
CSC 2541: Neural Net Training Dynamics
Lecture 6 - Infinite Limits and Overparameterization

Roger Grosse

University of Toronto, Winter 2021

NNTD (UofT) CSC2541-Lec5 1 / 58

Today

PV = NRT

Many systems become much simpler at a macroscopic scale, since
the behaviors of the component parts can be summarized
statistically

Neural nets are an example of this: their behavior can become
much simpler when they’re extremely wide

NNTD (UofT) CSC2541-Lec5 2 / 58

Today

The plan for today:

Recap of kernels and Gaussian processes (Tutorial 5)

Two ways of taking infinite width limits

Wide Bayesian neural nets → GPs
Gradient descent on wide (non-Bayesian) networks, and the Neural
Tangent Kernel

Limiting behavior with depth

Relating this all back to why neural nets can generalize

NNTD (UofT) CSC2541-Lec5 3 / 58

Recap of Kernels and Gaussian Processes

NNTD (UofT) CSC2541-Lec5 4 / 58

Full Bayesian Inference

Recall: full Bayesian inference makes predictions by averaging
over all likely explanations under the posterior distribution.

Compute posterior using Bayes’ Rule:

p(w | D) ∝ p(w)p(D |w)

Make predictions using the posterior predictive distribution:

p(t |x,D) =

∫
p(w | D) p(t |x,w) dw

Doing this lets us quantify our uncertainty.

NNTD (UofT) CSC2541-Lec5 5 / 58

Gaussian Processes

Gaussian processes are a kind of stochastic process, or distribution over
functions.

The trick is to define multivariate Gaussian distributions over the values at
any finite set of points and show that they’re consistent with each other. They
can then be extended to a stochastic process using the Kolmogorov Extension
Theorem.

All of the actual computations are done using multivariate Gaussians at finite
sets of points.

But the stochastic process interpretation gives a lot of useful intuitions.

How do you think these plots were generated?

NNTD (UofT) CSC2541-Lec5 6 / 58

Gaussian Processes

Defining a GP requires specifying:

a mean function E[f(xi)] = µ(xi)
a covariance function called a kernel function:
Cov(f(xi), f(xj)) = k(xi,xj)

Let KX denote the kernel matrix for points X. This is a matrix
whose (i, j) entry is k(x(i),x(j)), and is called the Gram matrix.

We require that k be symmetric and KX be positive semidefinite
for any X. Other than that, µ and k can be arbitrary.

NNTD (UofT) CSC2541-Lec5 7 / 58

Kernel Trick

This is an instance of a more general trick called the Kernel Trick.

Many algorithms (e.g. linear regression, logistic regression, SVMs)
can be written in terms of dot products between feature vectors,
φ(x)>φ(x′).

A kernel implements an inner product between feature vectors,
typically implicitly, and often much more efficiently than the
explicit dot product.

For instance, the following feature vector is quadratic in size:

φ(x) = (1,
√

2x1, ...,
√

2xd,
√

2x1x2,
√

2x1x3, ...
√

2xd−1xd, x
2
1, ..., x

2
d)

But the quadratic kernel can compute the inner product in linear
time:

k(x,x′) = φ(x)>φ(x′) = 1 +

d∑
i=1

2xix
′
i +

d∑
i,j=1

xixjx
′
ix
′
j = (1 + x>x′)2

NNTD (UofT) CSC2541-Lec5 8 / 58

Kernel Trick

Many algorithms can be kernelized, i.e. written in terms of kernels,
rather than explicit feature representations.

We rarely think about the underlying feature space explicitly.
Instead, we build kernels directly.

Useful composition rules for kernels:

A constant function k(x,x′) = α is a kernel.
If k1 and k2 are kernels and a, b ≥ 0, then ak1 + bk2 is a kernel.
If k1 and k2 are kernels, then the product
k(x,x′) = k1(x,x′)k2(x,x′) is a kernel. (Interesting and surprising
fact!)

Before neural nets took over, kernel SVMs were probably the
best-performing general-purpose classification algorithm.

NNTD (UofT) CSC2541-Lec5 9 / 58

GP Kernels

One way to define a kernel function is to give a set of basis
functions and put a Gaussian prior on w.
But we have lots of other options. Here’s a useful one, called the
squared-exp, or Gaussian, or radial basis function (RBF) kernel:

kSE(xi,xj) = σ2 exp

(
−‖xi − xj‖2

2`2

)
More accurately, this is a kernel family with hyperparameters σ
and `.
It gives a distribution over smooth functions:

NNTD (UofT) CSC2541-Lec5 10 / 58

GP Kernels

kSE(xi, xj) = σ2 exp

(
− (xi − xj)

2

2`2

)
The hyperparameters determine key properties of the function.

Varying the output variance σ2:

Varying the lengthscale `:

NNTD (UofT) CSC2541-Lec5 11 / 58

GP Kernels

The choice of hyperparameters heavily influences the predictions:

In practice, it’s very important to tune the hyperparameters
(e.g. by maximizing the marginal likelihood).

NNTD (UofT) CSC2541-Lec5 12 / 58

Wide BNNs → GPs

NNTD (UofT) CSC2541-Lec5 13 / 58

Wide Nets → GPs

Some insights from Radford Neal’s visionary PhD thesis (1993):

GPs are useful for machine learning

(Bayesian) neural nets can generalize well despite being highly
overparameterized

Posterior sampling using HMC

Infer the model complexity using Automatic Relevance
Determination

The infinite width limit of a Bayesian neural net is a GP

His presentation of BNNs is very close to our full modern
understanding!

NNTD (UofT) CSC2541-Lec5 14 / 58

Wide BNNs → GPs

Two views of Bayesian regression:

Weight Space
(e.g. Bayesian linear regression)

p(t |x,D) =

∫
p(t |x,w) p(w | D) dw

p(w | D) =
p(w) p(D |w)

p(D)

Function Space
(e.g. GPs)

p(t |x,D) =

∫
p(t |x, f) p(f | D) df

p(f | D) =
p(f) p(D | f)

p(D)

f is a vector of function values (e.g. at training and query points)

If we want to take a limit of models with different parameter
spaces, we need to work in function space

Since p(t |x, f) and p(D | f) depend only on the observation model
(which we’ll take as fixed), the important object to study is the
prior p(f)

NNTD (UofT) CSC2541-Lec5 15 / 58

Wide BNNs → GPs

Vanilla BNN model definition

y = f(x) =
∑
i

wihi(x) + b

=
∑
i

wiψ(v>i x + ai) + b

Priors (all independent)

wi ∼ N (0, σ2w)

b ∼ N (0, σ2b)

vij ∼ N (0, σ2v)

ai ∼ N (0, σ2a)

NH units

<latexit sha1_base64="Ss1nxbpT0fboWN4IoVyeDhntQXw=">AAAEIXicdZNdb9MwFIbdhY9Rvja45MaiQuJiqlKEgMtpGwIJEEXQdVpTVY5z0lh17Mh2slYh/4JbuOHXcIe4Q/wZnDZDm1ssxTny855zXjtxmHGmje//bm15V65eu759o33z1u07d3d27x1rmSsKAyq5VCch0cCZgIFhhsNJpoCkIYdhODus+bAApZkUn8wig3FKpoLFjBJjl06DlJgkjMt5Ndnp+F1/OfB60GuCDmpGf7LrtYJI0jwFYSgnWo96fmbGJVGGUQ5VO8g1ZITOyBRGNhQkBT0ul5Yr/MiuRDiWyj7C4OXqxYySpFov0tAqa4vaZfXiJjbKTfxiXDKR5QYEXTWKc46NxPX+ccQUUMMXNiBUMesV04QoQo09pXY7EHBGZZoSEZXBjEesqMoyUCk+qibL95u3VeWqDojSVRnsBZ+DPQuPwJ6HgnfW2/sMFDFSWVUBtCrr6XI2zDPrx2Yvv0RYvqz+V+FQWi/15LjMrPtU1zZDyaP60CTHgUnAENdqzHQCypZ11K9cYRaLWkIJx6cuE8T0N7bc0DCV9e+xUsZYu1jncdywqcumID4aYqDh88rddxEycl55rXFyAYYuPAM2Tf65Grq4YOeoWCvLogYltR97aXruFVkPjp90e8+6/oennf2D5vpsowfoIXqMeug52kevUR8NEEUCfUFf0Tfvu/fD++n9Wkm3Wk3OfXRpeH/+AvGxbuw=</latexit>x

<latexit sha1_base64="7iPpYBj0jKT3em1J1GCXtPSdoa0=">AAAEGHicdZPLbtNAFIYnNZcSbi0s2YyIkFhUUYIQsKzaIpAAkQrSVMRRNR4fx6PMxZoZu42Mn4AtbHgadogtO96GceKidhJGsn10vv+c88/IE2WcGdvr/WltBFeuXru+eaN989btO3e3tu8dGZVrCkOquNLHETHAmYShZZbDcaaBiIjDKJrt13xUgDZMyY92nsFEkKlkCaPEutTh/GSr0+v2FguvBv0m6KBmDU62g1YYK5oLkJZyYsy438vspCTaMsqhaoe5gYzQGZnC2IWSCDCTcuG0wo9cJsaJ0u6RFi+yFytKIoyZi8gpBbGp8VmdXMfGuU1eTEoms9yCpMtBSc6xVbjeNo6ZBmr53AWEaua8YpoSTah1h9NuhxJOqRKCyLgMZzxmRVWWoRb4oDpZfN+8rSpftUe0qcpwJ/wc7jh4AO48NLxz3t5noIlV2qkKoFVZvy5Xw1nm/LjqeitRVL6s/tdhXzkv9ctzmTn3wtQ2I8Xj+tAUx6FNwRLfasJMCtq19dSvfGGWyFpCCceffCaJHawduWagUPXvsVQm2PjY5EnSsKnPpiA/WGKh4WeVv+8iYuS888rg9AKMfHgKbJr+czXyccHOUbHSlsUNSms/7tL0/SuyGhw96fafdXuHTzu7e8312UQP0EP0GPXRc7SLXqMBGiKKAH1BX9G34HvwI/gZ/FpKN1pNzX10aQW//wKJHWrN</latexit>y

<latexit sha1_base64="2C8pRV6DfHfbv7AW7ye16OpAJSo=">AAAEO3icdVNNb9QwEHUbPsrytYUjF6sVEhJVla0Q9FjRIpAAsQi2rWhWK8eZbKx17Mh20lbBd34NV7jwQzhzQ1y54+xmq9ZbLMWZzHsz8zzOxAVn2oThz6Xl4MrVa9dXbnRu3rp952539d6+lqWiMKCSS3UYEw2cCRgYZjgcFgpIHnM4iCe7DX5QgdJMio/mtIBhTsaCpYwS41yj7lqUE5PFab1v8dw8sfjx2Qexo+56uBlOF140eq2xjtrVH60GS1EiaZmDMJQTrY96YWGGNVGGUQ62E5UaCkInZAxHzhQkBz2sp4ex+KHzJDiVyj3C4Kn3fERNcq1P89gxG4naxxrnZdhRadLtYc1EURoQdFYoLTk2EjedwQlTQA0/dQahijmtmGZEEWpc/zqdSMAxlXlORFJHE56wytZ1pHK8Z0fT9+s31vqs50RpW0cb0edow4F74Pqh4K3T9q4ARYxUjlUBtXWzXYyGk8LpcdHTm4jrF/Z/GXal09JsnsrCqc91IzOWPGmaJjmOTAaG+FJTpjNQLq3HfukTi1Q0FEo4/uRjgpj+pSUvKZjL5veYMVOsfViXadpiYx8bg/hgiIEWP7H+uauYkXnmhcLZOTD2wWNg4+xM1YEPV2wOVQtpWdJCWaPHDU3PH5FFY39rs/d0M3z/ZH1nux2fFfQAraFHqIeeoR30CvXRAFH0BX1F39D34EfwK/gd/JlRl5famPvowgr+/gO8t3jR</latexit>

Vx + a

<latexit sha1_base64="2kOCWNbjSE0+lV5a0W/7QL8I5PM=">AAAEN3icdVNNj9MwEHU3fCzlqwtHJGRRISGxqtoVgj2u2EUgAaIIul3RlMpxJo1Vx45sp90q5Mav4QoXfgonbogr/wCnTdGuWyzFmcx7M/M8zgQpZ9q02z9qW96Fi5cub1+pX712/cbNxs6tYy0zRaFHJZfqJCAaOBPQM8xwOEkVkCTg0A8mhyXen4LSTIr3Zp7CMCFjwSJGibGuUeOunxATB1E+Kz76RqZ49R0X+CEORo1mu9VeLLxudCqjiarVHe14NT+UNEtAGMqJ1oNOOzXDnCjDKIei7mcaUkInZAwDawqSgB7mi4MU+L71hDiSyj7C4IX3bEROEq3nSWCZpUztYqVzEzbITLQ/zJlIMwOCLgtFGcdG4rIrOGQKqOFzaxCqmNWKaUwUocb2rl73BcyoTBIiwtyf8JBNizz3VYKPitHi/fJVUbisp0TpIvd3/U/+rgWPwPZDwWur7U0KihipLGsKtMjL7Xw0nKZWj41e3EaQPyv+l+FQWi3l5qhMrfpElzIDycOyaZJj38RgiCs1YjoGZdM67OcuMY1ESaGE4w8uJojpbiy5oWAiy99jyYywdmGdRVGFjV1sDOKdIQYq/LRwzz0NGFllXiscnwEDF5wBG8f/VPVdeMpW0HQtLQsrKC712KHpuCOybhzvtTqPW+23j5oH+9X4bKM76B56gDroCTpAL1AX9RBFn9EX9BV98757P71f3u8ldatWxdxG55b35y/XkHcC</latexit>

w>h + b

<latexit sha1_base64="PdWElssuuRdeFIWrh8WUKYVBiTE=">AAAEG3icdZPLbtNAFIYnNZcSbi0s2YyIkFhUUYIq6LKiRSABogjSVMRRNB4fx6PMxZoZu42MX4EtbHgadogtC96GceKidhJGsn10vv+c88/IE2WcGdvr/WltBFeuXru+eaN989btO3e3tu8dG5VrCgOquNInETHAmYSBZZbDSaaBiIjDMJod1HxYgDZMyY92nsFYkKlkCaPE1qkwM2yy1el1e4uFV4N+E3RQs44m20ErjBXNBUhLOTFm1O9ldlwSbRnlULXD3EBG6IxMYeRCSQSYcbkwW+FHLhPjRGn3SIsX2YsVJRHGzEXklILY1PisTq5jo9wme+OSySy3IOlyUJJzbBWud45jpoFaPncBoZo5r5imRBNq3fm026GEU6qEIDIuwxmPWVGVZagFPqwmi+/rN1Xlq54Tbaoy3Ak/hzsOHoI7Dw1vnbd3GWhilXaqAmhV1q/L1XCWOT+uut5KFJUvqv91OFDOS/3yXGbOvTC1zUjxuD40xXFoU7DEt5owk4J2bT31S1+YJbKWUMLxJ59JYo/WjlwzUKj691gqE2x8bPIkadjUZ1OQHyyx0PCzyt93ETFy3nllcHoBRj48BTZN/7ka+rhg56hYacviBqW1H3dp+v4VWQ2On3T7T7u997ud/b3m+myiB+gheoz66BnaR6/QERogilL0BX1F34LvwY/gZ/BrKd1oNTX30aUV/P4LYBtsEA==</latexit>

NNTD (UofT) CSC2541-Lec5 16 / 58

Wide BNNs → GPs

Expectation of the function:

E[f(x)] = E

[∑
i

wihi(x) + b

]
=
∑
i

E [wihi(x)] + E[b]︸︷︷︸
=0

=
∑
i

E[wi]︸ ︷︷ ︸
=0

E[hi(x)] (by independence)

= 0

NNTD (UofT) CSC2541-Lec5 17 / 58

Wide BNNs → GPs

Variance of the function:

Var(f(x)) = Var(
∑
i

wihi(x) + b)

= NH Var(wihi(x)) + Var(b) (i.i.d. prior)

= NH(E[(wihi(x))2]− E[wihi(x)]2︸ ︷︷ ︸
=0

) + Var(b) (prev. slide)

= NH E[w2
i]E[hi(x)2] + Var(b) (independence)

= NH σ2
w E[hi(x)2] + σ2

b

So we need to scale the variance as σ2w = ω
NH

for some ω in order
to have a consistent limit!

NNTD (UofT) CSC2541-Lec5 18 / 58

Wide BNNs → GPs

Covariance of the function: with an analogous derivation,

Cov(f(x), f(x′)) = ω E[hi(x)hi(x
′)] + σ2b

= ω

∫
ψ(v>x + a)ψ(v>x′ + a) p(v, a) d{v, a} + σ2b

The vector of values f(x) at various points x is the sum of
i.i.d. random variables, so (assuming finite variance) a multivariate
version of the Central Limit Theorem implies their limit is
Gaussian

(informal?) so the limiting distribution over functions is a GP

Neal’s thesis derives kernels associated with various activation
functions

NNTD (UofT) CSC2541-Lec5 19 / 58

Wide BNNs → GPs

BNN with hard threshold activations → Brownian motion (Left:
NH = 300, Right: NH = 10000)

(Neal, 1993)

NNTD (UofT) CSC2541-Lec5 20 / 58

Wide BNNs → GPs

BNN with tanh activations, small σ2v → smooth GP

(Neal, 1993)

NNTD (UofT) CSC2541-Lec5 21 / 58

Wide BNNs → GPs

Two dimensions (Left: hard threshold, Right: tanh)

(Neal, 1993)

NNTD (UofT) CSC2541-Lec5 22 / 58

Wide BNNs → GPs

Going beyond GPs by sampling the weight variance for each hidden
unit from a distribution rather than setting it to a fixed σ2v

(Neal, 1993)

NNTD (UofT) CSC2541-Lec5 23 / 58

Wide BNNs → GPs

Lee et al., 2017, “Deep neural networks as Gaussian processes”

Extended Neal’s analysis to multilayer BNNs
The infinite width limit is still a GP
This limiting regime (distinct from the Neural Tangent Kernel
regime, discussed next) is now called neural net Gaussian process
(NNGP)

NNTD (UofT) CSC2541-Lec5 24 / 58

Mean Field Approximation

Poole et al., 2016, “Exponential expressivity in neural networks
through transient chaos”

Introduced the mean field approximation for studying deep, wide
networks with random weights

Extension of Neal’s analysis

In Neal’s analysis, the hidden units are all i.i.d. random variables,
so (by the Central Limit Theorem) the sum of their contributions
to the next layer is approximately Gaussian

Only important information about the distribution of h is the
covariance function Cov(hi(x), hi(x

′))

Poole et al. apply this insight recursively and analyze how the
covariance evolves as a function of depth

NNTD (UofT) CSC2541-Lec5 25 / 58

Mean Field Approximation

Fully connected layer:

s` = W`a`−1 + b`

a` = φ(s`)

By assumption, the weights are i.i.d. normal with variance σ2w and
the biases are i.i.d. normal with variance σ2b (shared between layers
for simplicity).

Let ai`(x) denote the ith hidden unit in layer ` evaluated for input
x. Similarly for si`(x).

Neal’s argument can be applied in each layer to show that the
activations ai`(x) are i.i.d. random variables and the
pre-activations si`(x) are i.i.d. Gaussian random variables.

We are interested in tracking the covariances Cov(si`(x), si`(x
′)) for

any given x and x′. Note that by the i.i.d. property, these are the
same for all i.
NNTD (UofT) CSC2541-Lec5 26 / 58

Mean Field Approximation
We can track the normalized squared length of the hidden vector
for each layer:

q` =
1

N`

N∑̀
i=1

si`(x)

The values can be computed recursively using the V-map:

q` = V (q`−1|σw, σb)

, σ2w

∫
N (z; 0, 1)φ(

√
q`−1z) dz + σ2b

Examples of iterating this map with three different values of σw
for a tanh network:

NNTD (UofT) CSC2541-Lec5 27 / 58

Mean Field Approximation

The correlations can be tracked using an analogous map called the
C-map.

There are two regimes: an ordered regime (correlations → 1,
degenerate function) and a chaotic regime (correlations → 0,
exponential expressivity)

You want to be on the boundary between them. This gives a way
to choose σw and σb.

(Poole et al., 2016)

NNTD (UofT) CSC2541-Lec5 28 / 58

Mean Field Approximation

(Poole et al., 2016)

NNTD (UofT) CSC2541-Lec5 29 / 58

Deep Kernel Shaping

Martens et al., 2021, “Rapid training of deep neural networks without
skip connections or normalization layers using Deep Kernel Shaping”

The above mean field analysis was specific to multilayer
perceptrons.

In a 100-page tour-de-force, Martens et al. extended this basic
analysis to a much wider range of architectures (e.g. ImageNet
CNNs).

The theory is accurate enough to suggest good initializations,
transformations of the activation functions, etc.

Impressively, they are able to eliminate batch norm and skip
connections, and also use activation functions that are
traditionally hard to train, like the logistic sigmoid.

While they design the network based on the prior distribution of
function values, the depth still creates ill-conditioning. Optimizing
these architectures to near-SOTA accuracy required K-FAC.

NNTD (UofT) CSC2541-Lec5 30 / 58

Neural Tangent Kernel

NNTD (UofT) CSC2541-Lec5 31 / 58

Neural Tangent Kernel

Bayesian inference and the GP limit give a lot of insight into how
overparameterized neural networks can generalize well

But explicitly training BNNs would be a radical departure from
current practice

Can we apply a similar interpretation to ordinary gradient descent
on the sorts of networks we use routinely?

Goal: analyze the dynamics of gradient descent on an extremely
wide neural net
Just like with BNNs, everything simplifies in the infinite limit

In order to take the infinite limit, we need to work in function
space

NNTD (UofT) CSC2541-Lec5 32 / 58

Output Space View of Linear Regression

Consider linear regression (assume bias absorbed into φ):

y = w>φ(x) y = Φw

The output space view of gradient descent:

∆y = Φ∆w

= Φ[−α∇J (w)]

= − α
N

ΦΦ>︸ ︷︷ ︸
=K

(y − t)

The matrix K = ΦΦ> is the Gram matrix
Same as the Kernel matrix K for a GP, if we put a spherical
Gaussian prior on w

Solving the recurrence:

y(k) = t + (I− α

N
K)k(y(0) − t)

NNTD (UofT) CSC2541-Lec5 33 / 58

Output Space View of Linear Regression

K = ΦΦ>

Recall: the Hessian for linear regression is H = Φ>Φ (if we
remove the typical 1/N scaling from the cost function)

Observe: H and K are symmetric matrices which share the same
nonzero eigenvalues, which are the squared singular values of Φ

If Φ = UDV> is the SVD of Φ, then

H = VD2V> (spectral decomposition of H)

K = UD2U> (spectral decomposition of K)

Interpretation: the directions of high curvature are the
directions of high sensitivity, i.e. the directions in weight space
that have the largest effect on the predictions

NNTD (UofT) CSC2541-Lec5 34 / 58

Output Space View of Linear Regression

Recall from Lecture 1

x1 x2 t
114.8 0.00323 5.1
338.1 0.00183 3.2
98.8 0.00279 4.1
...

...
...

NNTD (UofT) CSC2541-Lec5 35 / 58

Output Space View of Linear Regression

Recall from Lecture 1

x1 x2 t
1003.2 1005.1 3.3
1001.1 1008.2 4.8
998.3 1003.4 2.9

...
...

...

NNTD (UofT) CSC2541-Lec5 36 / 58

Neural Tangent Kernel

We can apply a similar analysis to neural networks

Consider full batch gradient descent (no straightforward way to
apply this to SGD!)

Let z̄ denote all of the outputs (e.g. logits) on the entire dataset,
stacked into a vector, and J̄ be the Jacobian of z̄ with respect to w

∆z̄ ≈ J̄∆w

= J̄[−α∇J (w)]

= J̄[− α
N

J̄>∇L(z̄)]

= − α
N

J̄J̄>︸︷︷︸
=K

∇L(z̄)

The matrix K = J̄J̄> is the neural tangent kernel (NTK)
Unlike for regression, the above model is only approximate
because

∆z̄ is a nonlinear function of ∆w
K changes over time

NNTD (UofT) CSC2541-Lec5 37 / 58

Neural Tangent Kernel

K = J̄J̄>

Consider the finite sample approximation to the Gauss-Newton
matrix (Ji is the Jacobian for training example i)

G =
1

N

∑
i

J>i Ji =
1

N
J̄>J̄

Gauss-Newton Hessian for squared error loss
pullback metric for Euclidean distance

G and K have the same eigenvalues (up to scaling), which are the
squared singular vectors of J̄

J̄ measures the sensitivity of the predictions to a direction in weight
space

NNTD (UofT) CSC2541-Lec5 38 / 58

Neural Tangent Kernel

This interpretation becomes exact when we consider the gradient
flow, the continuous time limit of gradient descent (i.e. lots of
steps with tiny learning rate)

dw

dt
= −α∇J (w)

The flow in output space is:

dz̄

dt
= − α

N
K(t)∇L(z̄)

I wrote K(t) to remind us that K is time dependent (which makes
this ODE difficult to solve in general)

NNTD (UofT) CSC2541-Lec5 39 / 58

Neural Tangent Kernel

Jacot et al., 2018. “Neural tangent kernel: Convergence and
generalization in neural networks”

Considers a wide neural net limit distinct from the NNGP one
(main difference is the effective learning rates, in the sense of
Lecture 5)

As the width goes to infinity, K approaches a well-defined limit

As the width increases, the distance in weight space required to fit
the training set goes to 0

In the limit, J̄, and therefore, K, are constant

The flow for a regression problem (just a linear ODE!)

dz̄

dt
= − α

N
K(y − t)

y(t) = t + exp

(
−αt
N

K

)
(y(0)− t)

More details in the student presentation next week

NNTD (UofT) CSC2541-Lec5 40 / 58

Neural Tangent Kernel

Lee et al., 2019. “Wide networks of any depth evolve as linear models under
gradient descent”

For wide (but finite) networks, J̄ changes slowly enough over training
that the network is well approximated by its first-order Taylor
approximation around w0

I.e., it behaves like a linear model, where the features are the
columns of J̄

This requires wider networks than we normally use (but not ridiculously
so), a smaller learning rate, and full batch training

There’s still a gap between linearized training and SOTA, so probably
neural nets are more than just linear random feature models

NNTD (UofT) CSC2541-Lec5 41 / 58

Neural Tangent Kernel

These ideas lead to provable bounds for wide but finite networks.
A big challenge is proving that the Jacobian changes slowly
enough with high probability.

Du et al., 2019. “Gradient descent provably optimizes
over-parameterized neural networks”

Optimization: gradient descent on a randomly initialized wide
network provably converges linearly to a global optimum (despite
non-convexity!)

Arora et al., 2019. “Fine-grained analysis of optimization and
generalization for overparameterized two-layer neural networks”

Generalization: if the training and validation labels are
well-aligned with the large eigenvalues of K, then a network trained
with gradient descent will generalize well (despite
overparameterization!)
Sort of like a function space view of the min-norm analyses from
Lecture 1

NNTD (UofT) CSC2541-Lec5 42 / 58

Neural Tangent Kernel

Zhang et al., 2019. “Fast convergence of natural gradient descent for
overparameterized neural networks”

In Lecture 3, we motivated natural gradient descent as an
approximation to “gradient descent on the outputs”

In the infinite width limit, because the network becomes more
linear, this interpretation becomes more accurate.

As a result can prove faster convergence rates for (exact) NGD
than the analogous wide network results for GD.

NNTD (UofT) CSC2541-Lec5 43 / 58

Neural Tangent Kernel

Output space trajectories for GD and NGD updates. Top: 100
units/layer. Bottom: 6000 units/layer.

NNTD (UofT) CSC2541-Lec5 44 / 58

Min-Norm Bias and Generalization

NNTD (UofT) CSC2541-Lec5 45 / 58

Min-Norm Bias

Recall from Lecture 1:

The regime of overparameterized models, where the model can fit the
training data exactly but still generalize well, is the interpolation
regime (as distinguished from the classical regime of
underparameterized models).

NNTD (UofT) CSC2541-Lec5 46 / 58

Min-Norm Bias

This isn’t specific to neural nets. We can see it in Gaussian
processes as well.

Suppose we are trying to fit a regression dataset with some label
noise. If we fit a GP with a calibrated noise estimate, we can fit it
pretty well:

NNTD (UofT) CSC2541-Lec5 47 / 58

Min-Norm Bias

But suppose we assume zero noise, i.e. force the GP to fit the data
exactly. This may or may not work, depending on the kernel.

Squared-exp kernel

kSE(xi,xj) = σ2 exp

(
−‖xi − xj‖2

2`2

)
Assume a long lengthscale, which produces smooth functions.
Left: prior samples, Right: posterior predictive distribution

NNTD (UofT) CSC2541-Lec5 48 / 58

Min-Norm Bias

With a shorter lengthscale, it produces very wiggly functions:

NNTD (UofT) CSC2541-Lec5 49 / 58

Min-Norm Bias

Now consier the rational-quadratic kernel:

kRQ(xi, xj) = σ2
(

1 +
(x− x′)2

2α`2

)−α
This one seems to work better:

Why does this behave differently from the previous two?

NNTD (UofT) CSC2541-Lec5 50 / 58

Min-Norm Bias

Consider a linear regression model on top of a Fourier basis:

φ0(x) = 1

φ2k−1(x) = k−α sin kπx for k = 1, . . . , 25

φ2k(x) = k−α cos kπx for k = 1, . . . , 25

Here, α is a hyperparameter that controls the strength of high
vs. low frequencies. For instance, if α = 1:

NNTD (UofT) CSC2541-Lec5 51 / 58

Min-Norm Bias

With 51 features, it can fit a training set of 4 data points exactly.

In Lecture 1, we noted that gradient descent on a quadratic
objective converges to the min-norm solution, i.e. the one closest
to the initialization in Euclidean distance.
So what is the min-norm solution?

Since the lower frequency features are larger in magnitude, it
“costs” less to use them.
Therefore, it will explain as much as possible using low frequency
information. I.e., it has an inductive bias towards smooth functions.

Here’s the min-norm solution for α = 1:

NNTD (UofT) CSC2541-Lec5 52 / 58

Min-Norm Bias

The hyperparameter α controls how the amplitude decays with
frequency.
Larger α implies faster decay, and hence a stronger inductive bias
towards smoothness.
Here are the fits with different values of α:

NNTD (UofT) CSC2541-Lec5 53 / 58

Min-Norm Bias

How does this relate to GPs?

Rasmussen and Ghahramani, “Occam’s Razor.” NeurIPS, 2000.

Analyzes Bayesian Fourier regression models like the ones we just
discussed, and shows that they become equivalent to GPs in the
limit as the number of features goes to ∞.

Rahimi and Recht, “Random features for large-scale kernel
machines.” NeurIPS, 2007.

Showed that inference in kernelized models (e.g. GPs) with
stationary kernels can be approximated by sampling random
Fourier features.
The frequencies are sampled from a distribution rather than spaced
equally.
Ironically, this is the same paper for which the authors gave the
Test of Time talk criticizing batch norm and comparing deep
learning to alchemy.

NNTD (UofT) CSC2541-Lec5 54 / 58

Min-Norm Bias

A kernel is stationary if it’s translation invariant. Examples
include squared-exp and rational-quadratic (discussed earlier).

A stationary kernel in 1-D can be written as a function of the
distance r = |x− x′| between two points:

k(x, x′) = k(r)

The behavior of k near r = 0 determines the roughness of the prior
samples:

k is closely related to the C-maps discussed earlier.
NNTD (UofT) CSC2541-Lec5 55 / 58

Min-Norm Bias

Bochner’s Theorem gives a way to characterize GP kernels in
terms of their power spectral density, which is essentially the
Fourier transform of the kernel.

Like in the finite Fourier regression examples, the rate at which
the amplitude decays with frequency determines the roughness of
the samples. More power in the high frequencies implies rougher
functions.

The SE kernel has a very fast decay in the PSD. The RQ kernel
has a much heavier tail.

See Chapter 4 of Gaussian Processes for Machine Learning

NNTD (UofT) CSC2541-Lec5 56 / 58

Min-Norm Bias

Because the rational quadratic GP has a lot of power in the high
frequencies, the high frequencies can be used to represent noise in
the labels.

This allows it to fit the training labels exactly without
significantly harming the rest of the predictions. This is known as
benign overfitting.

Bartlett et al., “Benign overfitting in linear regression.” PNAS,
2020.

They analyze when benign overfitting occurs in terms of the
covariance Σ of the features.
The relevant features need to be concentrated in the high variance
directions, and Σ needs to have a heavy tailed eigenspectrum, so
that the model can implicitly represent noise.
Analyzing the effect of label noise comes down to bounding the
norm of Φ†, as alluded to in Lecture 1.

NNTD (UofT) CSC2541-Lec5 57 / 58

Min-Norm Bias

Amari et al., “When does preconditioning help or hurt generalization?” ICLR, 2021

The previous analysis all focused on gradient descent. For quadratic objectives
(e.g. linear regression), GD minimizes the Euclidean distance to the
initialization.

With a fixed preconditioner (e.g. natural gradient for linear regression), a
different norm is implicitly regularized.

Intuition: by compensating for the feature covariance, NGD tends to flatten
the power spectrum. Therefore, it has less of an inductive bias towards
smoother functions.

This paper decomposes the generalization error for both GD and NGD into
bias and variance terms and shows how these depend on various problem
features (dimension, number of training examples, etc.). Neither method
dominates the other.

NNTD (UofT) CSC2541-Lec5 58 / 58

