM):

Quadratic loss function:

L(θ) =
1

2
θ>Hθ

WLOG, we assume the optimum is at 0

Each gradient query is noisy:

g = Hθ + ε E[ε] = 0 Cov(ε) = C

We measure the loss on the deterministic objective
(so that the minimum is 0)

The gradient noise is independent between steps (so
this is essentially the infinite data setting)

NNTD (UofT) CSC2541-Lec5 19 / 47



Noisy Quadratic Model

Three optimization runs with different learning rates:

NNTD (UofT) CSC2541-Lec5 20 / 47



Noisy Quadratic Model

Taking the expectation (with respect to the gradient noise)

NNTD (UofT) CSC2541-Lec5 21 / 47



Noisy Quadratic Model

To simplify the derivations, we assume H and C are
codiagonalizable

Then we can assume WLOG that they are diagonal

Consider the SGD dynamics. Since H and C are assumed
diagonal, each coordinate evolves independently:

θ
(k+1)
i = θ

(k)
i − αgi E[εi] = 0

= (1− αhi)θ(k)i + α
√
ciεi Var(εi) = 1

The risk (expected loss) can be decomposed as a sum of terms for
each individual dimension

These terms satisfy a bias-variance decomposition:

E[Li(θi)] =
1

2
[E[θi]

2 + Var(θi)]

NNTD (UofT) CSC2541-Lec5 22 / 47



Noisy Quadratic Model

The system is linear, so we can compute the first and second

moments of θ
(k)
i for all time steps using dynamic programming

Assuming each αhi < 2, the loss for each dimension converges
exponentially to a steady state risk, or noise floor:

E[Li(θ(k)i )] = (1− αhi)2k︸ ︷︷ ︸
convergence rate

E[Li(θ(0)i )]+(1−(1−αhi)2k)
αci

2(2− αhi)︸ ︷︷ ︸
steady state risk

Tradeoff: Increasing α speeds up convergence, but increases the
noise floor

NNTD (UofT) CSC2541-Lec5 23 / 47



Noisy Quadratic Model

Visualizing the training dynamics,
and the effect of decaying α, along
a high-curvature and a
low-curvature eigendirection.

NNTD (UofT) CSC2541-Lec5 24 / 47



Noisy Quadratic Model

How can we choose the curvature H and the gradient covariance
C?

This makes a difference to the qualitative behavior!

Our choices (which I’ll now justify):

H = C
hi = 1/i (scale-free Hessian)

Note: the second assumption means there are a lot of
low-curvature directions that collectively contribute a lot to the
risk

NNTD (UofT) CSC2541-Lec5 25 / 47



Noisy Quadratic Model

First assumption: H = C. This is motivated by how the
“empirical Fisher matrix” is often used as a proxy for the Hessian

The following scatterplots plot the Rayleigh quotients v>Hv
vs. v>Cv for different vectors v

To get both high and low curvature directions, v is chosen using
the eigenvectors of the K-FAC approximation to H

CIFAR10 conv net transformer language model

NNTD (UofT) CSC2541-Lec5 26 / 47



Noisy Quadratic Model

We assume a power law eigenspectrum for H (and hence also for
C). In particular, hi = 1/i

While there are only a handful of high-curvature directions, the
many low-curvature directions are still important in aggregate

This is a reasonably good match to the eigenspectrum of conv net
Hessians as estimated by K-FAC.

I don’t know whether or not the true
Hessian has the same eigenspectrum,
and we don’t currently have good
tools to find out

Consistent with recent estimates
using generalized trace estimation
(e.g. Ghorbani et al., 2019)

NNTD (UofT) CSC2541-Lec5 27 / 47



Noisy Quadratic Model

By simulating the exact dynamics, we
can determine the number of SGD
steps required to reach a target risk
threshold

Each point on these curves is the min
over all choices of (fixed) learning
rate, analogous to Shallue et al.’s
experiments

This plot can be generated in seconds

We can clearly distinguish a “large
batch” and a “small batch” regime

Note: the training dynamics do not
change between these regimes!

NNTD (UofT) CSC2541-Lec5 28 / 47



NQM: Preconditioning

Preconditioned SGD update:

θ(k+1) = θ(k) − αP−1[Hθ + ε]

Consider curvature-based preconditioners: P = Hγ with 0 ≤ γ ≤ 1

γ = 0: ordinary SGD
γ = 1: stochastic Newton

Effect on convergence in each dimension:

E[Li(θ(k)
i )] = (1− αh1−γ

i )2t︸ ︷︷ ︸
convergence rate

E[Li(θ(0)
i )]+(1−(1−αh1−γ

i )2t)
αcih

−γ
i

2(w − αh1−γ
i )︸ ︷︷ ︸

noise floor

Tradeoff: If hi < 1, then preconditioning speeds up convergence
in dimesion i, but increases the noise floor. Whether or not this is
favorable depends on the specifics of H and C.

NNTD (UofT) CSC2541-Lec5 29 / 47



Noisy Quadratic Model

Large benefit of
preconditioning in the large
batch (curvature-dominated)
regime

Modest benefit, if any, in the
small batch regime

Dotted line = information
theoretic lower bound (exact
optimum for training data so
far)

NNTD (UofT) CSC2541-Lec5 30 / 47



Noisy Quadratic Model

Optimal learning rate by batch size

Linear scaling in the noise dominated regime (agrees with a well-known
heuristic)

NNTD (UofT) CSC2541-Lec5 31 / 47



Noisy Quadratic Model

Fitting optimal learning rate schedules at different batch sizes

NNTD (UofT) CSC2541-Lec5 32 / 47



NQM: Momentum and Iterate Averaging

Two superficially similar algorithms:

Heavy ball momentum (equivalent to an exponential moving
average of the stochastic gradients)

v(k) = βv(k−1) − αg(k)

θ(k) = θ(k−1) + v(k)

Iterate averaging (in this case, exponential moving average of the
parameters)

θ(k) = θ(k−1) − αg(k)

θ̃
(k)

= µθ̃
(k−1)

+ (1− µ)θ(k)

NNTD (UofT) CSC2541-Lec5 33 / 47



NQM: Momentum and Iterate Averaging

But they have very different benefits:

HB Momentum Iterate Averaging

NNTD (UofT) CSC2541-Lec5 34 / 47



Noisy Quadratic Model: Empirical Results

Empirical results (recap)

NNTD (UofT) CSC2541-Lec5 35 / 47



Stochastic Linear Regression

NNTD (UofT) CSC2541-Lec5 36 / 47



Stochastic Linear Regression

I said the NQM was one of two natural generalizations of Lecture
1 to the stochastic setting

For the NQM, we made the simplifying assumption that the
gradient covariance C is independent of θ

In the NQM, this leads to an information theoretic lower bound of
O(1/k) on the risk

Without this assumption, it may be possible to achieve
exponential convergence

NNTD (UofT) CSC2541-Lec5 37 / 47



Stochastic Linear Regression

Consider a linear regression problem where, under the data
generating distribution, the labels are sampled with Gaussian noise

t |x ∼ N (f?(x), σ2n),

where f?(x) = w>? x is the true function, or teacher, and w? are
the true weights

Assume for simplicity batches of size 1 and x ∼ N (0,Σx)

Applying the Law of Total Covariance,

Cov(g) =

label noise︷ ︸︸ ︷
E[Cov(g |x)] +

batch noise︷ ︸︸ ︷
Cov(E[g |x])

= E[Var(t− y |x)xx>] + Cov(x(f?(x)− f(x,w)))

= σ2nΣx + Cov(xx>(w? −w))

With no label noise, the first term vanishes

The second term vanishes when w = w?

NNTD (UofT) CSC2541-Lec5 38 / 47



Stochastic Linear Regression

This implies that, with clean labels (or an
overparameterized model!) the noise
vanishes as you approach the optimum

Consider the proximal update which, in
each iteration, computes:

w(k) ← arg min
w:f(x(k),w)=t(k)

‖w −w(k−1)‖2

This is equivalent to the randomized
Kaczmarz method for solving linear
systems, which has long been known to
converge exponentially

See Mark Schmidt’s “Notes on
Randomized Kaczmarz”
(https://www.cs.ubc.ca/~nickhar/
W15/Lecture21Notes.pdf)

NNTD (UofT) CSC2541-Lec5 39 / 47

https://www.cs.ubc.ca/~nickhar/W15/Lecture21Notes.pdf
https://www.cs.ubc.ca/~nickhar/W15/Lecture21Notes.pdf


Exponential Convergence

Ma et al., 2018, “The power of interpolation: Understanding the
effectiveness of SGD in modern over-parameterized learning”

In the interpolation regime (i.e. overparameterized), there exists a
w? which correctly predicts the training labels
Exponential convergence bound for SGD on convex losses

Kidambi et al., 2018, “On the insufficiency of existing momentum
schemes for stochastic optimization”

Shows that Nesterov Accelerated Gradient (Lecture 9) doesn’t
achieve acceleration in the stochastic setting, but provides an
alternative that does

NNTD (UofT) CSC2541-Lec5 40 / 47



Two Models of Stochastic Optimization

To summarize, we’ve seen two distinct models of stochastic
optimization.

Online learning, e.g. Noisy Quadratic Model

Infinite data, each update is independent
Exponential convergence is impossible

Interpolation regime, e.g. stochastic linear regression

Finite dataset, possible to fit exactly
Noise comes only from the choice of batch
Exponential convergence is possible

Which one best describes neural net optimization?

NNTD (UofT) CSC2541-Lec5 41 / 47



Two Models of Stochastic Optimization

The interpolation regime would seem to be a better match to how
neural nets are actually trained.

On the other hand:

Online learning has motivated lots of algorithms that work really
well for neural nets (natural gradient descent, adaptive gradient
methods).
Optimization methods specifically designed to exploit the finiteness
of the dataset (e.g. Stochastic Variance Reduced Gradients) aren’t
used much for training neural nets.
It’s often easy to minimize the training loss much faster than
current algorithms, and this rarely translates into better
generalization error.
Arguably, the ability to fit a finite dataset faster will just help you
overfit.

NNTD (UofT) CSC2541-Lec5 42 / 47



Deep Bootstrap

NNTD (UofT) CSC2541-Lec5 43 / 47



Deep Bootstrap

Nakkiran et al., ICLR 2021. “The deep bootstrap framework: Good
online learners are good offline generalizers.”

Intriguing claim: generalization error from training on a finite
dataset closely follows the loss in the online (infinite data) regime
until the point where you’ve fit the training set.
The following experiment uses a synthetic CIFAR-like dataset
generated by a deep generative model.
Real world = train on 50K samples for 100 epochs. Ideal world =
train on 5M samples for 1 epoch.

NNTD (UofT) CSC2541-Lec5 44 / 47



Deep Bootstrap

Classical model of generalization:

TestError(ft) = TrainError(ft) + [TestError(ft)− TrainError(ft)︸ ︷︷ ︸
Generalization Gap

Since the training error can be very close to 0, this puts a lot of
burden on the “generalization gap” to exactly predict the test
error.

Their alternative decomposition:

TestError(ft) = TestError(f iidt )︸ ︷︷ ︸
Online Learning

+ [TestError(ft)− TestError(f iidt )︸ ︷︷ ︸
Bootstrap Error

Hypothesis: the bootstrap error is typically small, until the point
where the training loss is close to 0. Therefore, generalization
error is well modeled by online learning.

NNTD (UofT) CSC2541-Lec5 45 / 47



Deep Bootstrap

Left: online error vs. generalization from finite dataset

Right: effect of dataset size. The dots indicate the point where the
training error reaches 1%.

NNTD (UofT) CSC2541-Lec5 46 / 47



Deep Bootstrap

The Deep Bootstrap Hypothesis is still an empirical conjecture.
No proof yet.

If it’s correct, then what appear to be generalization phenomena
may actually be optimization phenomena, even when training
error is small.

Some surprising interpretations/consequences

Increasing the dataset size helps generalization by making it harder
to reach low (e.g. 1%) training error, thereby keeping the bootstrap
error low for more epochs
Dropout, data augmentation, etc. help for the same reason. One
trades off the increased online training loss (due to stochasticity)
with smaller bootstrap error.

NNTD (UofT) CSC2541-Lec5 47 / 47


