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Jacobian Matrix

Let f : Rm → Rn be differentiable at x0, and y = f(x).

Taylor’s Theorem implies that f can be approximated by its
first-order Taylor approximation, or linearization:

f(x) = f(x0) + Jyx(x0)(x− x0) + o(‖x− x0‖),

or
∆y = Jyx∆x + o(‖∆x‖).

Jyx(x0) is the Jacobian matrix of f at x0:

[Jyx(x0)]ij =
∂yi
∂xj

∣∣∣
x0

Typically we drop the explicit argument and just write Jyx,
assuming it’s clear from context.
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Vector Form

Examples

Matrix-vector product

z = Wx Jzx = W

Elementwise operations

y = exp(z) Jyz =

exp(z1) 0

. . .

0 exp(zD)


Note: we rarely explicitly construct the Jacobian. It’s usually
simpler and more efficient to directly compute matrix-vector
products.

Jyzv = exp(z) ◦ v
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Jacobian Matrix

The gradient is an important special case.

If f : Rm → R, then Jyx = (∇y(x))>. (By convention, we treat
∇y(x) as a column vector.)

First-order Taylor approximation to a cost function J (w):

J (w) = J (w0) +∇J (w0)>(w −w0) + o(‖w −w0‖)

Computed using backpropagation, or reverse mode autodiff.
Provided as jax.grad.
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Jacobian Matrix

The directional derivative, or Gateaux derivative, or R-operator,
approximates the effect of a small perturbation to the input:

∆y = R∆wf(w) + o(‖∆w‖),

where

R∆wf(w) = lim
h→0

f(w + ∆w)− f(w)

h
= Jyw∆w

Computed using forward mode autodiff. Provided as jax.jvp.
(JVP = Jacobian-vector product)
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Jacobian Matrix

The Jacobian matrix can be very large. E.g., Jyw for a neural net

So avoid representing it explicitly (except in the case of the
gradient). Instead, express your algorithm in terms of
Jacobian-vector products (JVPs) and vector-Jacobian products
(VJPs).

JVPs compute Jv for a vector v. These are basically directional
derivatives (see previous slide).
VJPs compute J>v. This is the building block of backprop (see
CSC2516 lectures on backprop & autodiff)

JVPs and VJPs can both be computed in linear time using a
backprop-like algorithm.

Rule-of-thumb: a JVP or VJP is between 1 and 2 times as
expensive as computing f(x).
VJPs (i.e. backprop) requires storing intermediate activations in
memory. JVPs don’t require much memory.
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Jacobian Matrix

jax.grad is implemented behind the scenes as a VJP.

∇J (w) = J>, so we compute a VJP with the length-1 vector (1).

Simplified implementation:

def my_grad(f):

def grad_f(w):

ans, f_vjp = vjp(f, w)

return f_vjp(1.)[0]

return grad_f
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Jacobian Matrix

Perhaps the most elegant 3 lines of code I’ve ever seen:
implementing JVP using VJP.

Observation: the Jacobian of the VJP function, g(v) = J>v, is
just J>.

So we can compute Jv by calling a VJP on the VJP!

def my_jvp(f, w, R_w):

ans, f_vjp = vjp(f, w)

_, f_vjp_vjp = vjp(f_vjp, np.zeros_like(ans))

return f_vjp_vjp((R_w,))[0]

The catch: this implementation is only efficient in a framework
(like JAX) that aggressively optimizes the computations.
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(You know enough to do Problem 2.)
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Second-Order Taylor Approximations
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Hessian Matrix

The Hessian matrix of a twice-differentiable function J at a point
w0 is the matrix of second derivatives:

H(w0) = ∇2J (w0)

Hij =
∂2J
∂wiwj

∣∣∣
w=w0

H is symmetric because

∂2J
∂wi∂wj

=
∂2J

∂wj∂wi
.

Second-order Taylor approximation to J :

J (w) = J (w0) +∇J (w0)>(w −w0) +

+ 1
2(w −w0)>H(w −w0) + o(‖w −w0‖2)
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Hessian Matrix

The Hessian measures the curvature of the function.

The Rayleigh quotient v>Hv/‖v‖2 measures how fast the
function curves up or down if you move in the direction v.
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Hessian Matrix

Recall: A symmetric matrix A is positive definite, written A � 0,
if v>Av > 0 for any vector v 6= 0.

Equivalently, all of A’s eigenvalues are positive.
If the inequality isn’t necessarily strict, then A is positive
semidefinite (PSD), written A � 0.

Recall: A function f is convex if:

J (λw1+(1−λ)w0) ≤ λJ (w1)+(1−λ)J (w0) ∀w0,w1, λ ∈ [0, 1].

A twice differentiable
function f is convex iff its
Hessian H is PSD.

If H � µI for some µ, then
it is strongly convex with
parameter µ.
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Hessian Matrix

Categorizing stationary points using the spectrum of H

H positive definite: local minimum

H negative definite: local maximum (this is unusual)

H has positive and negative eigenvalues: saddle point (this is more
common)

H is PSD but some eigenvalues are 0: could be a maximum or
minimum (or neither)
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Gradient Descent Dynamics

Close to a stationary point w? we can understand the gradient
dynamics using the second-order Taylor approximation

J (w) ≈ J (w?) + 1
2(w −w?)

>H(w −w?)

This reduces it to the quadratic case from Lecture 1. Gradient
descent equations (full and rotated/coordinatewise):

w(k) = w? + (I− αH)k(w(0) −w?)

w̃
(k)
i = w̃i? + (1− αh̃i)k(w̃(0)

i − w̃i?),
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Gradient Descent Dynamics: Local Minimum

Stable if α < 2h̃−1
max

Speed of convergence along an eigendirection is proportional to h̃j
Note: Slower convergence in a low curvature direction isn’t
necessarily bad. This depends if it contains much signal.
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Gradient Descent Dynamics

Gradient descent moves away from saddle points (and then the
second order approximation is no longer accurate)

Saddle points generally aren’t a bottleneck in practice for neural
net training, with the exception of symmetric initializations

Other optimizers (e.g. Newton’s method) can get stuck in saddles.
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Computing with the Hessian

The Hessian is huge, so we want to avoid constructing it explicitly.

Instead, we write our algorithms in terms of Hessian-vector
products (HVPs). I.e., compute Hv for a vector v.

Key insight: defining g(w) = ∇J (w), then H is just the
Jacobian of g.

This leads to an HVP implementation called forward-over-reverse:

def hvp(J, w, v):

return jvp(grad(J), (w,), (v,))[1]
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Estimating Hessian Eigenspectra

What do Hessian spectra of neural nets look like in practice? This
is surprisingly hard to answer.

Ghorbani et al. (2019) estimate eigenspectra using stochastic
Lanczos quadrature, an HVP-based algorithm similar to conjugate
gradient (covered later today)

The catch: we don’t have fine-grained information about
eigenvalues close to 0, and it’s important to know how many
eigenvalues are small vs. extremely small.
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Example: Weak Symmetry Breaking in
Regularized Linear Autoencoders
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Example: Regularized Linear Autoencoders

Using the Hessian to understand GD dynamics is only
mathematically justified near a (local) optimum, but it can
provide insight even when the Taylor approximation isn’t accurate.

Linear networks are multilayer networks with the identity
activation function.

They can only represent linear functions, so we can often determine
the optima analytically.
But the GD dynamics are nonlinear, and share much in common
with nonlinear networks.
Note: these networks are linear as a function of the inputs, not as a
function of the weights!
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Recap: Autoencoders

An autoencoder is a feed-forward neural net whose job it is to take
an input x and predict x.

To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.
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Recap: Linear Autoencoders and PCA

The simplest kind of autoencoder has one
hidden layer, linear activations, and squared
error loss.

L(x, x̃) = ‖x− x̃‖2

This network computes x̃ = UVx, which is a
linear function.

If K ≥ D, we can choose U and V such that
UV is the identity. This isn’t very
interesting.
But suppose K < D:

V maps x to a K-dimensional space, so it’s doing dimensionality
reduction.
The output must lie in a K-dimensional subspace, namely the
column space of U.
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Recap: Linear Autoencoders and PCA

Review from CSC2515: linear
autoencoders with squared
error loss are equivalent to
Principal Component Analysis
(PCA).

Two equivalent formulations:

Find the subspace that
minimizes the reconstruction
error.
Find the subspace that
maximizes the projected
variance.

The optimal subspace is
spanned by the dominant
eigenvectors of the empirical
covariance matrix.

“Eigenfaces”
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Example: Regularized Linear Autoencoders

For simplicity, assume the inputs x(i) are already centered
(zero-mean).

Encoder z = fenc(x) = W1x and decoder x̂ = fdec(z) = W2z

Squared error cost function:

1

2N

N∑
i=1

‖W2W1x
(i) − x(i)‖2

Previous argument shows that one optimal solution is W1 = U>

and W2 = U, where columns of U are the top K principal
components

But there’s a symmetry: for any invertible matrix A, we can
transform the solution as:

TA(W1,W2) = (AW1,W2A
−1)

Hence, we can only identify the principal subspace, not the
individual principal components.
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Example: Regularized Linear Autoencoders

We can break the symmetry by adding a non-uniform `2
regularizer which penalizes some columns more heavily than
others:

1

2N

N∑
i=1

‖W2W1x
(i) − x(i)‖2 + 1

2‖Λ
1/2W1‖2F + 1

2‖W2Λ
1/2‖2F ,

where Λ is a diagonal matrix with increasing diagonal entries.

Intuition: want to allocate higher-variance directions to columns
with smaller penalties.

Optimal solution:

W?
1 = P(I−ΛS−2)1/2U>

W?
2 = U(I−ΛS−2)1/2P,
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Example: Regularized Linear Autoencoders

What happens when we try to optimize this using gradient
descent?

JAX code given in the course readings

We measure the angle between each column of W1 and the
corresponding principal component.
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Example: Regularized Linear Autoencoders

Can we explain this using the Hessian at the global optimum?

Hypothesis: rotation of the latent space corresponds to a
direction of low curvature.

Recall: we can measure the curvature in a direction v using the
Rayleigh quotient v>Hv/‖v‖2.

def rayleigh_quotient(J, w, v):

Hv = hvp(J, w, v)

return (Hv @ v) / (v @ v)

It’s a high dimensional space, so there are lots of directions we can
look at. How to choose?
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Example: Regularized Linear Autoencoders

Rescaling all the weights has a big effect on the reconstruction
error.

Transformation group:

Tγ(W1,W2) = (γW1, γW2)

Let v be the directional derivative with respect to this
transformation group at γ = 1.

def rescale(w_flat, gamma):

W1, W2 = unflatten(w_flat)

return flatten((gamma*W1, gamma*W2))

_, v_scale = jvp(lambda g: rescale(w_flat_opt, g), (1,), (1,))

print(rayleigh_quotient(fobj, w_flat_opt, v_scale))

Output: 1.3586808
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Example: Regularized Linear Autoencoders

Rotating the latent space doesn’t affect the reconstruction error,
and has a subtle effect on the regularizer.

Transformation group:

Tθ(W1,W2) = (QθW1,W2Q
>
θ ),

where Qθ is a Givens rotation matrix which rotates the first 2
columns by θ radians. Compute the directional derivate at θ = 0.
def block_diag(A, B):

return np.vstack([np.hstack([A, np.zeros((A.shape[0], B.shape[1]))]),

np.hstack([np.zeros((B.shape[0], A.shape[1])), B])])

def rotate(w_flat, theta):

W1, W2 = unflatten(w_flat)

rot = np.array([[np.cos(theta), -np.sin(theta)],

[np.sin(theta), np.cos(theta)]])

Q_theta = block_diag(rot, np.eye(K-2))

return flatten((Q_theta @ W1, W2 @ Q_theta.T))

_, v_rot = jvp(lambda th: rotate(w_flat_opt, th), (0,), (1,))

print(rayleigh_quotient(fobj, w_flat_opt, v_rot))

Output: 0.00041926137

NNTD (UofT) CSC2541-Lec2 30 / 47



Example: Regularized Linear Autoencoders

So the curvature in the “rotation direction” is about 3000 times
smaller than the curvature in the “scaling direction”!

Visualization of the cost landscape (Bao et al., 2020):
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Gauss-Newton Hessian
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Gauss-Newton Hessian

Some problems with the Hessian
Not necessarily PSD

Newton’s method can get stuck at saddle points (Lecture 4)
Solving linear systems with conjugate gradient requires PSD (later
today)

Requires second derivatives of the activation function (problematic
for ReLU, etc.)

The Gauss-Newton Hessian is an approximation which is always
PSD, and is often accurate in practice
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Gauss-Newton Hessian

Let z = f(w,x) denote the network’s function and L the output
space loss function

z = outputs for regression, logits for classification (important!)
L = squared error for regression, softmax-cross-entropy for
classification

Decomposition of the Hessian:

∇2Jx,t(w) = J>zwHzJzw +
∑
a

∂L
∂za
∇2

w[f(x,w)]a,

where Hz = ∇2
zL(z, t) is the output Hessian.

The Gauss-Newton Hessian, or generalized Gauss-newton (GGN)
matrix, drops the second term (which empirically seems to be
small in practice):

G = J>zwHzJzw
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Gauss-Newton Hessian

Another way to understand this approximation is that we linearize
the network around the current weights:

flin(w′,x) = f(w,x) + Jyw(w′ −w)
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Gauss-Newton Hessian

G = J>zwHzJzw

Why G is PSD

Typical output space losses (e.g. squared error,
softmax-cross-entropy) are convex, so Hz is PSD
If A is a symmetric PSD matrix, then BAB> is symmetric and
PSD for any matrix B

Only requires first derivatives of the network function, therefore it
only requires first derivatives of ReLU

We’re generally willing to take first derivatives of ReLU, but not
second derivatives
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Gauss-Newton Hessian

MVP Implementation:

Gv = J>zwHzJzwv

def gnhvp(f, L, w, v):

z, R_z = jvp(f, (w,), (v,))

R_gz = hvp(L, z, R_z)

_, f_vjp = vjp(f, w)

return f_vjp(R_gz)[0]

Exercise: can you make this more efficient?
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Gauss-Newton Hessian

Some gotchas:

The term Gauss-Newton matrix is sometimes used to refer to the
special case of squared error.

Then Hz = I, so G = JzwJ>
zw

It still makes sense to use this matrix even for other loss functions.
We’ll see why in Lecture 3.

For classification, it’s important to define the outputs as the logits,
not the probabilities. (More insight into this in Lecture 3.)

NNTD (UofT) CSC2541-Lec2 38 / 47



Solving Linear Systems with
Conjugate Gradient

NNTD (UofT) CSC2541-Lec2 39 / 47



Solving Linear Systems

MVPs seem pretty limiting, but scientific computing has produced
many powerful algorithms that exploit them.

How to solve a linear system Ax = b? (A = H,G, etc.)
Option 1: Construct A explicitly and solve the dense linear
system. Only practical for small toy examples.
Option 2: (if A is PSD) Gradient descent on
J (x) = 1

2x>Ax− b>x

Only requires MVPs:

x(k+1) ← x(k) − α(Ax− b)

But we need to choose α, and it converges slowly along smaller
eigendirections (see Lecture 1)

Can we do better?

Conjugate gradient is a powerful algorithm that uses MVPs to
minimize

J (x) = 1
2x>Ax− b>x

for PSD A.
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Conjugate Gradient

Consider the Krylov subspace:

Kk(A, r) = span{r,Ar, . . . ,Ak−1r}

If x ∈ Kk(A,b), then ∇J (x) = Ax− b ∈ Kk+1(A,b).

Therefore, for any iterative algorithm initialized at x = 0 which
computes at most 1 gradient per iteration (e.g. GD, GD with
momentum), the kth iteration is contained in Kk(A,b).

Hence,
J (x(k)) ≥ min

x∈Kk(A,b)
J (x).
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Conjugate Gradient

Conjugate gradient is an iterative algorithm with the property
that:

x(k) = arg min
x∈Kk(A,b)

J (x).

Amazingly, it does this using only 1 MVP per iteration, plus cheap
operations like dot products and linear combinations, with small
constant factor memory overhead.

Therefore, it achieves the optimal convergence rate among all
algorithms based on MVPs and linear combinations!

We showed in Lecture 1 that SGD requires O(κ) iterations to
reach a given error. It can be shown that CG requires O(

√
κ).

For more details, see “Conjugate Gradient Without the Agonizing
Pain,” by Shewchuk.
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Conjugate Gradient

From the user’s perspective:

def approx_solve(A_mvp, b, niter):

dim = b.size

A_linop = scipy.sparse.linalg.LinearOperator((dim,dim), matvec=A_mvp)

res = scipy.sparse.linalg.cg(A_linop, b, maxiter=niter)

return res[0]

Good idea to use 64-bit floats for numerical stability (at least for
debugging):

from jax.config import config

config.update('jax_enable_x64', True)
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Example: Sensitivity to Dataset Perturbations
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Sensitivity Analysis

Suppose we’ve trained a network and we want to know how the
optimal weights would change if we slightly perturbed the training
set.

E.g. influence functions: how would the predictions change if we
removed data point i?
identifying mislabeled data
data poisoning attacks: attacker adds/modifies a training example
so as to induce a particular misclassification

Consider the response function, or rational reaction function

w? = r(θ) = arg min
w

J (w;θ)

The implicit function theorem (IFT) guarantees such a function
exists under certain conditions we won’t worry about
To predict the effect of a small perturbation to θ, we are intereted
in the response Jacobian, or reaction Jacobian:

Jw?θ =
dr

dθ

NNTD (UofT) CSC2541-Lec2 45 / 47



Sensitivity Analysis

Formula for the response Jacobian:

Jw?θ =
dr

dθ
= −

[
∇2

wJ (w;θ)
]−1∇2

wθJ (w;θ)

To check that this is at least reasonable:

J (w;λ) = g(w) + λw for λ = 0 and λ = 3
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Sensitivity Analysis

We can implement the formula for Jw?θ just like the other
examples in this lecture, solving the linear system with CG. (Full
code given in the readings.)
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