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Jacobian Matrix

o Let f:R™ — R" be differentiable at xg, and y = f(x).

e Taylor’s Theorem implies that f can be approximated by its
first-order Taylor approximation, or linearization:

f(x) = f(x0) + Jyx(x0)(x — %0) + o([|x — xol|),

or

Ay = JyxAx + o ||Ax]]).

o Jyx(x0) is the Jacobian matrix of f at xo:

0y;

aCCj X0

[Jyx(x0)]ij

Typically we drop the explicit argument and just write Jyy,
assuming it’s clear from context.
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Vector Form

Examples
@ Matrix-vector product

z = Wx Jzx =W
o Elementwise operations
exp(z1) 0

y=exp(z) Jyz= )
0 exp(zp)
o Note: we rarely explicitly construct the Jacobian. It’s usually
simpler and more efficient to directly compute matrix-vector

products.
Jyzv =exp(z)ov
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Jacobian Matrix

The gradient is an important special case.
If f:R™ — R, then J,x = (Vy(x)). (By convention, we treat
Vy(x) as a column vector.)

First-order Taylor approximation to a cost function J(w):

J(w) = T (wo) + VI (wo) " (W —wo) + o|w — wy))

Computed using backpropagation, or reverse mode autodiff.
Provided as jax.grad.

NNTD (UofT) CSC2541-Lec2 4/47



Jacobian Matrix

@ The directional derivative, or Gateaux derivative, or R-operator,
approximates the effect of a small perturbation to the input:

Ay = RAwf(W) + O(HAW”)7

where

R ) — i FO7 AW) — f(w)

=J,wA
h—0 h ywaWw

e Computed using forward mode autodiff. Provided as jax.jvp.
(JVP = Jacobian-vector product)
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Jacobian Matrix

e The Jacobian matrix can be very large. E.g., Jyw for a neural net

e So avoid representing it explicitly (except in the case of the
gradient). Instead, express your algorithm in terms of
Jacobian-vector products (JVPs) and vector-Jacobian products
(VIPs).

e JVPs compute Jv for a vector v. These are basically directional
derivatives (see previous slide).

o VJPs compute JTv. This is the building block of backprop (see
CSC2516 lectures on backprop & autodiff)

e JVPs and VJPs can both be computed in linear time using a
backprop-like algorithm.

o Rule-of-thumb: a JVP or VJP is between 1 and 2 times as
expensive as computing f(x).

o VJPs (i.e. backprop) requires storing intermediate activations in
memory. JVPs don’t require much memory.
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Jacobian Matrix

@ jax.grad is implemented behind the scenes as a VJP.
o VJ(w)=JT, so we compute a VJP with the length-1 vector (1).

e Simplified implementation:

def my_grad(f):
def grad_f(w):
ans, f_vjp = vjp(f, w)
return f_vjp(1.)[0]
return grad_f
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Jacobian Matrix

@ Perhaps the most elegant 3 lines of code I've ever seen:
implementing JVP using VJP.
e Observation: the Jacobian of the VJP function, g(v) = J v, is
just J 7.
e So we can compute Jv by calling a VJP on the VJP!
def my_jvp(f, w, R_w):
ans, f_vjp = vjp(f, w)

_, f_vjp_vjp = vjp(f_vjp, np.zeros_like(ans))
return f_vjp_vjp((R_w,)) [0]

e The catch: this implementation is only efficient in a framework
(like JAX) that aggressively optimizes the computations.
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(You know enough to do Problem 2.)
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Second-Order Taylor Approximations
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Hessian Matrix

o The Hessian matrix of a twice-differentiable function 7 at a point

wo is the matrix of second derivatives:

H(Wo) = V2J(WQ)
02T

Hijj = ——
J Owiwj W=W(

o H is symmetric because

02T 0*TJ

8wi8wj - 8wj8wi'

@ Second-order Taylor approximation to J:

J(w) = T (wo) + VI (wo) " (w — wo) +

+ 3(w — wo) TH(w — wo) + o(||w — wo %)
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Hessian Matrix

@ The Hessian measures the curvature of the function.

o The Rayleigh quotient v' Hv/||v||> measures how fast the
function curves up or down if you move in the direction v.
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Hessian Matrix

@ Recall: A symmetric matrix A is positive definite, written A > 0,
if v Av > 0 for any vector v # 0.

e Equivalently, all of A’s eigenvalues are positive.
e If the inequality isn’t necessarily strict, then A is positive
semidefinite (PSD), written A > 0.

e Recall: A function f is convex if:

TOwi+(1-Nwo) < AT (wi)+(1-NT(wo)  Ywo, wi, A € [0, 1].

. . . (x)

o A twice differentiable

functllon f is convex iff its A= fam|

Hessian H is PSD. +M ()
o If H > uI for some p, then

it is strongly convex with £ =Nz

+Azy)
parameter pu. T (1= Ao 1

+ Azy
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Hessian Matrix

Categorizing stationary points using the spectrum of H
e H positive definite: local minimum
e H negative definite: local maximum (this is unusual)

e H has positive and negative eigenvalues: saddle point (this is more
common)

H is PSD but some eigenvalues are 0: could be a maximum or
minimum (or neither)

NNTD (UofT) CSC2541-Lec2 14 /47




Gradient Descent Dynamics

@ Close to a stationary point w, we can understand the gradient
dynamics using the second-order Taylor approximation

T (W) = T(wW) + 3(w — w,) H(w — w,)

@ This reduces it to the quadratic case from Lecture 1. Gradient
descent equations (full and rotated/coordinatewise):

w® = w, + (I - aH)*(w® —w,)

@M = i+ (1= ahy)F (@ — ),
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Gradient Descent Dynamics: Local Minimum

\ \ \ \\

IR
i

e Stable if o < 2h 1

max
@ Speed of convergence along an eigendirection is proportional to Bj

e Note: Slower convergence in a low curvature direction isn’t
necessarily bad. This depends if it contains much signal.
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Gradient Descent Dynamics

<

o Gradient descent moves away from saddle points (and then the
second order approximation is no longer accurate)

e Saddle points generally aren’t a bottleneck in practice for neural
net training, with the exception of symmetric initializations

e Other optimizers (e.g. Newton’s method) can get stuck in saddles.
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Computing with the Hessian

@ The Hessian is huge, so we want to avoid constructing it explicitly.

o Instead, we write our algorithms in terms of Hessian-vector
products (HVPs). Le., compute Hv for a vector v.

e Key insight: defining g(w) = V7 (w), then H is just the
Jacobian of g.

This leads to an HVP implementation called forward-over-reverse:

def hvp(J, w, v):
return jvp(grad(J), (w,), (v,))[1]
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Estimating Hessian Eigenspectra

e What do Hessian spectra of neural nets look like in practice? This
is surprisingly hard to answer.

e Ghorbani et al. (2019) estimate eigenspectra using stochastic
Lanczos quadrature, an HVP-based algorithm similar to conjugate
gradient (covered later today)
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Figure 2: The evolution of the spectrum of a Resnet-32 in the beginning of training. After just 400
momentum steps, large negative eigenvalues disappear.

@ The catch: we don’t have fine-grained information about
eigenvalues close to 0, and it’s important to know how many
eigenvalues are small vs. extremely small.
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Example: Weak Symmetry Breaking in
Regularized Linear Autoencoders
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Example: Regularized Linear Autoencoders

o Using the Hessian to understand GD dynamics is only
mathematically justified near a (local) optimum, but it can
provide insight even when the Taylor approximation isn’t accurate.

o Linear networks are multilayer networks with the identity
activation function.

o They can only represent linear functions, so we can often determine
the optima analytically.

e But the GD dynamics are nonlinear, and share much in common
with nonlinear networks.

e Note: these networks are linear as a function of the inputs, not as a
function of the weights!
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Recap: Autoencoders

@ An autoencoder is a feed-forward neural net whose job it is to take

an input x and predict x.

o To make this non-trivial, we need to add a bottleneck layer whose

dimension is much smaller than the input.

reconstruction 784 units T

100 units

20 units

CSC2541-Lec2
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Recap: Linear Autoencoders and PCA

@ The simplest kind of autoencoder has one
hidden layer, linear activations, and squared
error loss.

)N( ‘ D units ‘
[}

U decoder

L(x,%) = [Ix — x|
K units
o This network computes X = UVx, which is a L)
Vv encoder

linear function.
o If K > D, we can choose U and V such that X ‘ D units ‘
UV is the identity. This isn’t very
interesting.
e But suppose K < D:
e V maps x to a K-dimensional space, so it’s doing dimensionality

reduction.
e The output must lie in a K-dimensional subspace, namely the

column space of U.
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Recap: Linear Autoencoders and PCA

e Review from CSC2515: linear
autoencoders with squared

error loss are equivalent to F .- ﬁ '- n HE
Principal Component Analysis ! ﬁ ! E E!
en. e S NER S

e Two equivalent formulations:

| AERETESE
e Find the subspace that Ei EE
minimizes the reconstruction E i E ﬁ a - s

erTor.
e Find the subspace that

maximizes the projected -

variance. 32 hemg -3
o The optimal subspace is g e m <
spanned by the dominant

. .. 73 nH 9
eigenvectors of the empirical Eigenfaces

covariance matrix.
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Example: Regularized Linear Autoencoders

o For simplicity, assume the inputs x(*) are already centered
(zero-mean).
e Encoder z = feono(x) = Wix and decoder X = fgec(z2) = Waz
@ Squared error cost function:
L5 (i) _ ()2
ﬁ ‘ HW2W1X — X H
i=1
e Previous argument shows that one optimal solution is W1 = U
and Wy = U, where columns of U are the top K principal
components
e But there’s a symmetry: for any invertible matrix A, we can
transform the solution as:

TA(Wl, Wg) = (AWl, WgAfl)

e Hence, we can only identify the principal subspace, not the
individual principal components.
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Example: Regularized Linear Autoencoders

o We can break the symmetry by adding a non-uniform /o
regularizer which penalizes some columns more heavily than
others:

N
1 7 7
oN D IIWoWix D — x@ )12 4 LIAYPW |7 + 3 WA Y27,
=1

where A is a diagonal matrix with increasing diagonal entries.

@ Intuition: want to allocate higher-variance directions to columns
with smaller penalties.

o Optimal solution:

Wi =P(I-AS~2)Y2UuT
5=U(I—AS?2)/?2p,
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Example: Regularized Linear Autoencoders

@ What happens when we try to optimize this using gradient

descent?
o JAX code given in the course readings

e We measure the angle between each column of W and the
corresponding principal component.

Cost
ok N w & u

2 o o
s 3 3

Angle (degrees)
N
3

4

Cost

800 1000

@
3

2 o
s &

N
S

Angle (degrees)

ok N W A u

20000

40000 60000

80000 100000

~—

[ 200

400 600
Iteration

800 1000

CSC2541-Lec2

o

0

20000

40000 60000
Iteration

80000 100000

27 /47



Example: Regularized Linear Autoencoders

e Can we explain this using the Hessian at the global optimum?

Hypothesis: rotation of the latent space corresponds to a
direction of low curvature.

o Recall: we can measure the curvature in a direction v using the
Rayleigh quotient v Hv/|v||%.

def rayleigh_quotient(J, w, v):
Hv = hvp(J, w, v)
return (Hv @ v) / (v @ v)

It’s a high dimensional space, so there are lots of directions we can
look at. How to choose?
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Example: Regularized Linear Autoencoders

@ Rescaling all the weights has a big effect on the reconstruction
error.
o Transformation group:

Ty(Wla W2) — (’lev ’VWQ)
@ Let v be the directional derivative with respect to this

transformation group at v = 1.

def rescale(w_flat, gamma):
Wi, W2 = unflatten(w_flat)
return flatten((gamma*Wl, gamma*W2))

_, v_scale = jvp(lambda g: rescale(w_flat_opt, g), (1,), (1,))

print(rayleigh_quotient(fobj, w_flat_opt, v_scale))

Output: 1.3586808
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Example: Regularized Linear Autoencoders

e Rotating the latent space doesn’t affect the reconstruction error,
and has a subtle effect on the regularizer.

e Transformation group:
175(‘A]1) ‘AZQ) = (Cze‘ﬁVjJ ‘NZQ(Q;I))

where Qg is a Givens rotation matrix which rotates the first 2
columns by € radians. Compute the directional derivate at 6 = 0.
def block_diag(A, B):
return np.vstack([np.hstack([A, np.zeros((A.shape[0], B.shape[1]))]),
np.hstack([np.zeros((B.shape[0], A.shape[1])), B1)])
def rotate(w_flat, theta):
Wi, W2 = unflatten(w_flat)
rot = np.array([[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)ll)
Q_theta = block_diag(rot, np.eye(K-2))
return flatten((Q_theta @ W1, W2 @ Q_theta.T))
_, v_rot = jvp(lambda th: rotate(w_flat_opt, th), (0,), (1,))

print(rayleigh_quotient(fobj, w_flat_opt, v_rot))

Output: 0.00041926137
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Example: Regularized Linear Autoencoders

@ So the curvature in the “rotation direction” is about 3000 times
smaller than the curvature in the “scaling direction”!

e Visualization of the cost landscape (Bao et al., 2020):

e global minima
non_uniform
« rotation
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Gauss-Newton Hessian
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Gauss-Newton Hessian

e Some problems with the Hessian
e Not necessarily PSD

o Newton’s method can get stuck at saddle points (Lecture 4)
o Solving linear systems with conjugate gradient requires PSD (later
today)

o Requires second derivatives of the activation function (problematic
for ReLU, etc.)

o The Gauss-Newton Hessian is an approximation which is always
PSD, and is often accurate in practice
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Gauss-Newton Hessian

o Let z = f(w, x) denote the network’s function and £ the output
space loss function

e z = outputs for regression, logits for classification (important!)
e L = squared error for regression, softmax-cross-entropy for
classification

@ Decomposition of the Hessian:
ngx t(w) = JT H,J,w + Z %VQ [f(X W)]a
) VAYA - 8za w 9 )

where H, = V2L£(z,t) is the output Hessian.

o The Gauss-Newton Hessian, or generalized Gauss-newton (GGN)
matrix, drops the second term (which empirically seems to be
small in practice):

G=J] H,J,w
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Gauss-Newton Hessian

e Another way to understand this approximation is that we linearize
the network around the current weights:

flin(Wlax) = f(W,X) =+ Jyw(wl - W)

image of the
/| mapping z = (t

contours of
the loss L(z)

The Hessian decomposes as
the sum of two terms

quadratic linear
approximation approximation
toL - tolL
linear drat
approximation < quadra \9
tof = | approximation
~ - - - tof
Tom 1: dz " L dz L A2z,
AT Tem2: 30
This is the GGN matrix, which This term may have negative
is always positive semidefinite. eigenvalues. It vanishes if

zis at the optimum.

NNTD (Uof CSC2541-Lec2 35 /47



Gauss-Newton Hessian

G=J] H,J,w

e Why G is PSD
o Typical output space losses (e.g. squared error,
softmax-cross-entropy) are convex, so H, is PSD
o If A is a symmetric PSD matrix, then BAB' is symmetric and
PSD for any matrix B
@ Only requires first derivatives of the network function, therefore it
only requires first derivatives of ReLLU
o We're generally willing to take first derivatives of ReLU, but not
second derivatives
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Gauss-Newton Hessian

MYVP Implementation:

Gv=1J] H,J,,v

def gnhvp(f, L, w, v):
z, Rz = jvp(f, (w,), (v,))
R_gz = hvp(L, z, R_z)
_, T_vjp = vjp(£, w)
return f_vjp(R_gz) [0]

Exercise: can you make this more efficient?
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Gauss-Newton Hessian

Some gotchas:

@ The term Gauss-Newton matrix is sometimes used to refer to the
special case of squared error.
e Then H, =1,s0 G = JZWJZTW
o It still makes sense to use this matrix even for other loss functions.
We'll see why in Lecture 3.
e For classification, it’s important to define the outputs as the logits,
not the probabilities. (More insight into this in Lecture 3.)
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Solving Linear Systems with
Conjugate Gradient
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Solving Linear Systems

e MVPs seem pretty limiting, but scientific computing has produced

many powerful algorithms that exploit them.
e How to solve a linear system Ax =b? (A = H, G, etc.)

e Option 1: Construct A explicitly and solve the dense linear
system. Only practical for small toy examples.
o Option 2: (if A is PSD) Gradient descent on
Jx)=1ix"Ax-b'x
o Only requires MVPs:
xR a(Ax —b)
e But we need to choose «, and it converges slowly along smaller
eigendirections (see Lecture 1)
e Can we do better?
e Conjugate gradient is a powerful algorithm that uses MVPs to
minimize
J(x) = %XTAX ~b'x
for PSD A.
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Conjugate Gradient

Consider the Krylov subspace:

Kir(A,r) = span{r, Ar,..., AF"1r}

If x € Kx(A,b), then VT (x) = Ax — b € Kr11(A,b).
Therefore, for any iterative algorithm initialized at x = 0 which
computes at most 1 gradient per iteration (e.g. GD, GD with
momentum), the k" iteration is contained in Kr(A,b).

o Hence,

(k)y > i .
Tz o T ™)
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Conjugate Gradient

e Conjugate gradient is an iterative algorithm with the property
that:

x*) = argmin J(x).
x€K5(A,b)

@ Amazingly, it does this using only 1 MVP per iteration, plus cheap
operations like dot products and linear combinations, with small
constant factor memory overhead.

o Therefore, it achieves the optimal convergence rate among all
algorithms based on MVPs and linear combinations!

o We showed in Lecture 1 that SGD requires O(k) iterations to
reach a given error. It can be shown that CG requires O(v/k).

e For more details, see “Conjugate Gradient Without the Agonizing
Pain,” by Shewchuk.
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Conjugate Gradient

From the user’s perspective:

def approx_solve(A_mvp, b, niter):
dim = b.size
A_linop = scipy.sparse.linalg.LinearOperator((dim,dim), matvec=A_mvp)
res = scipy.sparse.linalg.cg(A_linop, b, maxiter=niter)
return res[0]

Good idea to use 64-bit floats for numerical stability (at least for
debugging):

from jax.config import config
config.update('jax_enable_x64', True)
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Example: Sensitivity to Dataset Perturbations
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Sensitivity Analysis

@ Suppose we’ve trained a network and we want to know how the
optimal weights would change if we slightly perturbed the training
set.

e E.g. influence functions: how would the predictions change if we
removed data point 7

o identifying mislabeled data

o data poisoning attacks: attacker adds/modifies a training example
so as to induce a particular misclassification

o Consider the response function, or rational reaction function

w, = r(6) = argmin J (w; )

@ The implicit function theorem (IFT) guarantees such a function
exists under certain conditions we won’t worry about

@ To predict the effect of a small perturbation to 8, we are intereted
in the response Jacobian, or reaction Jacobian:

_dr

~de
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Sensitivity Analysis

e Formula for the response Jacobian:

d _
| d% — — [V2T(w;0)] ' V2T (w;6)

@ To check that this is at least reasonable:

175
150
125

100

75 1
50
25

0.0

I
3 2 -1 0 1 2 3

-25

J(w; A) = g(w) + Aw for A =0 and
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Sensitivity Analysis

e We can implement the formula for Jy, g just like the other

examples in this lecture, solving the linear system with CG. (Full
code given in the readings.)

gy~
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