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Today

Second-order optimizers use the Hessian and related matrices
(e.g. G, F) to speed up convergence

Motivations/Interpretations

Minimizing quadratic approximations
Preconditioning
Invariance to reparameterization
Proximal optimization

Approximating the second-order updates

Conjugate gradient on batches (e.g. Hessian-free optimization)
Parametric approximations

Pullback Sampling Trick
K-FAC
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Interpretation 1: Minimizing Quadratic Approximations
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Minimizing Quadratic Approximations

Recall:

Analyzed the behavior of gradient descent on quadratic objectives,
saw that it makes slower progress in directions of low curvature
(Lecture 1)

Stationary points: ∇J (w) = 0 (Lecture 1)

Approximating a twice differentiable cost function using its
second-order Taylor approximation (Lecture 2)

Jquad(w) = J (w0) +∇J (w0)>(w−w0) + 1
2(w−w0)>H(w−w0)

Convex functions have PSD Hessians (Lecture 2)

Convex quadratics can be minimized in closed form (Lecture 1)
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Minimizing Quadratic Approximations

Newton’s method as solving a nonlinear equation:

Stationary points: ∇J (w) = 0

First-order Taylor approximation to the
gradient:

∇J (w) ≈ ∇J (w0) + H(w −w0)

Setting this to zero:

w = w0 −H−1∇J (w0)

The Newton-Raphson method, or Newton’s
method, applies this update repeatedly.
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Minimizing Quadratic Approximations

Newton’s method as minimizing quadratic approximations:

Second-order Taylor approximation to the cost:

Jquad(w) = J (w0) +∇J (w0)>(w −w0) +

+ 1
2 (w −w0)>H(w −w0)

If J is strictly convex H � 0, this has a unique
optimum (Lecture 1):

w = arg min
w

Jquad(w) = w0 −H−1∇J (w0)

Newton’s method repeatedly minimizes the
second-order Taylor approximation.

This interpretation highlights that it may be
useful to minimize the quadratic only
approximately.
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Minimizing Quadratic Approximations

What if J isn’t convex?

Second-order Taylor approximation may be unbounded below
Newton’s method just searches for stationary points (which may be
saddle points)

If we replace H with a positive definite matrix C, i.e. compute
∆w = −C−1∇J (w), then we are at least guaranteed to get a
descent direction, i.e. a direction ∆w such that ∇J (w)>∆w < 0.

Proof:

C−1 � 0⇐⇒ C � 0
∇J (w)>∆w = −∇J (w)>C−1∇J (w) < 0 by definition of PD

Therefore, in deep learning, we typically replace H with G
(generalized Gauss-Newton algorithm) or F (natural gradient
descent).
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Minimizing Quadratic Approximations: Damping

A problem: if J is convex but not strictly convex, then H could
be singular. In general, G and F could be singular as well.
Even for strictly convex problems, the “vanilla” version of
Newton’s method isn’t guaranteed to converge efficiently, or even
reduce the cost function in each iteration

Cost function Quadratic approximation

J (x) =
∑

j [log(1 + exj ) + log(1 + e−xj )], based on logistic regression
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Minimizing Quadratic Approximations: Damping

A solution: dampen the update by adding a Euclidean proximity
term penalizing the distance from the current iterate (Lecture 3)

w(k+1) = arg min
w

Jquad(w) + η
2‖w −w(k)‖2

= arg min
w

∇J (w(k))>w + 1
2(w −w(k))>(H + ηI)(w −w(k))

= w(k) − (H + ηI)−1∇J (w(k)),

Here, η > 0 is a hyperparameter called the damping parameter
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Minimizing Quadratic Approximations: Damping

Note that H, H−1, and (H + ηI)−1 are all codiagonalizable
(i.e. they share the same eigenvectors)

Suppose the eigenvalues of H are {νj}Dj=1. Since H is PSD, νj ≥ 0
for all j.

The eigenvalues of H−1 are {ν−1j }Dj=1 (assuming H−1 exists).

The eigenvalues of (H + ηI)−1 are {(νj + η)−1}Dj=1.

They are positive, so (H + ηI)−1 is positive definite, and therefore
we get a descent direction.
They are bounded above by η−1, so damping prevents the algorithm
from taking extremely large steps when the curvature is close to 0.

The damped update behaves like the undamped update in high
curvature directions (νj � η), and like gradient descent in low
curvature directions (νj � η)
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Interpretation 2: Preconditioning
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Preconditioning

Recall: convergence rate of gradient descent for quadratics is
determined by the condition number

The condition number itself isn’t defined for neural nets, since the
Hessian is usually singular (more on this later)
But we’d still like the curvature to be reasonably well matched in
all the directions that are “important” for learning

Optimizers which compute w′ = w − αC−1∇J (w) can be viewed
as preconditioned gradient descent: implicitly doing GD in a space
which is better conditioned
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Preconditioning

Consider the affine reparameterization

w = T (w̃) = Rw̃ + b,

where R is an invertible square matrix (not necessarily
symmetric), and b is a vector

Inverse transformation:

w̃ = R−1(w − b)

Performing GD in the transformed space (analogous to Lecture 1):

w(k+1) = T (w̃(k) − α∇J̃ (w̃(k)))

= T (w̃(k) − αR>∇J (w(k)))

= w(k) − αRR>∇J (w(k)).

We can get the same effect by just multiplying by RR> and never
explicitly applying the transformation
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Preconditioning

Turning this around: multiplying the gradient by C−1 is
equivalent to applying a transformation R such that RR> = C−1

E.g., Cholesky factorization
E.g., matrix square root C−1/2 = QD−1/2Q>

Hessian in the transformed space:

H̃ = ∇2J̃ (w̃) = R>HR

Corollary: Newton’s method implicitly transforms to a space
where H̃ = H−1/2HH−1/2 = I

Even relatively inaccurate approximations to H (e.g. diagonal) can
improve the conditioning considerably

Preconditioning is used in a lot of settings beyond optimziation
(e.g. solving linear systems)
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Interpretation 3: Invariance
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Invariance

We already motivated the usefulness of invariance to
reparameterizations in Chapter 3

It can be shown that Newton-Raphson, Gauss-Newton, and
natural gradient descent are all invariant to affine transformations
of the parameter space (see NNTD readings)

Intuition: if you stretch the parameter space, then the quadratic
approximation gets stretched the same way as the actual cost
function

Note: invariance only holds exactly for the undamped algorithms

Damping uses a Euclidean proximity term, which depends on the
coordinate system
In machine learning, we don’t necessarily want full invariance, since
the curvature can contain useful information about signal vs. noise
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Interpretation 4: Proximal Optimization
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Proximal Optimization

Recall “gradient descent on the outputs” (Lecture 3)

Roughly speaking, we can think of each update of a stochastic
optimization algorithm as trading off 3 factors:

1 Loss on the current batch.
2 Function space distance (FSD). Average change to the

network’s outputs. (Not necessarily a true distance metric.)

Prevents large steps in high-sensitivity directions (≈ high-curvature
directions)
Saves the network from forgetting what it previously learned

3 Weight space distance (WSD). Typically (squared) Euclidean
distance.

Prevents extremely large steps (damping)
Keeps the update within a region where the second-order
approximations are accurate
Improves generalization by providing an inductive bias (coming up
in Lecture 6)
Surprisingly useful for neural net training!
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Proximal Optimization

Generic proximal objective:

w(k+1) ← arg min
w

1

|B(k+1)|
∑

i∈B(k+1)

L(f(x(i),w), t(i)) + (loss)

+ λFSDEx[ρ(f(x,w), f(x,w(k)))] + (FSD)

+
λWSD

2
‖w −w(k)‖2 (WSD)

SGD: linear approximation to loss, no FSD term

Natural gradient descent: linear approximation to loss,
quadratic approximation to FSD, WSD term = damping
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Proximal Optimization

Examples of proximal updates for a neural net regression problem:

Previous iterate

Loss + FSD

Loss + WSD

Loss + WSD + FSD
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Computing Second-Order and/or Proximal Updates
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Computation

The matrices H, G, F, etc. are very large

Small fully connected layer with 1000 inputs and 1000 outputs: 1
million parameters
H/G/F are 1 million × 1 million

How to compute −C−1∇J (w), where C is one of these matrices?

Exact inversion is hopeless
Gradient descent on 1

2v
>Cv> +∇J (w)>v?

Conjugate gradient?
Or forget the Taylor approximation, and just do gradient descent on
the proximal objective?
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Computation: GD on the Proximal Objective

Consider the proximal objective, approximating FSD with the
current batch:

Q(w) =
1

|B|
∑
i∈B

[
L(f(x(i),w), t(i)) + λFSDρ(f(x(i),w), f(x(i),w(k)))

]
+
λWSD

2
‖w−w(k)‖2

Suppose we do K steps of gradient descent on this objective for
each batch.

Computational cost of each step:

Forward pass to compute {f(x(i),w)}i∈B
Backward pass to compute the gradient of the loss and FSD terms

Each SGD step is also a forward and a backward pass. So the cost
is equivalent to K SGD steps

Is this advantageous?
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Computation: GD on the Proximal Objective

Is this advantageous?

For most supervised learning, no

Rather do K SGD steps on fresh data than K on the same batch, in
order to maximize data throughput

Can be advantageous if K updates on the same data are cheaper
than K updates on separate batches, e.g. if disk bandwidth is the
bottleneck

Can be very advantageous if data throughput isn’t limited by
computation

In reinforcement learning, we care about sample efficiency, i.e. the
number of interactions with the environment
Proximal policy optimization (PPO) is a state-of-the-art RL
algorithm used in OpenAI’s DoTA2 agent
It optimizes a similar proximal objective with GD (plus a few more
tricks)
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Computation: GD on the Taylor Approximation

Gradient descent on the quadratic approximation?

min
v

1

2
v>Cv> +∇J (w)>v

Computational cost:

Compute ∇J (w) once
Compute an MVP Cv for each subsequent step (cost ≥ 1 gradient
step on the loss and/or proximal objective)

Therefore, no computational savings from the quadratic
approximation. Might as well do gradient descent on the exact (or
proximal) objective.
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Computation: Hessian-Free Optimization

min
v

1

2
v>Cv> +∇J (w)>v

Hessian-free optimization (HF) minimizes the quadratic
approximation using conjugate gradient

Recall: CG achieves the minimum quadratic cost achievable with a
given number of MVPs
O(κ1/2) complexity, compared with O(κ) for gradient descent

Pro: If the cost function is very ill-conditioned, K iterations of
CG might make much more progress than K SGD steps

Con: Each training example takes K times longer to process, so
much lower data throughput

Note that K = 1 is equivalent to GD with automatic step size
selection, so we only get a convergence benefit for larger K

In practice, works very well for 2010-era deep networks, not so
favorable for modern architectures (more on this in Lecture 7)
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Computation: Hessian-Free Optimization

Martens (2010): training deep autoencoders without pre-training
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Pullback Sampling Trick
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Pullback Sampling Trick

Limitations of MVP-based methods

Requirement of doing many MVPs hurts data throughput
Approximate curvature or FSD using a single batch, which may be
inaccurate

A more recent approach: fit tractable parametric approximations
to G or F

Pullback Sampling Trick (PST): sample vectors Dw, called
pseudo-gradients, whose covariance is G (or F)

Then we can fit a tractable probabilistic model to approximate this
covariance
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Pullback Sampling Trick

Using the PST to estimate F for a linear regression model

Recall:

F = Ex∼pdata
t∼r(· |x)

[DwDw>]

F = G for exponential family NLL (squared error = Gaussian
NLL)
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Pullback Sampling Trick

G = Ex[J>zwGzJzw]

Pullback Sampling Trick (PST): sample pseudo-gradients Dw
whose covariance is G, and approximate the covariance

Sample x from the data distribution
Compute z = f(x,w)
Sample a random vector Dz whose covariance is Gz

Pull it back to weight space using a JVP (i.e. backprop):
Dw = J>zwDz

The resulting random vector Dw has covariance
E[J>zwGzJzw] = Gw.
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Pullback Sampling Trick

The simplest structure we can impose on G is diagonal

Equivalent to approximating the entries of Dw as uncorrelated (or
independent)

To compute Ĝ−1, just invert the diagonal entries

Estimate from a finite set of samples:

Ĝii =
1

S

S∑
s=1

Dw2
i

In practice, often use an exponential moving average (EMA):

Ĝ
(k+1)
ii ← ηĜ

(k)
ii + (1− η)[Dw(k)

i ]2

η is a hyperparameter (good default: 0.95)
1/(1− η) is the timescale of the EMA
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Kronecker-Factored Approximate Curvature
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K-FAC

Can we do better than a diagonal approximation?

Probabilistic graphical models (PGMs) give us a powerful set of
techniques for efficiently approximating high-dimensional
probability distributions

Kronecker-Factored Approximate Curvature (K-FAC) fits a
structured probabilistic model to the gradient computations in
order to cheaply approximate the Gauss-Newton update or natural
gradient
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K-FAC: Kronecker Product

The vectorization operator vec(A) stacks the columns of a matrix
A into a vector

Kronecker product:

A⊗B =


a11B a12B · · · a1nB
a21B a22B a2nB

...
. . .

...
am1B am2B · · · amnB


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K-FAC: Kronecker Product

The Kronecker product is useful since it lets us express matrix
multiplication as a linear operator:

vec(AXB) = (B> ⊗A) vec(X)

Proof-by-picture of a special case, vec(AX) = (I⊗A) vec(X):
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K-FAC: Kronecker Product

Some properties of the Kronecker product:

Matrix multiplication:

(A⊗B)(C⊗D) = AC⊗BD

Matrix transpose:

(A⊗B)> = A> ⊗B>

Matrix inversion:

(A⊗B)−1 = A−1 ⊗B−1

Vector outer products (u and v are column vectors):

vec(uv>) = v ⊗ u
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K-FAC: Kronecker Product

If Q1 and Q2 are orthogonal, then so is Q1 ⊗Q2.

If D1 and D2 are diagonal, then so is D1 ⊗D2.

If A and B are symmetric, then so is A⊗B.

Spectral decomposition for symmetric A = QADAQ>A and
B = QBDBQ

>
B

A⊗B = (QA ⊗QB)(DA ⊗DB)(Q>A ⊗Q>B)

Therefore, if the eigenvalues of A are λi and the eigenvalues of B
are νj , then the eigenvalues of A⊗B are the products λiνj

If the corresponding eigenvectors of A are ri and for B are sj ,
then the eigenvectors of A⊗B are ri ⊗ sj

Therefore if A and B are positive (semi)definite, then so is A⊗B
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K-FAC: Modeling the Pseudo-Gradients

Computations in each layer of an MLP:

s` = W̄`ā`−1

a` = φ`(s`)

Backprop computations in each layer:

Da` = W>
` Ds`+1

Ds` = Da` � φ′`(s`)

DW̄` = Ds`ā>`−1
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K-FAC: Modeling the Pseudo-Gradients

Approximation 1: different layers are independent

This makes G into a block diagonal matrix, with one block per
layer of the network.

G`` = E[vec(DW`) vec(DW`)
>]

= E[vec(Ds`ā>`−1) vec(Ds`ā>`−1)>]

= E[(ā`−1 ⊗Ds`)(ā`−1 ⊗Ds`)>]

= E[ā`−1ā
>
`−1 ⊗Ds`Ds>` ]

The blocks are still too large!
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K-FAC: Modeling the Pseudo-Gradients

Approximation 2: ā`−1 is independent of Ds`
Then we can push the expectation inwards and get a Kronecker
product:

Ĝ`` = E[ā`−1ā
>
`−1]⊗ E[Ds`Ds>` ]

= A`−1 ⊗ S`,

where A` and S` denote the following covariance matrices:

A` = E[ā`ā
>
` ]

=

(
E[a`a

>
` ] E[a`]

E[a>` ] 1

)
S` = E[Ds`Ds>` ]
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K-FAC: Compact Representation

How large is the representation?

Assume 3 layers with 1000 units per layer

Full matrix G:
(3× 10002)2 = 9 trillion

Block diagonal:
3× (10002)2 = 3 trillion

Kronecker-factored (Ĝ`` = A`−1 ⊗ S`):

3× (10002 + 10002) = 6 million
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K-FAC: Efficient Computation

Efficiently solving the linear system:

Ĝ−1
`` v` = (A`−1 ⊗ S`)

−1 vec(V̄`)

= (A−1
`−1 ⊗ S−1

` ) vec(V̄`)

= vec(S−1
` V̄`A

−1
`−1).

This only requires computations with matrices that are
approximately the same size as the weights

Note: this update rule needs to be modified to approximate the
damped update, (Ĝ`` + ηI)−1v`. Details in the readings.
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K-FAC: Estimating the Covariance Matrices

Estimate the Kronecker factors {A`} and {S`} with exponential
moving averages

Â` ← ηÂ` +
1− η
B

Y>` Y`

Ŝ` ← ηŜ` +
1− η
B
DZ>` DZ`,

where Y and Z denote the matrices of activations and
pre-activations for a batch.
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K-FAC: Odds and Ends

Some things we left out:

Adding momentum and iterate averaging (straightforward)

Using exact MVPs on the current batch to choose step sizes
automatically

Automatically adapting damping hyperparameters

More accurate approximations than layerwise independence

Extensions to other architectures (conv nets, RNNs, etc.)

Distributed implementation
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K-FAC: Results

Logistic autoencoder

RNN language model

ImageNet classifier CNN

FermiNET
(Schrödinger Equation)

Results are sometimes amazing, sometimes meh.
Why? Stay tuned for Lecture 7.
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