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Today

We consider three ideas that have become staples of modern
neural net training:

1 Adaptive gradient methods (RMSprop, Adam, etc.)
2 Normalization (esp. batch norm)
3 Weight decay

Deceptively simple, commonly misunderstood

Unifying theme: you can figure out quite a lot by just reasoning
about the scales of weights, activations, etc.
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Adaptive Gradient Methods
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Adaptive Gradient Methods

So far, our algorithms have been forms of SGD, possibly
preconditioned by some matrix C−1 (Gauss-Newton Hessian,
Fisher information, etc.)

w← w − αC−1∇JB(w)

Another instance of this is the class of adaptive gradient methods,
of which RMSprop is the simplest example:

gk ← ∇Jk(wk−1)

sk ← βsk−1 + (1− β)g2
k

wk ← wk−1 − αgk �
√

sk + ε1

Intuition: normalize the gradients to have unit variance.

Adam is a similar algorithm which also includes a sort of
momentum.
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Adaptive Gradient Methods

gk ← ∇Jk(wk−1)

sk ← βsk−1 + (1− β)g2
k

wk ← wk−1 − αgk �
√

sk + ε1

Here, sk can be interpreted as the diagonal entries of the empirical
Fisher matrix:

Femp = Ex,t∼pdata [DwDw>]

This is different from the true Fisher matrix. The true Fisher
matrix samples t from the model’s predictions, while the empirical
Fisher matrix uses the training labels.

Since the denominator has a square root, we can view this as

preconditioning with a diagonal approximation to F
−1/2
emp .

NNTD (UofT) CSC2541-Lec5 5 / 52



Adaptive Gradient Methods

We saw in Lecture 3 that the true Fisher matrix is closely related
to the Hessian. The empirical Fisher matrix is often justified as an
approximation to the Hessian for this reason.

It’s more convenient to compute, since you can avoid the additional
step of sampling pseudo-gradients.

But Kunstner et al. (2019) point out the empirical Fisher is often
a lousy approximation to the Hessian.

Note: adaptive gradient methods (RMSprop, Adam, etc.) don’t
actually behave like this because of the square root.
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Adaptive Gradient Methods

If the model is well-specified and fit well, then the generated labels
will look like the training labels. Hence, Femp will resemble F (and
hence H, etc.).
If the model is misspecified or the weights are far from the
optimum, then these can look very different.

Kunstner et al., 2019

Note: this is not a criticism of adaptive gradient methods, which
are based on a fundamentally different set of principles, originally
developed for online learning!
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Grafting

I said today’s theme was thinking about algorithms in terms of
how the magnitude of one quantity scales with another.

Using an adaptive gradient method rather than SGD changes both
the magnitude and the direction of the weight update. Which one
is important?

Agarwal et al. (2020) ran an intriguing experiment called grafting,
where they use the magnitude from one optimizer and the
direction from a different optimizer.

NNTD (UofT) CSC2541-Lec5 8 / 52



Grafting

Agarwal et al., 2020

In practice, this is done per-layer rather than for the whole weight
vector.
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Grafting

It’s known to be really hard to train transformers (e.g. BERT)
with SGD. But grafting the Adam magnitudes onto SGD works
just as well as Adam!

Agarwal et al., 2020
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Grafting

On the flip side, adaptive gradient methods are often seen to
underperform SGD on image classification tasks (e.g. ImageNet).
Grafting the magnitudes from SGD partly closes this gap.

Agarwal et al., 2020

So maybe the difference between SGD and adaptive gradient
methods largely comes down to layerwise learning rate schedules?
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Normalization
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Batch Norm

From Ali Rahimi’s classic NeurIPS 2017 Test of Time talk (emphasis
mine):

Batch Norm is a technique that speeds up gradient descent on deep
nets. You sprinkle it between your layers and gradient descent goes
faster. I think it’s ok to use techniques we don’t understand. I only
vaguely understand how an airplane works, and I was fine taking
one to this conference. But it’s always better if we build systems on
top of things we do understand deeply? This is what we know about
why batch norm works well. But don’t you want to understand why
reducing internal covariate shift speeds up gradient descent? Don’t
you want to see evidence that Batch Norm reduces internal covariate
shift? Don’t you want to know what internal covariate shift is? Batch
Norm has become a foundational operation for machine learning. It
works amazingly well. But we know almost nothing about
it.
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Batch Norm

Be careful about saying “nothing” is known!

Why should we expect “Why does batch norm help?” to have a
simple answer that holds in all cases?

Some arguments made in the original 2015 paper (and often
ignored by critics):

Internal covariate shift leads to unstandardized activations, which
hurts the conditioning

BN fixes this problem (by removing the ICS?)

Prevent dead/saturated units
Stochastic regularization effect caused by noisy estimates of the
statistics
Maintain stability at high learning rates

A more recently discovered learning rate schedule effect
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Internal Covariate Shift

Recall from Lecture 1: for linear regression, uncentered
activations create a large outlier eigenvalue, dramatically slowing
down gradient descent
For linear regression, we can solve this by explicitly centering the
features
For neural nets, the hidden activations can become uncentered,
and there’s no straightforward fix

Pointed out by LeCun (1991)
The BN authors refer to this problem as Internal Covariate Shift
(not a great name!)

Classical recommendation: use tanh instead of logistic
activations
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Internal Covariate Shift

We can make this reasoning more precise using more recent ideas

Recall the K-FAC approximation (Lecture 4):

Ĝ`` = A`−1 ⊗ S`

Uncentered activations cause an outlier eigenvalue in A`−1

Recall (Lecture 4):

Spectral decomposition for symmetric A = QADAQ>
A and

B = QBDBQ>
B

A⊗B = (QA ⊗QB)(DA ⊗DB)(Q>
A ⊗Q>

B)

Therefore, if the eigenvalues of A are λi and the eigenvalues of B
are νj , then the eigenvalues of A⊗B are the products λiνj
If the corresponding eigenvectors of A are ri and for B are sj , then
the eigenvectors of A⊗B are ri ⊗ sj
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Internal Covariate Shift

This leads to:

ICS Conditioning Hypothesis. For a network with output
dimension M , if m = E[a`−1] is far from zero, we’d expect G`` to have
as many as M large eigenvalues, namely νλi for each eigenvalue λi of
S`, where ν = ‖m‖2 + 1. The corresponding eigenvectors are of the
form m⊗ v for some vector v.
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ICS and Invariance

Good scientific practice: change one thing at a time

How can we eliminate the ill-conditioning effects of ICS while
changing almost nothing else?

Idea: standardize the activations using an affine transformation of
the parameters

a` = φ(W`a`−1 + b`)

ã`−1 = Σ−1/2(a`−1 −m)

Transforming the weights so that the network computes the same
function:

W̃`ã`−1 + b̃` = W`a`−1 + b`,

achieved by

W̃` = W`Σ
1/2 b̃` = b` + W`m

Updates in this coordinate system are immune to ICS
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ICS and Invariance

Equivalent to pre-multiplying by RR>, where

R−1 =

(
Σ1/2 ⊗ I 0
m> ⊗ I 1

)
[RR>]−1 =

(
(Σ + mm>)⊗ I m⊗ I

m> ⊗ I 1

)
The matrix [RR>]−1 is supposed to approximate H.

This matrix is “almost” diagonal, so preconditioners of this form
are called quasi-diagonal

Minimal overhead relative to ordinary neural net operations, just
like diagonal preconditioning
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ICS and Invariance

Another way to arrive at quasi-diagonal preconditioners is to
reason about invariance:

If the parameters are chosen such that these two networks
compute the same function, then the same should be true after
running the algorithm.

Quasi-diagonal natural gradient is invariant to affine
transformations of individual units (e.g. tanh vs. logistic)
K-FAC is invariant to affine transformations of the layer as a whole
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Batch Normalization
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Batch Normalization

Näıve motivation: if the architecture explicitly normalizes every
unit, this eliminates ICS and improves the conditioning. Right?

Batch normalization (BN):

X̃ = BN(X) = (X− 1µ(X)>)� 1σ(X)>

Training time: Statistics are estimated from the current batch

Test time: Use averages of training statistics

Typically apply BN to pre-activations rather than activations

Note: in practice, we fit additional parameters for the mean and
variance after normalization, but I’ll ignore these for this lecture
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Batch Normalization

Main difference from our preconditioning-based solution: BN is
part of the architecture, so we differentiate through it

The computation graph contains a direct path and a statistics
path:

Another difference: the statistics are estimated from the current
batch, which injects noise
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Batch Normalization

Preconditioning changes the conditioning of the cost function, and
nothing else

BN also changes the effective initialization, adds stochastic
regularization, completely changes the scales of the gradients, ...

Motivations from the original paper:

Ameliorating the optimization effects of ICS
Preventing dead or saturated units
Maintaining stability at higher learning rates
Stochastic regularization

Additionally, there’s an important implicit learning rate decay
effect which I believe the authors weren’t aware of
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A Wrinkle
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A Wrinkle

We argued that ICS creates outlier eigenvalues in the Hessian due
to uncentered activations

“ICS Conditioning Hypothesis”: BN helps by removing the outlier
eigenvalues

We can also formulate:

ICS Removal Hypothesis: BN improves optimization by centering
and/or normalizing the previous layer’s activations.

These hypotheses are logically independent

BN could remove the outlier eigenvalues through some means other
than preventing ICS
Preventing ICS could have some optimization benefit other than
improving conditioning
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A Wrinkle

Two pieces of evidence against the ICS Removal Hypothesis:

It generally works better to apply BN before the activation
function, rather than after

Santurkar et al. (2018) ran a sort of knockout experiment where
they added ICS back in and tested if BN still improved training

I.e., after BN, linearly transform the activations to have some other
mean and variance
The network still trained just as efficiently
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A Wrinkle

Key insight: consider what happens when BN is applied in the
next layer, before the activation function

A` = f`(A`−1,W`) = φ`(BN(A`−1W
>
` ))

This function is invariant to rescaling and shifting a`−1

If the activations are shifted, the network still computes the same
function (for any particular w), so the optimization trajectories
are identical.

The outlier eigenvalues of have no effect!

So the ICS Conditioning hypothesis could still be correct, even
though the ICS Removal hypothesis appears to be incorrect

Good class project to test this
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A Wrinkle

The same result can be derived by analyzing the mechanics of
backprop through the BN operation

Consider batch centering, which centers but doesn’t scale the
activations

It turns out (derivation in the readings):

W = S
>

A (without BC)

W = S
>

Ã, (with BC)

where Ã are the centered activations

It’s the statistics path that’s responsible for this effect
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Implicit Learning Rate Decay
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Implicit Learning Rate Decay

Batch norm and other normalizers create an implicit learning rate
decay effect

Even if you use a fixed learning rate, the training behaves as if you
are gradually decaying the learning rate

For this most part, this is probably beneficial — learning rate
decay is very useful in stochastic optimization (Lecture 7)

But it’s a major gotcha, since you probably aren’t expecting it,
e.g.

Why does weight decay speed up optimization on the training set?
Different optimization algorithms can have different implicit decay
schedules
This explains a significant fraction of confusing neural net
phenomena
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Implicit Learning Rate Decay

The BN operation is invariant to rescaling the vector wj of
incoming weights to a unit j by a scalar γ > 0:

BN(AW>) = BN(AW>Γ) for any diagonal matrix Γ � 0.

Therefore, each layer’s computations, and the network as a whole,
are invariant to this rescaling:

f`(A,W) = f`(A,ΓW)

Scale invariant cost function:
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Implicit Learning Rate Decay

A function g is homogeneous of degree k if

g(γx) = γkg(x) for any x

Scale invariant = homogeneous of degree 0

Euler showed that if g is homogeneous
of degree k, then

∇g(γx) = γk−1∇g(x)

Since BN is scale invariant, its
gradient is homogeneous of degree -1:

∇J (γwj) = γ−1∇J (wj)
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Implicit Learning Rate Decay

Since the scale of wj doesn’t matter, we can canonicalize it to a
unit vector:

ŵj = wj/‖wj‖

Approximating the update to ŵj :

ŵ
(k+1)
j =

w
(k)
j − α∇J (w

(k)
j )

‖w(k)
j − α∇J (w

(k)
j )‖

≈
w

(k)
j − α∇J (w

(k)
j )

‖w(k)
j ‖

= ŵ
(k)
j − α‖w

(k)
j ‖

−1∇J (w
(k)
j )

=

effective LR︷ ︸︸ ︷
ŵ

(k)
j − α ‖w

(k)
j ‖−2∇J (ŵ

(k)
j )︸ ︷︷ ︸

effective gradient
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Implicit Learning Rate Decay

Observe that ‖wj‖ increases monotonically

Since wj ⊥ ∇J (wj), we can apply the Pythagorean Theorem:

‖w(k+1)
j ‖2 = ‖w(k)

j + α∇J (w
(k)
j )‖2

= ‖w(k)
j ‖

2 + α2‖∇J (w
(k)
j )‖2

= ‖w(k)
j ‖

2 +
α2‖∇J (ŵ

(k)
j )‖2

‖w(k)
j ‖2
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Implicit Learning Rate Decay

If ‖∇J (ŵ
(k)
j )‖ is constant throughout training (admittedly a bad

assumption), then the weight norm grows roughly as:

‖w(k)
j ‖

2 ∝
√

1 + k/k0 for some k0

This translates into an effective learning rate schedule:

α̂k =
α̂0√

1 + k/k0

The explicit learning rate hyperparameter α gives you surprisingly
little control over the effective learning rate
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Implicit Learning Rate Decay

Bengio (2012):

The [learning rate] is often the single most important hyperpa-
rameter and one should always make sure that it has been tuned
(up to approximately a factor of 2). . . If there is only time to
optimize one hyper-parameter and one uses stochastic gradient
descent, then this is the hyper-parameter that is worth tuning.

Today: not a big deal

Aside: Cohen et al., “Gradient descent in neural networks
typically occurs at the edge of stability” showed that even in
non-BN networks, for full-batch gradient descent, the network’s
curvature adapts to compensate for the learning rate, through a
completely different mechanism!
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Implicit Learning Rate Decay

Counteracting the implicit LR effect:

Exponentially increasing LR schedule (Li and Arora, 2020)

Use weight decay (up next!)

Explicitly normalize each wj to unit norm

Then the effective LR is just α
This is not common practice, but I expect it could eliminate a lot of
experimental confounds
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Implicit Learning Rate Decay

The above argument suggests that BN implements a O(1/
√
k)

decay schedule

Some reasons this is not exactly true:

Above analysis assumes ‖∇J (ŵ
(k)
j )‖ is constant, which is hopefully

not the case (if you succeeded in learning anything!)
Separate learning rate for each unit (so features that have already
changed a lot get slowed down more) — maybe a sort of feedback
control
Effect doesn’t apply to the output layer, which doesn’t feed into BN
— therefore, the output layer trains faster later in training
Different algorithms can have different decay schedules

E.g. K-FAC is invariant to affine transformations, and therefore
immune to this effect
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Weight Decay
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Weight Decay as L2 Regularization

Weight decay is one of the oldest tricks in the book. It was traditionally
understood as L2 regularization, or Tikhonov regularization.

We can encourage the weights to
be small by choosing as our
regularizer the L2 penalty.

R(w) = 1
2‖w‖

2 =
1

2

∑
j

w2
j .

Gradient descent update:

w← w − α∇w

(
J (w) +

λ

2
‖w‖2

)
= (1− αλ)w − α∇J (w)
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Weight Decay as L2 Regularization

If this interpretation were correct, then if we used a different
optimizer, we’d compute the update on the same (L2 regularized)
objective.

Update rule if we precondition by a matrix C:

w← w − αC−1∇w

(
J (w) +

λ

2
‖w‖2

)
= (I− αλC−1)w − αC−1∇J (w)

However, we could also just apply “literal weight decay”:

w← (1− αλ)w − αC−1∇J (w)
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AdamW

But for various optimization algorithms, it works much better to
literally apply weight decay, even though this appears to be
optimizing a different function!

Loschilov and Hutter, 2019
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KFAC with Weight Decay

Literal weight decay works much better than L2 regularization in
the context of KFAC as well.

Zhang et al., 2019
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Batch Norm and Weight Decay

Batch norm is scale-invariant, so rescaling the weights of any layer
which feeds into batch norm results in an equivalent network.

Therefore, L2 regularization should not affect the capacity of a
batch norm network. You can make the penalty arbitrarily small
just by rescaling the weights.
Yet, it seems to matter a lot.

My student Guodong produced experimental results that seemed
to contradict every theory we had for what weight decay is doing.

After much frustration, we realized the reason things were so
confusing was that weight decay was improving generalization
through (at least) 3 completely different mechanisms, depending
on the situation!
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Three Mechanisms

Mechanism 1: Implicit learning rates.
We saw earlier that when SGD is used as the optimizer, batch
norm creates an implicit learning rate decay schedule.

Weights get smaller over time ⇒ implicit learning rate decay

Weight decay keeps the weights small, preventing the learning rate
from decaying too much.

Assuming unit norm of the gradient, it can be shown that the
effective learning rate asymptotes to αλ (see readings).
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Three Mechanisms

We can test this explanation with norm grafting:
Train networks both with and without WD
After each iteration, rescale the weights of the non-WD network so
that their norms match the WD network.
Note: This is done only for layers that feed into batch norm.

By scale invariance, this manipulation affects only the implicit
learning rate.
This nearly closes the generalization gap.
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Three Mechanisms

This mechanism doesn’t apply to KFAC because KFAC is
“nearly” invariant to affine transformations.

Rescaling the weights is an affine transformation, so KFAC is
immune to the implicit learning rate decay.
I say “nearly” because the damping term is not invariant.
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Three Mechanisms

Mechanism 2: Jacobian regularization.

We can “reverse engineer” the regularizer that a preconditioned
WD update is minimizing:

w← (1− αλ)w − αC−1∇J (w)

= w − αC−1∇w

[
J (w) +

λ

2
w>Cw

]
Note: this derivation is only approximate, because it is treating C
as fixed, whereas for algorithms like KFAC, it depends on w.
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Three Mechanisms

Surprisingly, when C is the KFAC approximation Ĝ to the
Gauss-Newton matrix, this regularizer is closely related to the
norm of the network Jacobian J.

This holds exactly for linear networks with no biases and whitened
inputs:

w>Ĝw = (L+ 1)‖J‖2F ,

where L is the number of layers.

There is a pretty good empirical fit even for nonlinear networks!
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Three Mechanisms

Mechanism 3: Damping strength.

For KFAC, the approximate curvature matrix Ĝ is replaced with
Ĝ + γI before inversion.

The smaller Ĝ is, the stronger the effect of the damping, and the
more KFAC behaves like a first-order optimizer (SGD).

When the curvature is the Fisher information F, it gets smaller over
the course of optimization, and KFAC reduces to SGD. Weight
decay attenuates this effect.
When the curvature is the Gauss-Newton matrix, this doesn’t
happen.
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Three Mechanisms: Discussion

Why do we find neural nets so hard to understand?

It’s tempting to assume there’s some fundamental insight we’re
missing.

But in situations like the ones covered today (BN, WD), the
mechanisms are straightforward once you know where to look.

What makes it hard is that different principles may apply in
different situations, making it hard to find a one-size-fits-all
explanation.
Imagine asking an organic chemist, “What does nitrogen do?”

Much of what makes science challenging is determining what
observations deserve to be studied as a single phenomenon.

The pipeline of “practitioners notice things, then theorists explain
them” doesn’t really work. You need a good mental model of what’s
going on even to know what experiments to run.
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