
CSC 2541: Neural Net Training Dynamics
Lecture 1 - A Toy Model: Linear Regression

Roger Grosse

University of Toronto, Winter 2021

NNTD (UofT) CSC2541-Lec1 1 / 62



Introduction

Neural nets are everywhere:
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Introduction

But how do they work?

Some things (most) machine learning researchers believed 10 years
ago:

It’s hard to optimize nonconvex functions.
It’s hard to train neural nets with more than 2 layers.
If you have way more parameters than data points, you’ll overfit.
Regularization and optimization can be studied separately.
Your learning algorithm and feature representation need to be
carefully designed for a particular application.

Our experience from the last 10 years has turned each of these
claims on its head — and we are just beginning to understand why!
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Introduction
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Introduction
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Introduction

Hinton and Salakhutdinov, 2006
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Introduction

But here are the training curves for an image classifier with
millions of parameters:

He et al., 2016

I could have picked basically any modern example!

Generic optimization routines (only a few lines of code!)
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Introduction
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Introduction

But this image classification network is able to generalize well even
though it can fit random labels:

Zhang et al., 2017

So capacity constraints are not necessary for generalization.
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Introduction

E.g., weight decay was understood as implementing Tikhonov
regularization, a well-understood concept from statistics.

w← w − α ∂

∂w

(
J +

λ

2
λ‖w‖2

)
= (1− αλ)w − α∂J

∂w
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Introduction

This analysis predicts that if you change the optimization
algorithm, you should keep the same objective function (with the
‖w‖2 penalty).

But for various optimization algorithms, it works much better to
literally apply weight decay, even though this appears to be
optimizing a different function!

Loschilov and Hutter, 2019
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Introduction

Also, for overparameterized models, different optimization
algorithms can converge to different optimal solutions.

This is a type of implicit regularization.

Amari et al., 2020
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Introduction

Common theme: need to understand the training dynamics

If you’re minimizing a (strongly) convex function, you only have to
understand the properties of the unique global optimum.
Neural net training is nonconvex, so we could wind up at various
local optima depending on the path the optimizer takes
Also, most modern nets are overparameterized, so there are
(infinitely) many different global optimal we could wind up at.
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This Course
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This Course

Course staff

Instructor: Roger Grosse

TAs: Juhan Bae, Jenny Bao, and Stephan Rabanser

Course web page:

https://www.cs.toronto.edu/~rgrosse/courses/csc2541_2022/
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This Course

Topics

Weeks 1–4: Foundational concepts

Today: Linear regression as a toy model
Week 2: Taylor approximations (Jacobian-vector products,
Hessians, etc.)
Week 3: Metrics (function space distance, natural gradient)
Week 4: Second-order optimization

Weeks 5–9: Understanding neural net training

Weeks 10–12: Game dynamics and bilevel optimization
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This Course

Topics

Weeks 1–4: Foundational concepts

Weeks 5–9: Understanding neural net training

Week 5: Adaptive gradient methods, normalization, weight decay
Week 6: Infinite limits (neural tangent kernel, infinite depth)
Week 7: Stochasticity
Week 8: Implicit regularization
Week 9: Momentum

Weeks 10–12: Game dynamics and bilevel optimization
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This Course

Topics

Weeks 1–4: Foundational concepts

Weeks 5–9: Understanding neural net training

Weeks 10–12: Game dynamics and bilevel optimization

Week 10: Differential games and minmax optimization
(e.g. GANs)
Weeks 11–12: Bilevel optimization (e.g. MAML, hyperparameter
adaptation)
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This Course

Prerequisites

Linear algebra

Probability theory

Multivariable calculus

A course in machine learning (e.g. CSC2515)

A course in neural nets (e.g. CSC2516) is useful but not required.

You only need to know the very basics of neural nets to follow the
lectures.
You may want to read the CSC2516 materials for
tasks/architectures you’re using for your final project.
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This Course: Coursework

Marking scheme:

25% Two problem sets (due 2/9 and 3/2)

15% Colab notebook (due 3/30)

10% Final project proposal (due 2/16)

50% Final project report (due 4/13)
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This Course: Coursework

Colab notebook and paper presentation

Form groups of 2–3

Pick a paper from the spreadsheet (posted to Quercus)

Create a Colab notebook that illustrates at least one of the key
ideas from the paper.

See the course website for lots of examples from last year.

The sign-up sheet will be posted once the enrollment list is finalized.
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This Course: Coursework

Final project

Form groups of 2–3

Carry out a small research project related to the course content,
e.g.

invent a new algorithm/architecture
explain a phenomenon
apply the techniques to make a DL system work better
test the course ideas in new settings (e.g. transformers, graph neural
nets, generative models, etc.)

Project proposal (due 2/16): main purpose is for us to give you
feedback on your project

Final report (due 4/13): conference paper style, about 8 pages

See website for more details
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This Course: Software

For software, we’ll use JAX, a deep learning framework for Python

Newer than TensorFlow/PyTorch, so maybe still some rough edges

Advantages

Clean, NumPy-like API
Excellent support for forward derivatives and higher-order
derivatives
Functional style, user maintains state explicitly. Avoids lots of
potential bugs (especially random number generation).
Easily target TPU architectures.
Parallelize/vectorize your code with pmap/vmap
Fun to program in

JAX tutorial today, right after this lecture, same Zoom meeting

You’re welcome to use whatever framework you like for the final
project.
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Gradient Descent for Linear Regression
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Recap: Linear Regression

Linear regression assumes a linear model with parameters w, b.

y = f(x,w) = w>φ(x) + b

Loss function penalizes the squared error from the true label:

L(y, t) = 1
2‖y − t‖

2

Given a finite training set {(x(i), t(i))}Ni=1

The cost function is the mean of the losses over all training examples:

J (w) =
1

N

N∑
i=1

L(f(x(i),w), t(i))

Simplifying the notation with a homogeneous coordinate:

Φ̆(x) =

(
Φ(x)

1

)
w̆ =

(
w
b

)
In vectorized form, this is a quadratic cost function:

J (w) = 1
2N ‖Φ̆w̆ − t‖2

NNTD (UofT) CSC2541-Lec1 25 / 62



Recap: Gradient Descent

Gradient descent update rule:

w(k+1) ← w(k) − α∇wJ (w(k)) (1)

It’s a local search algorithm, so in general it can get stuck in local
optima. But linear regression is a convex optimization problem, so
for a small enough learning rate, it will converge to a global
optimum.

We can exactly analyze the dynamics of gradient descent for
convex quadratics, gaining a lot of insight:

J (w) = 1
2w>Aw + b>w + c,

where A is symmetric

Gradient descent update:

w(k+1) ← w(k) − α(Aw + b)
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Gradient Descent: Some Observations

Perhaps the first question to ask about an iterative algorithm:
what are its fixed points? I.e., for what values of w(k) does
w(k+1) = w(k)?

For gradient descent on a differentiable function, the fixed points
are the stationary points of J :

w = w − α∇J (w) ⇐⇒ ∇J (w) = 0

In general, fixed points may be stable (e.g. local optima) or
unstable (e.g. saddle points). Linear regression is convex, so all
fixed points are stable.

For a convex quadratic:

∇J (w) = Aw + b = 0 ⇐⇒ Aw = −b

When does this have a solution? A unique solution?
If the solution isn’t unique, where we end up depends on the
initialization!
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Gradient Descent: Some Observations

Another important question: what are the algorithm’s invariances?

Claim: gradient descent is invariant to rigid transformations
(rotation, reflection, translation)

We often informally call this rotation invariance

Can you give me an example of an optimization algorithm which
isn’t rotation invariant?
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Gradient Descent: Invariance

Rigid transformations can be written as:

w̃ = T (w) = Q>(w(0) − t)

for orthogonal Q

Inverse transformation:

w = T −1(w̃) = Qw̃ + t

This is a reparameterization, or change-of-basis. The cost function
can be re-expressed in the new coordinate system:

J̃ (w̃) = J (T −1(w̃)) = J (Qw̃ + t).

Want to show that gradient descent in both coordinate systems
results in equivalent trajectories.

Mathematically: initialize w̃(0) = T (w(0)). Want to show that

w̃(k) = T (w(k)) for all k.
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Gradient Descent: Invariance

Proof by Induction:

Base case: covered by initialization,

w̃(0) = T (w(0))

Inductive step: assuming w̃(k) = T (w(k)),

w̃(k+1) = w̃(k) − α∇J̃ (w̃(k))

= w̃(k) − αQ>∇J (w(k))

= Q>(w(k) − t)− αQ>∇J (w(k))

= T (w(k+1))
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Gradient Descent: Invariance

Because of rotation invariance, we are free to rotate to another
coordinate system where the dynamics are easier to analyze.

Recall the Spectral Decomposition of symmetric matrices:

A = QDQ>,

where Q is an orthogonal matrix whose columns are the
eigenvectors of A, and D is a diagonal matrix whose diagonal
entries are the eigenvalues.

w̃ = T (w) = Q>w is a very convenient coordinate system to
rotate to because Ã = Q>AQ is diagonal!
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Gradient Descent: Invariance

A shorthand: we may assume without loss of generality
(WLOG) that [property P].

Translation: The problem can be transformed to an equivalent
one where P holds.

E.g.,

When analyzing gradient descent, we may assume WLOG that A is
diagonal, because the algorithm is rotation invariant.
When analyzing Adam or coordinate descent, we can’t assume this,
since the algorithims aren’t rotation invariant.
We can’t assume WLOG that matrices A and B are both diagonal,
since diagonalizing A fixes a rotation.
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Gradient Descent: Coordinatewise Dynamics

If Ã is diagonal, then each coordinate evolves independently as:

w̃
(k+1)
j ← w̃

(k)
j − α(ãjw̃

(k)
j + b̃j).

We can analyze this into different cases.

Case 1: ãj > 0

Unique fixed point given by

w̃?j = −b̃j/ãj

Solving the recurrence:

w̃
(k)
j = w̃?j + (1− αãj)k(w̃

(0)
j − w̃?j).

Case 1(a): 0 < αãj < 2. Iterates converge exponentially to w̃?j .

Converges monotonically if 0 < αãj < 1, oscillates if 1 < αãj < 2.

Case 1(b): αãj = 2. Iterates oscillate and never converge.
Case 1(c): αãj > 2. Iterates diverge exponentially.
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Gradient Descent: Coordinatewise Dynamics

Case 2: ãj = 0 and b̃j 6= 0. Recurrence is solved by

w̃
(k)
j = w̃

(0)
j − αkb̃j ,

so iterates diverge linearly.

Case 3: ãj = 0 and b̃j = 0. Then w̃j is never updated, so

w̃
(k)
j = w̃

(0)
j for all k.
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Gradient Descent: Coordinatewise Dynamics
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Gradient Descent

Summarizing all the above analysis into an equation:

w(k) = w(∞) + (I− αA)k(w(0) −w(∞))

The stationary solution w(∞) is, among all min-cost solutions, the
one closest to the initialization.

I.e., it is the projection of w(0) onto the min-cost subspace:

w(∞) = arg min
w

‖w −w(0)‖2 s.t. w ∈ arg min
w′

J (w′),
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Gradient Descent: Stationary Solution

A† denotes the pseudo-inverse of A:

A† = QD†Q>,

where QD†Q> is the spectral decomposition, and D† is a diagonal
matrix that inverts the nonzero diagonal entries of D.

A† = A−1 if A is invertible.
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Gradient Descent: Stationary Solution

Closed form for the stationary solution starting from w(0) = 0:

w(∞) = −A†b

For a matrix B, the pseudoinverse is defined as:

B† = VS†U>,

where USV> is the SVD of B, and S† is defined like D†.

This can be written as
B† = (B>B)−1B>

if (B>B)−1 is invertible.

If B is square and invertible, then B† = B−1.

If A is symmetric, then:
A† = QD†Q>,

where QD†Q> is the spectral decomposition, and D† is a diagonal
matrix that inverts the nonzero diagonal entries of D.
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Gradient Descent: Convergence

What happens to the cost function?

Keeping the transformed coordinate system, the loss decomposes
into an independent term for each coordinate:

J̃ (w̃) =
∑
j:ãj>0

ãj
2

(w̃j − w̃?j)2 + c

for a constant c.

Recall:
w̃

(k)
j − w̃?k = (1− αãj)k(w̃(0)

j − w̃?k)

So its contribution to the loss decreases exponentially, by a factor
of (1− αãj)2 in each iteration.

Speed of convergence

− ln(1− αãj)2 ≈ 2αãj if αãj � 1
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Gradient Descent: Convergence

Speed of convergence:

− ln(1− αãj)2 ≈ 2αãj if αãj � 1

Set α ≤ ã−1
max for stability

Lowest (nonzero) curvature direction converges the slowest, at rate
αãmin < ã−1

maxãmin

These dimensions will eventually dominate the loss, so the
convergence rate is bounded by κ−1, where κ is the condition
number:

κ = ãmax/ãmin

κ ≈ 1: well-conditioned, fast convergence
κ� 1: ill-conditioned, slow convergence
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Gradient Descent: Convergence

E.g.,

Blue = total cost
Red = cost from min curvature direction
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Back to linear regression...
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Gradient Descent for Linear Regression

Cost function:
J (w) = 1

2N ‖Φ̆w̆ − t‖2

Convex quadratic cost:

J (w) = 1
2w>Aw + b>w + c,

So

A = 1
N Φ̆

>
Φ̆

b = − 1
N Φ̆

>
t

Stationary solution (starting from w̆(0) = 0):

w̆(∞) = −A†b = Φ̆
†
t
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Gradient Descent for Linear Regression

Compare with ridge regression, or L2-regularized linear regression:

Jλ(w̆) = 1
2N ‖Φ̆w̆ − t‖2 +

λ

2
‖w̆‖2,

For λ > 0, there’s a unique optimal solution:

w̆λ = arg min
w̆

Jλ(w̆) = (Φ̆
>

Φ̆ + λI)−1Φ̆
>

t.

Can show that
lim
λ→0

w̆λ = Φ̆
†
t,

which agrees with w̆(∞) for gradient descent on an unregularized
model. This is an example of implicit regularization.
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Why do we normalize the features?
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Why Normalize?

A common trick when training machine learning models is to
normalize, or standardize, the inputs to zero mean and unit
variance:

φ̃j(x) =
φj(x)− µj

σj

µj =
1

N

N∑
i=1

φj(x
(i))

σ2
j =

1

N

N∑
i=1

(φj(x
(i))− µj)2

Why is this a good idea?
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Why Normalize?

Recall: the convergence rate of gradient descent depends on the
condition number κ, the ratio of the largest and smallest
eigenvalues.

Can show that

A =

(
Σ + µµ> µ

µ> 1

)
,

where µ = 1
N

∑N
i=1 φ(x(i)) is the empirical mean and

Σ = 1
N

∑N
i=1(φ(x(i))− µ)(φ(x(i))− µ)> is the empirical

covariance.

Example 1: Suppose µ = 0 and Σ = I. (The data are said to be
white, as in “white noise”.) Then A = I, so κ = 1, and the
problem is perfectly well-conditioned. Gradient descent converges
in one step.
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Why Normalize?

A =

(
Σ + µµ> µ

µ> 1

)

Example 2: Suppose µ = 0 and Σ is diagonal. Then

A =

(
Σ 0
0 1

)
,

and κ depends on the eigenvalues of Σ. Convergence is slower.

Example 3: Suppose the data are uncentered, i.e. µ 6= 0, and Σ is
diagonal with bounded entries. It turns out that A has an outlier
eigenvalue of roughly ‖µ‖2 + 1, in roughly the direction (µ> 1)>.

Note that ‖µ‖2 grows linearly in the dimension D, while the
remaining eigenvalues are bounded.
This can be really badly conditioned in high-dimensional spaces!
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Why Normalize?

Intuition

x1 x2 t
114.8 0.00323 5.1
338.1 0.00183 3.2
98.8 0.00279 4.1
...

...
...
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Why Normalize?

Intuition

x1 x2 t
1003.2 1005.1 3.3
1001.1 1008.2 4.8
998.3 1003.4 2.9

...
...

...
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Why Normalize?

So convergence is faster when µ is closer to 0 and Σ is closer to I.

Centering sets µ = 0, which eliminates the outlier eigenvalue.
Normalization corrects for the variances of different features, but
not for correlations between features.

It’s possible to go a step further and whiten the data.

Map x→ S−1x, where S is a matrix such that SS> = Σ. (For

instance, the matrix square root Σ1/2.)
Then Σ̃ = I, so the problem is perfectly well conditioned.

Is whitening a good idea?
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Pitfalls of Full Whitening

Whitening always improves convergence of gradient descent, for
linear regression, on the training set.

But we also care about generalization!

The highest variance directions are the principal components,
which we believe contain a lot of the signal.

Converging faster in these directions can be a useful inductive bias,
which is removed by whitening.
By contrast, the means and variances contain less useful
information, since they depend on on arbitrary choice of units. So
normalization is generally OK.

The lesson: when making a change to speed up convergence, ask
if it’s doing it in a way that’s useful for generalization!
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Normalization: Neural Nets

Does this apply to neural nets?

Centering and normalizing the inputs are a standard preprocessing
step, even for neural nets

Uncentered hidden activations create ill-conditioning too, and this
is not straightforward to prevent.

Classic trick: use tanh rather than logistic activation function

Activations can become uncentered due to internal covariate shift,
and batch normalization was designed partly to counteract this
We can show that uncentered hidden activations create large
eigenvalues in the Hessian (but this requires more machinery)
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Double Descent
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Double Descent

How does generalization depend on dimensionality?

The cartoon picture

What often happens

Belkin et al. (2019)

This phenomenon is known as double descent
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Double Descent

Can we build a linear regression model of this phenomenon? If so,
then maybe we can analyze it.

No straightforward way to vary the complexity of the model.
Instead, we’ll fix the dimension D = 50 and vary N , the number of
training examples.

Double descent still happens!
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Double Descent

Intuition:

Case 1: N � D. There’s way more than enough data to pin
down the optimal parameters, so it generalizes well.

Case 2: N ≈ D. It can memorize the training set, but just barely.
It might need a large ‖w‖ to do so.

Case 3: N � D. It can fit the training set easily. The implicit
regularization of gradient descent makes it do so with a small ‖w‖.
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Double Descent

Recall the stationary solution

w̆(∞) = Φ̆
†
t

Roughly speaking, w̆(∞) is large when Φ̆
†

is large. This happens
when Φ̆ has small singular values.

The minimum singular value is small exactly at the double descent
point! (Basic result from random matrix theory, but beyond the
scope of this course.)
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Double Descent

Adding explicit regularization removes any trace of the double
descent phenomenon:

Double descent is best regarded as a pathology, but it’s one that
still applies to a lot of state-of-the-art neural nets.
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Discussion
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Discussion

When we prove something about linear regression, what does that
tell us about neural nets?

In principle, nothing. Neural nets are much more complicated and
can behave completely differently.
We have no guarantees.
But it’s hard to prove any nontrivial guarantees about practical
neural nets anyway. Proofs about neural nets usually require very
idealized conditions.

Instead, the goal of mathematical analysis is to provide insight
into what happens during training.

Simpler model systems can provide more insight precisely because
they yield more detailed predictions.
Like an empirical science, we need to validate our model by seeing if
it makes surprising predictions that we can confirm experimentally.
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Discussion

Why spend so much time on linear regression?

It’s an important model system that we can analyze in detail, and
often yields good predictions about neural nets.

Part of a toolbox that also includes noisy quadratic objectives,
linear neural networks, Gaussian processes, matrix completion,
bilinear games, ...

We can approximate local convergence behavior by taking the
second-order Taylor approximation around the optimum, reducing
it to the convex quadratic case. (Topic of next lecture.)

Amazingly, neural nets in certain settings are approximated well
by linear regression with random features! (Topic of Lecture 6.)
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