Today

- Second-order optimizers use the Hessian and related matrices (e.g. G, F) to speed up convergence
- Motivations/Interpretations
 - Minimizing quadratic approximations
 - Preconditioning
 - Invariance to reparameterization
 - Proximal optimization
- Approximating the second-order updates
 - Conjugate gradient on batches (e.g. Hessian-free optimization)
 - Parametric approximations
 - Pullback Sampling Trick
 - K-FAC
Interpretation 1: Minimizing Quadratic Approximations
Minimizing Quadratic Approximations

Recall:

- Analyzed the behavior of gradient descent on quadratic objectives, saw that it makes slower progress in directions of low curvature (Lecture 1)
- Stationary points: $\nabla J(w) = 0$ (Lecture 1)
- Approximating a twice differentiable cost function using its second-order Taylor approximation (Lecture 2)
 \[
 J_{\text{quad}}(w) = J(w_0) + \nabla J(w_0)^\top (w - w_0) + \frac{1}{2} (w - w_0)^\top H(w - w_0)
 \]
- Convex functions have PSD Hessians (Lecture 2)
- Convex quadratics can be minimized in closed form (Lecture 1)
Minimizing Quadratic Approximations

Newton’s method as solving a nonlinear equation:

- Stationary points: $\nabla J(w) = 0$
- First-order Taylor approximation to the gradient:
 \[\nabla J(w) \approx \nabla J(w_0) + H(w - w_0) \]
- Setting this to zero:
 \[w = w_0 - H^{-1}\nabla J(w_0) \]
- The Newton-Raphson method, or Newton’s method, applies this update repeatedly.
Minimizing Quadratic Approximations

Newton’s method as minimizing quadratic approximations:

- Second-order Taylor approximation to the cost:
 \[J_{\text{quad}}(w) = J(w_0) + \nabla J(w_0)^\top (w - w_0) + \frac{1}{2} (w - w_0)^\top H(w - w_0) \]

- If \(J \) is strictly convex \(H \succ 0 \), this has a unique optimum (Lecture 1):
 \[w = \arg \min_w J_{\text{quad}}(w) = w_0 - H^{-1} \nabla J(w_0) \]

- Newton’s method repeatedly minimizes the second-order Taylor approximation.

- This interpretation highlights that it may be useful to minimize the quadratic only approximately.
Minimizing Quadratic Approximations

- What if \mathcal{J} isn’t convex?
 - Second-order Taylor approximation may be unbounded below
 - Newton’s method just searches for stationary points (which may be saddle points)
- If we replace H with a positive definite matrix C, i.e. compute $\Delta w = -C^{-1}\nabla \mathcal{J}(w)$, then we are at least guaranteed to get a descent direction, i.e. a direction Δw such that $\nabla \mathcal{J}(w)^\top \Delta w < 0$.

Proof:
- $C^{-1} \succ 0 \iff C \succ 0$
- $\nabla \mathcal{J}(w)^\top \Delta w = -\nabla \mathcal{J}(w)^\top C^{-1}\nabla \mathcal{J}(w) < 0$ by definition of PD

- Therefore, in deep learning, we typically replace H with G (generalized Gauss-Newton algorithm) or F (natural gradient descent).
Minimizing Quadratic Approximations: Damping

- **A problem:** if J is convex but not strictly convex, then H could be singular. In general, G and F could be singular as well.
- Even for strictly convex problems, the “vanilla” version of Newton’s method isn’t guaranteed to converge efficiently, or even reduce the cost function in each iteration.

$$J(x) = \sum_j [\log(1 + e^{x_j}) + \log(1 + e^{-x_j})],$$ based on logistic regression
Minimizing Quadratic Approximations: Damping

- **A solution:** dampen the update by adding a Euclidean proximity term penalizing the distance from the current iterate (Lecture 3)

\[
\begin{align*}
\mathbf{w}^{(k+1)} &= \arg\min_{\mathbf{w}} \mathcal{J}_{\text{quad}}(\mathbf{w}) + \frac{\eta}{2} \| \mathbf{w} - \mathbf{w}^{(k)} \|^2 \\
&= \arg\min_{\mathbf{w}} \nabla \mathcal{J}(\mathbf{w}^{(k)})^\top \mathbf{w} + \frac{1}{2} (\mathbf{w} - \mathbf{w}^{(k)})^\top (\mathbf{H} + \eta \mathbf{I})(\mathbf{w} - \mathbf{w}^{(k)}) \\
&= \mathbf{w}^{(k)} - (\mathbf{H} + \eta \mathbf{I})^{-1} \nabla \mathcal{J}(\mathbf{w}^{(k)}),
\end{align*}
\]

- Here, \(\eta > 0 \) is a hyperparameter called the damping parameter
Minimizing Quadratic Approximations: Damping

- Note that H, H^{-1}, and $(H + \eta I)^{-1}$ are all codiagonalizable (i.e. they share the same eigenvectors).
- Suppose the eigenvalues of H are $\{\nu_j\}_{j=1}^D$. Since H is PSD, $\nu_j \geq 0$ for all j.
 - The eigenvalues of H^{-1} are $\{\nu_j^{-1}\}_{j=1}^D$ (assuming H^{-1} exists).
 - The eigenvalues of $(H + \eta I)^{-1}$ are $\{((\nu_j + \eta)^{-1}\}_{j=1}^D$.
 - They are positive, so $(H + \eta I)^{-1}$ is positive definite, and therefore we get a descent direction.
 - They are bounded above by η^{-1}, so damping prevents the algorithm from taking extremely large steps when the curvature is close to 0.
- The damped update behaves like the undamped update in high curvature directions ($\nu_j \gg \eta$), and like gradient descent in low curvature directions ($\nu_j \ll \eta$).
Interpretation 2: Preconditioning
Preconditioning

- Recall: convergence rate of gradient descent for quadratics is determined by the condition number
 - The condition number itself isn’t defined for neural nets, since the Hessian is usually singular (more on this later)
 - But we’d still like the curvature to be reasonably well matched in all the directions that are “important” for learning
- Optimizers which compute $w' = w - \alpha C^{-1}\nabla J(w)$ can be viewed as preconditioned gradient descent: implicitly doing GD in a space which is better conditioned
Preconditioning

- Consider the affine reparameterization

 \[\mathbf{w} = \mathcal{T}(\tilde{\mathbf{w}}) = \mathbf{R}\tilde{\mathbf{w}} + \mathbf{b}, \]

 where \(\mathbf{R} \) is an invertible square matrix (not necessarily symmetric), and \(\mathbf{b} \) is a vector

- Inverse transformation:

 \[\tilde{\mathbf{w}} = \mathbf{R}^{-1}(\mathbf{w} - \mathbf{b}) \]

- Performing GD in the transformed space (analogous to Lecture 1):

 \[
 \mathbf{w}^{(k+1)} = \mathcal{T}(\tilde{\mathbf{w}}^{(k)} - \alpha \nabla \tilde{\mathcal{J}}(\tilde{\mathbf{w}}^{(k)})) \\
 = \mathcal{T}(\tilde{\mathbf{w}}^{(k)} - \alpha \mathbf{R}^\top \nabla \mathcal{J}(\mathbf{w}^{(k)})) \\
 = \mathbf{w}^{(k)} - \alpha \mathbf{R}\mathbf{R}^\top \nabla \mathcal{J}(\mathbf{w}^{(k)}).
 \]

- We can get the same effect by just multiplying by \(\mathbf{RR}^\top \) and never explicitly applying the transformation
Preconditioning

- Turning this around: multiplying the gradient by C^{-1} is equivalent to applying a transformation R such that $RR^\top = C^{-1}$
 - E.g., Cholesky factorization
 - E.g., matrix square root $C^{-1/2} = QD^{-1/2}Q^\top$

- Hessian in the transformed space:
 \[
 \tilde{H} = \nabla^2 \tilde{J}(\tilde{w}) = R^\top HR
 \]

- **Corollary:** Newton’s method implicitly transforms to a space where $\tilde{H} = H^{-1/2}HH^{-1/2} = I$
 - Even relatively inaccurate approximations to H (e.g. diagonal) can improve the conditioning considerably
 - Preconditioning is used in a lot of settings beyond optimization (e.g. solving linear systems)
Interpretation 3: Invariance
Invariance

- We already motivated the usefulness of invariance to reparameterizations in Chapter 3
- It can be shown that Newton-Raphson, Gauss-Newton, and natural gradient descent are all invariant to affine transformations of the parameter space (see NNTD readings)
 - Intuition: if you stretch the parameter space, then the quadratic approximation gets stretched the same way as the actual cost function
- Note: invariance only holds exactly for the undamped algorithms
 - Damping uses a Euclidean proximity term, which depends on the coordinate system
 - In machine learning, we don’t necessarily want full invariance, since the curvature can contain useful information about signal vs. noise
Interpretation 4: Proximal Optimization
Recall “gradient descent on the outputs” (Lecture 3)

Roughly speaking, we can think of each update of a stochastic optimization algorithm as trading off 3 factors:

1. **Loss on the current batch.**
2. **Function space distance (FSD).** Average change to the network’s outputs. (Not necessarily a true distance metric.)
 - Prevents large steps in high-sensitivity directions (\approx high-curvature directions)
 - Saves the network from forgetting what it previously learned
3. **Weight space distance (WSD).** Typically (squared) Euclidean distance.
 - Prevents extremely large steps (damping)
 - Keeps the update within a region where the second-order approximations are accurate
 - Improves generalization by providing an inductive bias (coming up in Lecture 6)
 - Surprisingly useful for neural net training!
Generic proximal objective:

\[w^{(k+1)} \leftarrow \arg \min_w \frac{1}{|B^{(k+1)}|} \sum_{i \in B^{(k+1)}} \mathcal{L}(f(x^{(i)}, w), t^{(i)}) + \text{(loss)} + \lambda_{\text{FSD}} \mathbb{E}_x[\rho(f(x, w), f(x, w^{(k)}))] + \text{(FSD)} + \frac{\lambda_{\text{WSD}}}{2} \|w - w^{(k)}\|^2 \text{(WSD)} \]

- **SGD:** linear approximation to loss, no FSD term
- **Natural gradient descent:** linear approximation to loss, quadratic approximation to FSD, WSD term = damping
Examples of proximal updates for a neural net regression problem:

- Previous iterate
- Loss + WSD
- Loss + FSD
- Loss + WSD + FSD
Computing Second-Order and/or Proximal Updates
The matrices H, G, F, etc. are very large
- Small fully connected layer with 1000 inputs and 1000 outputs: 1 million parameters
- $H/G/F$ are 1 million \times 1 million

How to compute $-C^{-1}\nabla J(w)$, where C is one of these matrices?
- Exact inversion is hopeless
- Gradient descent on $\frac{1}{2}v^\top Cv^\top + \nabla J(w)^\top v$?
- Conjugate gradient?
- Or forget the Taylor approximation, and just do gradient descent on the proximal objective?
Consider the proximal objective, approximating FSD with the current batch:

\[Q(w) = \frac{1}{|B|} \sum_{i \in B} \left[\mathcal{L}(f(x^{(i)}, w), t^{(i)}) + \lambda_{\text{FSD}} \rho(f(x^{(i)}, w), f(x^{(i)}, w^{(k)})) \right] + \frac{\lambda_{\text{WSD}}}{2} \| w - w^{(k)} \|^2 \]

Suppose we do \(K \) steps of gradient descent on this objective for each batch.

Computational cost of each step:

- Forward pass to compute \(\{ f(x^{(i)}, w) \}_{i \in B} \)
- Backward pass to compute the gradient of the loss and FSD terms

Each SGD step is also a forward and a backward pass. So the cost is equivalent to \(K \) SGD steps

Is this advantageous?
Computation: GD on the Proximal Objective

Is this advantageous?

- For most supervised learning, no
 - Rather do K SGD steps on fresh data than K on the same batch, in order to maximize data throughput
- Can be advantageous if K updates on the same data are cheaper than K updates on separate batches, e.g. if disk bandwidth is the bottleneck
- Can be very advantageous if data throughput isn’t limited by computation
 - In reinforcement learning, we care about sample efficiency, i.e. the number of interactions with the environment
 - Proximal policy optimization (PPO) is a state-of-the-art RL algorithm used in OpenAI’s DoTA2 agent
 - It optimizes a similar proximal objective with GD (plus a few more tricks)
Graduate descent on the quadratic approximation?

\[
\min_v \frac{1}{2} v^\top C v^\top + \nabla J(w)^\top v
\]

Computational cost:
- Compute \(\nabla J(w) \) once
- Compute an MVP \(Cv \) for each subsequent step (cost \(\geq 1 \) gradient step on the loss and/or proximal objective)

Therefore, no computational savings from the quadratic approximation. Might as well do gradient descent on the exact (or proximal) objective.
Computation: Hessian-Free Optimization

\[
\min_{v} \frac{1}{2} v^\top C v^\top + \nabla J(w)^\top v
\]

- **Hessian-free optimization (HF)** minimizes the quadratic approximation using conjugate gradient
 - Recall: CG achieves the minimum quadratic cost achievable with a given number of MVPs
 - \(O(\kappa^{1/2})\) complexity, compared with \(O(\kappa)\) for gradient descent
- **Pro**: If the cost function is very ill-conditioned, \(K\) iterations of CG might make much more progress than \(K\) SGD steps
- **Con**: Each training example takes \(K\) times longer to process, so much lower data throughput
 - Note that \(K = 1\) is equivalent to GD with automatic step size selection, so we only get a convergence benefit for larger \(K\)
- In practice, works very well for 2010-era deep networks, not so favorable for modern architectures (more on this in Lecture 7)
Computation: Hessian-Free Optimization

- Martens (2010): training deep autoencoders without pre-training

8. Discussion of results and implications

The most important implication of our results is that learning in deep models can be achieved effectively and efficiently by a completely general optimizer without any need for pre-training. This opens the door to examining a diverse range of deep or otherwise difficult-to-optimize architectures for which there are no effective pre-training methods, such as asymmetric auto-encoders, or recurrent neural nets.
Pullback Sampling Trick
Pullback Sampling Trick

- Limitations of MVP-based methods
 - Requirement of doing many MVPs hurts data throughput
 - Approximate curvature or FSD using a single batch, which may be inaccurate

- A more recent approach: fit tractable parametric approximations to G or F

- Pullback Sampling Trick (PST): sample vectors Dw, called pseudo-gradients, whose covariance is G (or F)
 - Then we can fit a tractable probabilistic model to approximate this covariance
Pullback Sampling Trick

Using the PST to estimate F for a linear regression model

Recall:

- $F = \mathbb{E}_{X \sim p_{\text{data}}} \left[DwDw^\top \right]_{T \sim r(\cdot | x)}$
- $F = G$ for exponential family NLL (squared error = Gaussian NLL)
Pullback Sampling Trick

\[G = \mathbb{E}_x[J_{zw}^\top G_z J_{zw}] \]

- **Pullback Sampling Trick (PST):** sample pseudo-gradients \(\mathcal{D}w \) whose covariance is \(G \), and approximate the covariance
 - Sample \(x \) from the data distribution
 - Compute \(z = f(x, w) \)
 - Sample a random vector \(\mathcal{D}z \) whose covariance is \(G_z \)
 - Pull it back to weight space using a JVP (i.e. backprop):
 \[\mathcal{D}w = J_{zw}^\top \mathcal{D}z \]

- The resulting random vector \(\mathcal{D}w \) has covariance
 \[\mathbb{E}[J_{zw}^\top G_z J_{zw}] = G_w. \]
The simplest structure we can impose on G is diagonal
- Equivalent to approximating the entries of Dw as uncorrelated (or independent)
- To compute \hat{G}^{-1}, just invert the diagonal entries

Estimate from a finite set of samples:
\[
\hat{G}_{ii} = \frac{1}{S} \sum_{s=1}^{S} Dw_i^2
\]

In practice, often use an exponential moving average (EMA):
\[
\hat{G}_{ii}^{(k+1)} \leftarrow \eta \hat{G}_{ii}^{(k)} + (1 - \eta) [Dw_i^{(k)}]^2
\]

- η is a hyperparameter (good default: 0.95)
- $1/(1 - \eta)$ is the timescale of the EMA
Kronecker-Factored Approximate Curvature
Can we do better than a diagonal approximation?

Probabilistic graphical models (PGMs) give us a powerful set of techniques for efficiently approximating high-dimensional probability distributions

Kronecker-Factored Approximate Curvature (K-FAC) fits a structured probabilistic model to the gradient computations in order to cheaply approximate the Gauss-Newton update or natural gradient
The vectorization operator \(\text{vec}(A) \) stacks the columns of a matrix \(A \) into a vector.

Kronecker product:

\[
A \otimes B = \begin{pmatrix}
a_{11}B & a_{12}B & \cdots & a_{1n}B \\
a_{21}B & a_{22}B & \cdots & a_{2n}B \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1}B & a_{m2}B & \cdots & a_{mn}B
\end{pmatrix}
\]
The Kronecker product is useful since it lets us express matrix multiplication as a linear operator:

\[
\text{vec}(AXB) = (B^\top \otimes A) \text{vec}(X)
\]

Proof-by-picture of a special case, \(\text{vec}(AX) = (I \otimes A) \text{vec}(X)\):
Some properties of the Kronecker product:

- **Matrix multiplication:**

 \[(A \otimes B)(C \otimes D) = AC \otimes BD\]

- **Matrix transpose:**

 \[(A \otimes B)^\top = A^\top \otimes B^\top\]

- **Matrix inversion:**

 \[(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}\]

- **Vector outer products (\(u\) and \(v\) are column vectors):**

 \[\text{vec}(uv^\top) = v \otimes u\]
K-FAC: Kronecker Product

- If Q_1 and Q_2 are orthogonal, then so is $Q_1 \otimes Q_2$.
- If D_1 and D_2 are diagonal, then so is $D_1 \otimes D_2$.
- If A and B are symmetric, then so is $A \otimes B$.
- Spectral decomposition for symmetric $A = Q_A D_A Q_A^\top$ and $B = Q_B D_B Q_B^\top$

$$A \otimes B = (Q_A \otimes Q_B)(D_A \otimes D_B)(Q_A^\top \otimes Q_B^\top)$$

Therefore, if the eigenvalues of A are λ_i and the eigenvalues of B are ν_j, then the eigenvalues of $A \otimes B$ are the products $\lambda_i \nu_j$.

- If the corresponding eigenvectors of A are r_i and for B are s_j, then the eigenvectors of $A \otimes B$ are $r_i \otimes s_j$.
- Therefore if A and B are positive (semi)definite, then so is $A \otimes B$.
K-FAC: Modeling the Pseudo-Gradients

- Computations in each layer of an MLP:
 \[s_\ell = \bar{W}_\ell \bar{a}_{\ell-1} \]
 \[a_\ell = \phi_\ell(s_\ell) \]

- Backprop computations in each layer:
 \[D a_\ell = W_\ell^T D s_{\ell+1} \]
 \[D s_\ell = D a_\ell \odot \phi'_\ell(s_\ell) \]
 \[D \bar{W}_\ell = D s_\ell \bar{a}_{\ell-1}^T \]
Approximation 1: different layers are independent

This makes \mathbf{G} into a block diagonal matrix, with one block per layer of the network.

\[
\mathbf{G}_{\ell \ell} = \mathbb{E}[\text{vec}(\mathcal{D}\mathbf{W}_\ell) \text{vec}(\mathcal{D}\mathbf{W}_\ell)^\top]
= \mathbb{E}[\text{vec}(\mathcal{D}\mathbf{s}_\ell \bar{\mathbf{a}}_{\ell-1}^\top) \text{vec}(\mathcal{D}\mathbf{s}_\ell \bar{\mathbf{a}}_{\ell-1}^\top)^\top]
= \mathbb{E}[(\bar{\mathbf{a}}_{\ell-1} \otimes \mathcal{D}\mathbf{s}_\ell) (\bar{\mathbf{a}}_{\ell-1} \otimes \mathcal{D}\mathbf{s}_\ell)^\top]
= \mathbb{E}[\bar{\mathbf{a}}_{\ell-1} \bar{\mathbf{a}}_{\ell-1}^\top \otimes \mathcal{D}\mathbf{s}_\ell \mathcal{D}\mathbf{s}_\ell^\top]
\]

- The blocks are still too large!
Approximation 2: $\bar{a}_{\ell-1}$ is independent of Ds_ℓ

Then we can push the expectation inwards and get a Kronecker product:

$$
\hat{G}_{\ell\ell} = \mathbb{E}[\bar{a}_{\ell-1}\bar{a}_{\ell-1}^\top] \otimes \mathbb{E}[Ds_\ell Ds_\ell^\top] \\
= A_{\ell-1} \otimes S_\ell,
$$

where A_ℓ and S_ℓ denote the following covariance matrices:

$$
A_\ell = \mathbb{E}[\bar{a}_\ell \bar{a}_\ell^\top] \\
= \left(\begin{array}{cc}
\mathbb{E}[a_\ell a_\ell^\top] & \mathbb{E}[a_\ell] \\
\mathbb{E}[a_\ell^\top] & 1
\end{array} \right)
$$

$$
S_\ell = \mathbb{E}[Ds_\ell Ds_\ell^\top]
$$
How large is the representation?

- Assume 3 layers with 1000 units per layer
- Full matrix G:
 \[(3 \times 1000^2)^2 = 9 \text{ trillion}\]
- Block diagonal:
 \[3 \times (1000^2)^2 = 3 \text{ trillion}\]
- Kronecker-factored ($\hat{G}_{\ell\ell} = A_{\ell-1} \otimes S_{\ell}$):
 \[3 \times (1000^2 + 1000^2) = 6 \text{ million}\]
Efficiently solving the linear system:

\[\hat{G}_{\ell\ell}^{-1}v_{\ell} = (A_{\ell-1} \otimes S_{\ell})^{-1} \text{vec}(\bar{V}_{\ell}) \]

\[= (A_{\ell-1}^{-1} \otimes S_{\ell}^{-1}) \text{vec}(\bar{V}_{\ell}) \]

\[= \text{vec}(S_{\ell}^{-1} \bar{V}_{\ell} A_{\ell-1}^{-1}). \]

This only requires computations with matrices that are approximately the same size as the weights.

Note: this update rule needs to be modified to approximate the *damped* update, \((\hat{G}_{\ell\ell} + \eta I)^{-1}v_{\ell} \). Details in the readings.
K-FAC: Estimating the Covariance Matrices

- Estimate the Kronecker factors \(\{A_\ell\} \) and \(\{S_\ell\} \) with exponential moving averages

\[
\hat{A}_\ell \leftarrow \eta \hat{A}_\ell + \frac{1 - \eta}{B} Y_\ell^\top Y_\ell
\]

\[
\hat{S}_\ell \leftarrow \eta \hat{S}_\ell + \frac{1 - \eta}{B} DZ_\ell^\top DZ_\ell,
\]

where \(Y \) and \(Z \) denote the matrices of activations and pre-activations for a batch.
Some things we left out:

- Adding momentum and iterate averaging (straightforward)
- Using exact MVPs on the current batch to choose step sizes automatically
- Automatically adapting damping hyperparameters
- More accurate approximations than layerwise independence
- Extensions to other architectures (conv nets, RNNs, etc.)
- Distributed implementation
K-FAC: Results

Logistic autoencoder

![Graph showing logistic autoencoder results]

RNN language model

![Graph showing RNN language model results]

ImageNet classifier CNN

![Graph showing ImageNet classifier CNN results]

FermiNET (Schrödinger Equation)

![Graph showing FermiNET results]

- Results are sometimes amazing, sometimes meh.