CSC 2541: Neural Net Training Dynamics

Lecture 7 - Stochasticity and Parellelism

Roger Grosse

University of Toronto, Winter 2022

NNTD (UofT) CSC2541-Lecb 1/47

Today

e What’s different about SGD?
e Empirical observations about stochasticity and parallelism
o Evidence for small batch (noise-dominated) and large batch
(curvature-dominated) regimes
e Two models of stochastic optimization (which make very different
predictions!)

o Noisy quadratic model (NQM)
o Interpolation regime / student-teacher

NNTD (UofT) CSC2541-Lecb 2/47

Stochastic Gradient Descent

@ Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example:

0+ 0—avg(e)

@ SGD can make significant progress before it has even looked at all the
data!

@ Mathematical justification: if you sample a training example at random,
the stochastic gradient is an unbiased estimate of the batch gradient:

N
E, [VJ“)(O)} - % >_vI96) =IO

NNTD (UofT) CSC2541-Lecb 3/47

Stochastic Gradient Descent

e Batch gradient descent moves directly downhill. SGD takes steps
in a noisy direction, but moves downhill on average.

D ©

batch gradient descent stochastic gradient descent

NNTD (UofT) CSC2541-Lecb 4/47

Stochastic Gradient Descent

e Problem: if we only look at one training example at a time, we
can’t exploit efficient vectorized operations.

o Compromise approach: compute the gradients on a
medium-sized set of training examples, called a mini-batch.

e Each entire pass over the dataset is called an epoch.

@ Stochastic gradients computed on larger mini-batches have smaller

variance:
1 oL

NNTD (UofT) CSC2541-Lecb 5/47

SGD Learning Rate

o In stochastic training, the learning rate also influences the amount
of noise due to the stochasticity of the gradients.

small learning rate large learning rate

e Typical strategy:

o Use a large learning rate early in training so you can get close to
the optimum
e Gradually decay the learning rate to reduce the noise

o This is in contrast to the deterministic setting, where learning rate
decay might not be necessary

NNTD (UofT) CSC2541-Lecb 6 /47

SGD Learning Rate

e It’s common to decay the learning rate by a large factor (e.g. 10x)
at specific points during training.
o This results in large, sudden drops in the loss due to the reduction

in gradient noise.

error (%)

ResNet-18 WA AN
—ResNet-34 34-layer
2G() 10 20 30 40 50
iter. (le4)

(He, 2015, “Deep residual learning for image recognition”)

NNTD (UofT) CSC2541-Lecb T /AT

Stochastic Gradient Descent: Batch Size

o The mini-batch size S is a hyperparameter that needs to be set.
o Large batches: converge in fewer weight updates because each

stochastic gradient is less noisy.
e Small batches: perform more weight updates per second because

each one requires less computation.
e Claim: If the wall-clock time were proportional to the number of
FLOPs, then S = 1 would be optimal.
e 100 updates with S = 1 requires the same FLOP count as 1 update

with S = 100.
e Rewrite minibatch gradient descent as a for-loop:
S=1 S =100
For k=1,...,100: For k=1,...,100:
Or — 0,1 —aVI® (0,) 6 —6,_1— I‘S—OVJ(’“)(BO)

e All else being equal, you'd prefer to compute the gradient at a
fresher value of 8. So S =1 is better.

NNTD (UofT) CSC2541-Lecb 8 /47

Stochastic Gradient Descent: Batch Size

@ The reason we don’t use S = 1 is that larger batches can take
advantage of fast matrix operations and parallelism.

e Small batches: An update with S = 10 isn’t much more
expensive than an update with § = 1.

e Large batches: Once S is large enough to saturate the hardware
efficiencies, the cost becomes linear in S.

e Cartoon figure, not drawn to scale:

GPU
time per CPU training
weight examples
update per second
GPU A cPU
batch size batch size

e Since GPUs afford more parallelism, they saturate at a larger
batch size. Hence, GPUs tend to favor larger batch sizes.

NNTD (UofT) CSC2541-Lecb 9/47

Stochastic Gradient Descent: Batch Size

Distributed SGD:

e Synchronous SGD

o Weights stored centrally on a parameter
server, data divided between workers

o Parameter server sends weights to workers

o Workers separately compute gradients on a
batch of data and send them to the
parameter server

o Parameter server aggregates the gradients
and updates the weights

parameter
server

e Main advantage: efficiently compute
gradients on larger batches

-,
- -5

@ There’s also asynchronous SGD which gradients
improves data throughput by removing
locking. I believe the fundamental tradeoffs
are the same as for synchronous SGD.

NNTD (UofT) CSC2541-Lecb 10 /47

Stochastic Gradient Descent: Batch Size

e The convergence benefits of larger batches see diminishing returns.

e Small batches: large gradient noise, so large benefit from
increased batch size

e Large batches: SGD approximates the batch gradient descent
update, so no further benefit from variance reduction.

Small Batch Large Batch

full batch
cost

/

full batch
gradient

distribution
of stochastic
gradients T—a

NNTD (UofT) CSC2541-Lecb 11 /47

Stochastic Gradient Descent: Batch Size

Shallue et al., 2019. “Measuring the effects
of data parallelism on neural network
training.”

Steps to Reach 3.9 Validation Cross Entropy
T T T T T T T T T

e For each batch size, measure the 2%
number of steps required to reach a
target validation loss

e Hyperparameters (learning rates, etc.)
tuned separately for each batch size
(very expensive!)

e Clear separation into two regimes

Batch Size

e a small batch regime which is noise
dominated and achieves linear (f) Transformer on LM1B
scaling

e a large batch regime which is
curvature dominated and gets no
further benefit from parallelism

NNTD (UofT) CSC2541-Lecb 12 /47

Stochastic Gradient Descent: Batch Size

T

Steps to Reach 0.25 Validation Error 520 Steps to Reach 0.31 Validation AP

220 Steps to Reach 3.9 Validation Cross Entrapy
T T T

Steps

) N N ool]
26 27 25 29 210 2]1 212 213 214 2 5 24 25 25 27 25 292102112122132142 5
Batch Size Batch Size Batch Size
(d) ResNet-50 on ImageNet (e) ResNet-50 on Open Images (f) Transformer on LM1B
520 Steps to Reach 3.9 Validation Cross Entropy 21 Steps to Reach 0.35 Validation Error 221 Steps to Reach 3.9 Validation Cross Entropy
T T —_— : T T
219 : : : S0 R0 j S0 Tl Pl
Q| 519
218 219 L
217
2V 18
n 2L 0 516 w27k
Q a? Q1
5 J15| T2 @ 2L
& 21| & 2 & 51
13 27
2L 2
212 2151
212 i B Ju
21 SRS SO SRR O SN 510) Ll 21t Feeed 3 Boesd
P T S S S S S S L I T T EC] I T S R R
25 25 27 25 29 210 2]] 2]2 213 2 4 25 26 27 28 29 2]02112]22]32]42152 6 24 25 25 27 23 2921\721]2112132142 5
Batch Size Batch Size Batch Size
(g) Transformer on Common Crawl (h) VGG-11 on ImageNet (i) LSTM on LM1B

NNTD (Uc CSC2541-Lech 13 /47

Stochasticity and Curvature

Hypothesis: second order optimization will help more for large batch

First-order, small batch Second-order, small batch
First-order, large batch Second-order, large batch

NNTD (UofT) CSC2541-Lecb 14 /47

NNTD (UofT

Stochasticity and Curvature

Empirical scaling of different optimizers:

24 Target Accuracy: 0.920

217 Target Accuracy: 0.800

16 © sgd
2 e—e heavy ball
- 215 @8 adam w/o momentum,
R o adam
o2 @& kfac wio mementum
Jopets |88 Kfac
8.
a
1
82
LSt
2
2% 28 -
A L L a3 P L L T L Lt} L 1
Batch size Batch size
(b) Simple CNN on Fashion MNIST (c) ResNet8 on CIFAR10
ey Target Accuracy: 0.930 Target cross entropy: 3.90
e 22]
2
19
E 2 LT’ 27
] [
ppet = 218
a2 a |
| 81
2] wn
o ou
210 29 | ;
P — L L a1 L LI T T T
Batch size Batch Size

(e) ResNet32 on CIFAR10

CSC2541-Lech

(f) Transformer on LM1B

15 /47

Toy Models of Stochastic Optimization

@ In Lecture 1, we got a lot of insight from analyzing the dynamics
of convex quadratics, or equivalently, linear regression
e Two natural stochastic generalizations
o Noisy quadratic model (NQM): convex quadratic with noisy
gradient observations
o Linear regression with mini-batches
@ These two problems are not equivalent, and lead to interestingly
different predictions

NNTD (UofT) CSC2541-Lecb 16 /47

Toy Models of Stochastic Optimization

e Somewhat orthogonally: the field of optimization distinguishes
several settings

e Incremental optimization: finite dataset, compute gradients on
mini-batches for efficiency, minimize training cost

e Stochastic optimization: cost is stochastic, want to minimize its
expectation (think dropout, VAEs, etc.)

o Online optimization: cost function sampled in each iteration (not
necessarily i.i.d.), want to minimize regret, i.e. total loss compared
to the best parameters in retrospect

e We often blur these together in ML

o We use “stochastic” to refer to the incremental setting as well

o Unclear if there’s any advantage (on the validation set) to
exploiting the finiteness of the dataset

o Algorithms like Adagrad, Adam, Shampoo, etc. come from the
online setting

e The noisy quadratic model uses the stochastic setting, or online
learning with an i.i.d. assumption

e “infinite data”

NNTD (UofT) CSC2541-Lecb 17 /47

Noisy Quadratic Model

NNTD (UofT) CSC2541-Lecb 18 /47

Noisy Quadratic Model
Noisy Quadratic Model (NQM):
e Quadratic loss function:
LT
L£(6) = 50 HoO

o WLOG, we assume the optimum is at 0

Each gradient query is noisy: %
g=HO+c E[]=0 Cov(e) =C

@ We measure the loss on the deterministic objective
(so that the minimum is 0)

The gradient noise is independent between steps (so
this is essentially the infinite data setting)

NNTD (UofT) CSC2541-Lecb 19 /47

Noisy Quadratic Model

Three optimization runs with different learning rates:

06

05

04

03

02

01

0.0

NNTD (U CSC2541-Lech 20 /47

Noisy Quadratic Model

Taking the expectation (with respect to the gradient noise)

06 06

05 05

04 04
03 03
02 02

01 01

0.0 0.0

NNTD (UofT) CSC2541-Lech 21 /47

Noisy Quadratic Model

e To simplify the derivations, we assume H and C are
codiagonalizable

e Then we can assume WLOG that they are diagonal

e Consider the SGD dynamics. Since H and C are assumed
diagonal, each coordinate evolves independently:

0§k+1) 05) _ og; Elei]
= (1—ah)0") + ay/ee Var(e;) =

o The risk (expected loss) can be decomposed as a sum of terms for
each individual dimension

0
1

@ These terms satisfy a bias-variance decomposition:

EILi(00)] = 5[E[B? + Var(6:)]

NNTD (UofT) CSC2541-Lecb 22 /47

Noisy Quadratic Model

@ The system is linear, so we can compute the first and second
(k)

moments of 6, for all time steps using dynamic programming

@ Assuming each ah; < 2, the loss for each dimension converges
exponentially to a steady state risk, or noise floor:

E[L:(0W)) = (1— ah)? EL:(0))+(1—(1—ah)?) 2%
¢ N —’ ¢ 2(2 - Oéhl)
convergence rate N——

steady state risk

e Tradeoff: Increasing o speeds up convergence, but increases the
noise floor

NNTD (UofT) CSC2541-Lecb 23 /47

Noisy Quadratic Model

1.0
— high curvature (0.5)
— lower curvature (0.01)
08 --- decay at step 100
Visualizing the training dynamics, --- decay at step 100
0.6
and the effect of decaying «, along ¥
o
a high-curvature and a 0.4
low-curvature eigendirection. 02 i
0.0) 50
Steps
NNTD (U CSC2541-Lecb 24 /47

Noisy Quadratic Model

o How can we choose the curvature H and the gradient covariance
C?
o This makes a difference to the qualitative behavior!
@ Our choices (which I'll now justify):
e H=C
o h; =1/i (scale-free Hessian)
@ Note: the second assumption means there are a lot of
low-curvature directions that collectively contribute a lot to the
risk

NNTD (UofT) CSC2541-Lecb 25 /47

Noisy Quadratic Model

o First assumption: H = C. This is motivated by how the
“empirical Fisher matrix” is often used as a proxy for the Hessian
e The following scatterplots plot the Rayleigh quotients v Hv
vs. v Cv for different vectors v

e To get both high and low curvature directions, v is chosen using
the eigenvectors of the K-FAC approximation to H

CIFARI10 conv net transformer language model
/1
102 10" 10 10° 10° 10° 0 10T 10 105 10° 10°

NNTD (UofT) CSC2541-Lecb 26 /47

Noisy Quadratic Model

e We assume a power law eigenspectrum for H (and hence also for
C). In particular, h; = 1/i

@ While there are only a handful of high-curvature directions, the
many low-curvature directions are still important in aggregate

e This is a reasonably good match to the eigenspectrum of conv net
Hessians as estimated by K-FAC.

ResNgt§ vop‘(v:!FAFh 0

o I don’t know whether or not the true
Hessian has the same eigenspectrum,
and we don’t currently have good
tools to find out

Eigenvalue

o Consistent with recent estimates
using generalized trace estimation L T (L LS T LR TS
(e.g. Ghorbani et al., 2019) Index

NNTD (UofT) CSC2541-Lecb 27 /47

Noisy Quadratic Model

o By simulating the exact dynamics, we
can determine the number of SGD
steps required to reach a target risk

threshold -
L
e Each point on these curves is the min %in
. . 2%
over all choices of (fixed) learning 82
R
rate, analogous to Shallue et al.’s g2
. Q515
experiments 23
L
. . £

o This plot can be generated in seconds S R ———

Batch size

o We can clearly distinguish a “large
batch” and a “small batch” regime

@ Note: the training dynamics do not
change between these regimes!

NNTD (UofT) CSC2541-Lecb 28 /47

NQM: Preconditioning

Preconditioned SGD update:

o+t — k) _ P~ [HO + €]

Consider curvature-based preconditioners: P = HY with 0 <~ <1

e v =0: ordinary SGD
o v = 1: stochastic Newton

e Effect on convergence in each dimension:
. N acih; !
BILi(6{)]) = (1 —ah;)™ B0+ (1~ (1—ah] 7)) -t
—_— 2(w —ah;”7)

convergence rate ﬁ_/

noise floor

o Tradeoff: If h; < 1, then preconditioning speeds up convergence
in dimesion 7, but increases the noise floor. Whether or not this is
favorable depends on the specifics of H and C.

NNTD (UofT) CSC2541-Lecb 29 /47

Noisy Quadratic Model

o Large benefit of

e e —
preconditioning in the large =l
batch (curvature-dominated) — Ppow0.5

. pow 0.75 i
regime - lower bound

e Modest benefit, if any, in the

. [
small batch regime S
. . . &

e Dotted line = information ;
theoretic lower bound (exact 2 e e g g0 gm i g gn g
optimum for training data so Batch size

far)

NNTD (UofT) CSC2541-Lecb 30 /47

Noisy Quadratic Model

Optimal learning rate by batch size

26
24
22
20

D=

24

2
7

timal Learning Rate

-10

Op
N

2-12

2'1421 23 25 27 29 211 213 215 217 219 221 23

Batch size

Linear scaling in the noise dominated regime (agrees with a well-known
heuristic)

NNTD (UofT) CSC2541-Lecb 31 /47

Noisy Quadratic Model

Fitting optimal learning rate schedules at different batch sizes

21
20
271
[
-3
2.
=2 °
5 2° " pow 0
95 3 || — Pow 0.25 s
27 n " — pow 0.5 ‘~.\‘
8 pow 0.75 AN
2 2°f| --- lower bound
9 -2
% 20 30 40 50 75 2% 26 28 plo Iz pId ol pIE 20
Pieces Batch size

NNTD

CSC2541-Lecb 32 /47

NQM: Momentum and Iterate Averaging

Two superficially similar algorithms:

e Heavy ball momentum (equivalent to an exponential moving
average of the stochastic gradients)
vE) = gyk=1) _ qgk)
o) = glk—1) | y(¥)

e Iterate averaging (in this case, exponential moving average of the
parameters)

o) — glh—1) _ ng(k)

é(k) (k—=1)

—uf" 7+ (1—p)o®

NNTD (UofT) CSC2541-Lecb 33 /47

NQM: Momentum and Iterate Averaging

But they have very different benefits:

HB Momentum Iterate Averaging

S o
g 28 pow 0 b 26 pow 0
@ pal| T POW 0.25 2 || — powoa2s)
b >l — pow 0.5 & 22 — pow 0.5 s——
[— powo7s) 2°H — pow 0.75 e
22 ----- lower bound 200 L. lower bound -
Yyr 37 35 3F v T g s g w0 255 38 5 3T 3 5 3 g%
Batch size Batch size
NNTD (Uof CSC2541-Lecs 34 /47

Noisy Quadratic Model: Empirical Results

Empirical results (recap)

2% Target Accuracy: 0.920 24 Target Accuracy: 0.800

]
& heavy ball

- 215 &5 adam w/o momentum
] =2 o adam
o2t \ - @& kfac wio momentum
o] &g e Kfac
8 212
w
§an
& 0
2
2 28 -
v —v——gh—jir—gi a3 gir—gh
Batch size Batch size
(b) Simple CNN on Fashion MNIST (c) ResNet8 on CIFAR10
- Target Accuracy: 0.930 Target cross entropy: 3.90
-
e
&
= 2Y
s
S,
a
a
Som
w
2ll
20 2
T3 S

Batch size Batch Size

(e) ResNet32 on CIFAR10 (f) Transformer on LM1B

NNTD (UofT CSC2541-Lech 35 /47

Stochastic Linear Regression

NNTD (UofT) CSC2541-Lecb 36 /47

Stochastic Linear Regression

I said the NQM was one of two natural generalizations of Lecture
1 to the stochastic setting

For the NQM, we made the simplifying assumption that the
gradient covariance C is independent of 6

In the NQM, this leads to an information theoretic lower bound of
O(1/k) on the risk

e Without this assumption, it may be possible to achieve
exponential convergence

NNTD (UofT) CSC2541-Lecb 37 /47

Stochastic Linear Regression

o Consider a linear regression problem where, under the data
generating distribution, the labels are sampled with Gaussian noise

t]x ~ N(fu(x),07),

T

, X is the true function, or teacher, and w, are

where f,(x) =w
the true weights
e Assume for simplicity batches of size 1 and x ~ N (0, Xx)

e Applying the Law of Total Covariance,

labelleoise batch noise
Cov(g) = E[Cov(g|x)] + Cov(E[g | x])

= E[Var(t — y | x)xx '] + Cov(x(fu(x) — f(x,W)))
T
(

= 023, + Cov(xx ' (W, —w))

e With no label noise, the first term vanishes
@ The second term vanishes when w = w,

NNTD (UofT) CSC2541-Lecb 38 /47

Stochastic Linear Regression

@ This implies that, with clean labels (or an
overparameterized model!) the noise
vanishes as you approach the optimum

@ Consider the proximal update which, in
each iteration, computes:

w) argmin [jw— w2
w: f(x(F) ,w)=t(k)

@ This is equivalent to the randomized \
Kaczmarz method for solving linear
systems, which has long been known to
converge exponentially

@ See Mark Schmidt’s “Notes on
Randomized Kaczmarz”
(https://www.cs.ubc.ca/~nickhar/
W15/Lecture2iNotes.pdf)

NNTD (UofT) CSC2541-Lecb 39 /47

https://www.cs.ubc.ca/~nickhar/W15/Lecture21Notes.pdf
https://www.cs.ubc.ca/~nickhar/W15/Lecture21Notes.pdf

Exponential Convergence

o Ma et al., 2018, “The power of interpolation: Understanding the
effectiveness of SGD in modern over-parameterized learning”
o In the interpolation regime (i.e. overparameterized), there exists a
w, which correctly predicts the training labels
e Exponential convergence bound for SGD on convex losses

o Kidambi et al., 2018, “On the insufficiency of existing momentum
schemes for stochastic optimization”

o Shows that Nesterov Accelerated Gradient (Lecture 9) doesn’t
achieve acceleration in the stochastic setting, but provides an
alternative that does

NNTD (UofT) CSC2541-Lecb 40 / 47

Two Models of Stochastic Optimization

e To summarize, we've seen two distinct models of stochastic
optimization.

Online learning, e.g. Noisy Quadratic Model

o Infinite data, each update is independent
e Exponential convergence is impossible

Interpolation regime, e.g. stochastic linear regression
e Finite dataset, possible to fit exactly
e Noise comes only from the choice of batch
e Exponential convergence is possible

Which one best describes neural net optimization?

NNTD (UofT) CSC2541-Lecb

41 /47

Two Models of Stochastic Optimization

o The interpolation regime would seem to be a better match to how
neural nets are actually trained.
@ On the other hand:

o Online learning has motivated lots of algorithms that work really
well for neural nets (natural gradient descent, adaptive gradient
methods).

e Optimization methods specifically designed to exploit the finiteness
of the dataset (e.g. Stochastic Variance Reduced Gradients) aren’t
used much for training neural nets.

o It’s often easy to minimize the training loss much faster than
current algorithms, and this rarely translates into better
generalization error.

o Arguably, the ability to fit a finite dataset faster will just help you
overfit.

NNTD (UofT) CSC2541-Lecb 42 /A7

Deep Bootstrap

NNTD (UofT) CSC2541-Lecb 43 /A7

Deep Bootstrap

Nakkiran et al., ICLR 2021. “The deep bootstrap framework: Good

online learners are good offline generalizers.”

e Intriguing claim: generalization error from training on a finite

dataset closely follows the loss in the online (infinite data) regime
until the point where you’ve fit the training set.

@ The following experiment uses a synthetic CIFAR-like dataset

generated by a deep generative model.
@ Real world = train on 50K samples for 100 epochs. Ideal world =
train on 5M samples for 1 epoch.

0.9
0.8

0.7

Real World (solid) vs. Ideal World (dashed)

----- Ideal World Test
—— Real World Test
Real World Train

ResNet18

0 5000 10000 15000 20000 25000 30000 35000 40000
SGD lIterations

CSC2541-Lecb

Real World:
SGD on empirical loss

Ideal World:
SGD on population loss

44 /47

Deep Bootstrap

Classical model of generalization:

TestError(f;) = TrainError(f;) + [TestError(f;) — TrainError(f;)

Generalization Gap

Since the training error can be very close to 0, this puts a lot of
burden on the “generalization gap” to exactly predict the test
error.

Their alternative decomposition:

TestError(f;) = TestError(fj) + [TestError(f;) — TestError(fji*)

Online Learning Bootstrap Error

Hypothesis: the bootstrap error is typically small, until the point
where the training loss is close to 0. Therefore, generalization
error is well modeled by online learning.

NNTD (UofT) CSC2541-Lecb 45 /A7

Deep Bootstrap

o Left: online error vs. generalization from finite dataset

o Right: effect of dataset size. The dots indicate the point where the
training error reaches 1%.

Real vs. Ideal Worlds

Ideal Soft-Error
o
N
o

0.15
0.10
&
o
0.05
0.1 0.3

0.2
Real Soft-Error

y=x
resnet34
resnet18

vagl6
densenet121
vagll
mobilenet_v2
resnext50_32x4d
alexnet

resnets0
bagnet33
bagnet17
bagnet9

sconve

sconva3
MLP(3x2048]

Test Soft-Error
)
w

Real World vs. Ideal World: Varying Train Size

Real (=1000)

, Real (n=2000)

Real (n=10000)

Real (n=25000)
Real (n1=50000)

Ideal World

0 5000 10000 15000 20000 25000 30000 35000 40000

SGD lterations

CSC2541-Lecb

46 /47

Deep Bootstrap

@ The Deep Bootstrap Hypothesis is still an empirical conjecture.
No proof yet.

o If it’s correct, then what appear to be generalization phenomena
may actually be optimization phenomena, even when training
error is small.

e Some surprising interpretations/consequences

e Increasing the dataset size helps generalization by making it harder
to reach low (e.g. 1%) training error, thereby keeping the bootstrap
error low for more epochs

e Dropout, data augmentation, etc. help for the same reason. One
trades off the increased online training loss (due to stochasticity)
with smaller bootstrap error.

NNTD (UofT) CSC2541-Lecb A7 /AT

