
Chapter 1

A Toy Model: Linear Regression

Roger Grosse

1 Some Motivating Phenomena

This is a class about understanding the dynamics of neural net training.
We’ll begin by analyzing some particular phenomena that people have been
confused about in recent years. While the explanations are simpler than
the ones we’ll consider subsequently in the course, this lecture should give
a sense for how we can understand neural net phenomena by analyzing
simpler model systems. The phenomena we’ll look at today are:

1. The benefits of normalization/standardization. It’s beneficial
(in fact, standard practice) to normalize, or standardize, the input
dimensions to be zero mean and unit variance. This improves both
the training speed and generalization.

2. Double descent. Introductory machine learning courses typically
claim that as you increase the dimensionality of a model, the vali-
dation error first goes down (as the model fits the structure in the
data) and then goes up (as it starts overfitting). But it’s sometimes
been observed that the validation error behaves non-monotonically, as
shown in Figure 1. Why would increasing the size of the model reduce
overfitting, and why doesn’t this happen until the network gets very
large? (This phenomenon was observed by Belkin et al. (2019).)

The first phenomenon is closely related to batch normalization, an op-
eration that’s a standard part of many deep learning architectures today.
Batch norm has often been cited as the canonical example of deep learning
“alchemy”, whereby researchers stumbled upon a trick that happened to
work really well, without any understanding of the underlying principles.
But in fact, batch norm was carefully engineered based on principles that
were well understood at the time. The main idea the batch norm inventors
used to explain their method — but which was unnoticed by many of batch
norm’s critics — was exactly the analysis we’ll give today of the benefits of
input normalization. (We’ll analyze batch norm itself in a later lecture.)

The first question to ask about any neural net phenomenon is: does it
also happen for linear regression? Neural nets are complicated and non-
linear, and rarely admit a closed-form analysis. But for linear regression,
many questions can be answered analytically. How fast do algorithms like
gradient descent converge, and what do they converge to? How well does
the solution generalize? Do things like this depend on seemingly insiginifi-
cant changes to the formulation of the problem? When we’re talking about
linear regression, questions like these can be reduced to linear algebra.

1

CSC2541 Winter 2021 Chapter 1: A Toy Model

Figure 1: Figure from Belkin et al. (2019) illustrating the double descent
phenomenon for neural nets. This shows the training and test error on (a
subset of) MNIST for a fully connected network as the number of hidden
units is varied (represented on the x-axis as the number of parameters). The
dashed line represents the interpolation threshold where the number of
parameters is just enough to memorize the training data.

2 Gradient Descent for Linear Regression

Recall that linear regression tries to model a scalar-valued target t as a
function of an input vector x, and the model is assumed to be linear in
some feature representation φ(x):

y = w>φ(x) + b. (1)

It’s sometimes notationally convenient to use a homogeneous coordinate
representation, where a 1 is appended to the feature vector. I.e., we take
φ̆(x) = (φ(x)> 1)> and w̆ = (w> b)>, so that

y = w̆>φ̆(x). (2)

We’re given a finite training set {(x(i), t(i))}Ni=1, and we fit the model by
minimizing the mean squared error on the training set:

w̆? ∈ arg min
w̆

J (w̆)

= arg min
w̆

1

2N

N∑
i=1

(w̆>φ̆(x(i))− t(i))2

= arg min
w̆

1

2N
‖Φ̆w̆ − t‖2,

(3)

where Φ̆ is a matrix whose ith row is the feature vector φ̆(x(i)), and t is
the vector of all the targets. Note that we use the notation ∈ above, since

2

CSC2541 Winter 2021 Chapter 1: A Toy Model

we don’t know whether the arg min is unique (and in fact, it often won’t
be). If it’s not unique, then which optimum we wind up in depends on
the dynamics of training — one of the main motivations for studying the
dynamics!

Observe that the cost function J (w̆) is quadratic in w̆, and also that it’s
a convex quadratic, because it’s a sum of squares and therefore nonnegative.
In understanding the gradient descent dynamics, it’s helpful to abstract
away the regression problem and think about minimizing a convex quadratic
objective:

w? ∈ arg min
w

1
2w>Aw + b>w + c, (4)

where A is a positive semidefinite matrix, b is a vector, and c is a scalar.

The vector b has nothing to do
with the bias parameter b.

You can check that the linear regression cost corresponds to A = 1
N Φ̆

>
Φ̆

and b = − 1
N Φ̆

>
t. The constant offset c doesn’t affect the optimum or

the optimization dynamics (because it doesn’t affect the gradient), so we’ll
ignore it from here on.

2.1 Some Observations about Gradient Descent

Gradient descent The optimization-minded reader
might wonder why we’re using a
fixed α rather than a line search. A
line search would indeed be better
for minimizing a deterministic
objective, but most neural net
optimization is stochastic, so we
don’t have good line search
methods. Hence, we use a fixed α.

is an iterative algorithm where each iteration updates the
weights opposite the gradient direction:

w(k+1) ← w(k) − α∇wJ (w(k)) (5)

The first question to ask about an update rule is: what are its fixed points,
also called stationary points? I.e., for which values w(k) does w(k+1) =
w(k)? By setting the left-hand side to equal the right-hand side, we see that
the fixed points for gradient descent are exactly the critical points of J ,
i.e. those points where ∇wJ (w) = 0. For general differentiable functions,
critical points could include local maxima, local minima, or saddle points.
However, if J is convex (as in linear regression), then any critical point
corresponds to a global minimum of J .

An important property of gradient descent is that it is invariant to
rigid transformations. Rigid transformations include translations, rota-
tions, and reflections, so we say that it is translation invariant, rotation
invariant, etc. What we mean by this is that if you rotate the objective
function and the initial weights, then the new gradient descent trajectory
will be a rotation of the original trajectory. This should be intuitively ob-
vious: you can determine the SGD updates for a 2D function by printing
out the contour plot on a piece of paper and drawing arrows in the downhill
direction. If you move the sheet of paper around on your desk, the direction
of the arrow on the page doesn’t change.

Mathematically, let Q be an orthogonal matrix Since Q is an arbitrary orthogonal
matrix, we’re showing invariance
to both rotation and reflection. If
we want only rotation, we can
restrict it to have determinant 1.

and t be a vector. We
define the transformation

w̃ = T (w) = Q>(w(0) − t), (6)

which has the inverse transformation

w = T −1(w̃) = Qw̃ + t. (7)

3

CSC2541 Winter 2021 Chapter 1: A Toy Model

This can be seen as a change-of-basis transformation, or reparame-
terization: the transformed weights w̃ simply re-express w in a coordi-
nate system whose origin is t and whose (orthogonal) basis is given by the
columns of Q. The cost function can be re-expressed in the new coordinate
system as follows:

J̃ (w̃) = J (T −1(w̃)) = J (Qw̃ + t). (8)

In order to show invariance, we need to show that the gradient descent
trajectory in the transformed space is the transformation of the gradient de-
scent trajectory in the original space. Mathematically, let (w(k))∞k=0 denote
the gradient descent trajectory in the original space starting from initial-
ization w(0), and (w̃(k))∞k=0 denote the gradient descent trajectory in the
transformed space starting from w̃(0) = T (w(0)). We need to show that
w̃(k) = T (w(k)) for all k.

We can do this by induction. The base case is covered by our assumption
that w̃(0) = T (w(0)). For the inductive step, assume w̃(k) = T (w(k)). By
the Chain Rule for derivatives, we have:

∇J̃ (w̃(k)) = Q>∇J (Qw̃(k) + t)

= Q>∇J (w(k))

Hence, the gradient descent update is:

w̃(k+1) = w̃(k) − α∇J̃ (w̃(k))

= w̃(k) − αQ>∇J (w(k))

= Q>(w(k) − t)− αQ>∇J (w(k))

= T (w(k+1))

We’ve just shown that gradient descent is invariant to rigid transformations.
Note: gradient descent is not invariant to arbitrary linear transforma-

tions, as we’ll see later. Ask yourself where this proof breaks down if Q is
replaced by an arbitrary invertible matrix T. (Hint: the transformation has
to be defined as T (w) = T−1(w − t), while the chain rule for derivatives
still produces T>.)

2.2 Closed Form Dynamics for Convex Quadratics

Now let’s analyze gradient descent for the convex quadratic objective (Eqn. 4).
The analysis of convex quadratics
is used in a large fraction of the
course, not just as a tool for
analyzing linear regression. So it is
worth getting comfortable with
this derivation.

Plugging this objective into Eqn. 5, we get the gradient descent update rule:

w(k+1) ← w(k) − α∇wJ (w(k))

= w(k) − α
[
Aw(k) + b

]
= (I− αA)w(k) − αb

(9)

Since the cost function is convex, the stationary points (if they exist) are
global minima, and are given by:

∇wJ (w) = Aw + b = 0. (10)

4

CSC2541 Winter 2021 Chapter 1: A Toy Model

If the matrix A happens to be invertible, then this equation has a unique
solution w = −A−1b, i.e. gradient descent has a unique fixed point corre-
sponding to the unique global optimum. What happens if A isn’t invert-
ible? If b is not contained in the row space of A, then Eqn. 10 has no
solutions. If b is contained in the row space of A but A is non-invertible,
then it has multiple solutions, i.e. the subspace In linear algebra terminology, this

is really an affine space. But in
ML, we use subspace to mean
affine space and linear to mean
affine. E.g., it’s linear regression,
not affine regression. Hopefully it
will all be clear from context.

given by {w0 + ∆w : ∆w ∈
null space of A}, where w0 is any particular solution.

So gradient descent on convex quadratics might have 0, 1, or infinitely
many fixed points. If it has fixed points, then gradient descent might or
might not converge to one of them. To disentangle these possibilities, we
need to analyze the dynamics.

Since gradient descent is invariant to rigid transformations, we’re free
to analyze the dynamics in a coordinate system where things are simpler.
Recall the Spectral Theorem from linear algebra: The Spectral Theorem is probably

the most important result from
introductory linear algebra, even
though it’s often omitted from
introductory linear algebra
courses. If you’re not familiar with
it, you should take the time now to
understand it.

any symmetric matrix
A has a full set of eigenvectors, the corresponding eigenvalues are all real,
and the eigenvectors can be taken to be orthogonal. This can be expressed
in terms of the spectral decomposition:

A = QDQ>, (11)

where Q is an orthogonal matrix whose columns contain the eigenvectors of
A, and D is a diagonal matrix whose diagonal entries are the corresponding
eigenvalues. Our assumption that A is positive semidefinite corresponds
to all the eigenvalues being nonnegative. What the Spectral Theorem is
really saying is that given a symmetric matrix, we can always rotate to a
coordinate system where that matrix is diagonal.

Returning to the gradient descent dynamics, let Q be an orthogonal
eigenbasis for A, and apply the transformation T (w) = Q>w. By expand-
ing out the transformed cost (Eqn. 8), we obtain a convex quadratic cost
function in the new coordinate system:

J̃ (w̃) = 1
2w̃>Ãw̃ + b̃>w̃ + c

Ã = Q>AQ

b̃ = Q>b,

(12)

Observe that Ã = diag(ã1, . . . , ãD) is a diagonal matrix whose entries ãj
are the eigenvalues of A. These values represent the curvature of the cost
function, i.e. they tell us how quickly it curves upwards if you move along
the corresponding eigenvector.

The magic of this change-of-basis transformation is that now all the in-
dividual coordinates evolve independently. Plugging in the gradient descent
update (Eqn. 9), we see that each coordinate independently evolves as:

w̃
(k+1)
j ← w̃

(k)
j − α(ãjw̃

(k)
j + b̃j).

To analyze the dynamics, we consider 3 separate cases:

Case 1: ãj > 0

In this case, the function curves upwards along this eigendirection,
and there is a unique fixed point given by

w̃?j = −b̃j/ãj .

5

CSC2541 Winter 2021 Chapter 1: A Toy Model

By rearranging terms, we see that

w̃
(k+1)
j − w̃?j = (1− αãj)(w̃(k)

j − w̃?j).

This recurrence has the solution:

w̃
(k)
j = w̃?j + (1− αãj)k(w̃(0)

j − w̃?j).

Now we can break this down into more cases, depending on α and ãj :

Case 1(a): 0 < αãj < 2

The iterates w̃
(k)
j converge exponentially to w̃?j , where the rate of

convergence is given by |1−αãj |. If 0 < αãj < 1, they approach
w̃?j monotonically, whereas if 1 < α < 2, they oscillate as they
converge.

Case 1(b): αãj = 2.

The iterates oscillate between ±w̃(0)
j .

Case 1(c): αãj > 2.

The iterates diverge exponentially.

Case 2: ãj = 0 and b̃j 6= 0.

In this case, the update rule is

w̃
(k+1)
j ← w̃

(k)
j − αb̃j ,

and the recurrence is solved by

w̃
(k)
j = w̃

(0)
j − αkb̃j .

Hence, the weight continues to move linearly and never converges.

Case 3: ãj = 0 and b̃j = 0.

In this case, w̃j is never updated, so w̃
(k)
j = w̃

(0)
j for all k.

Clearly, the weights will never converge if any of the dimensions match
cases 1(b), 1(c), or 2. In order to get convergence, we must satisfy the
following conditions:

A1. J is bounded below.

A2. α < 2ã−1
max, where ãmax denotes the maximum diagonal entry of Ã, or

equivalently, the maximum eigenvalue of A.

A1 is often easy to verify; e.g., the linear regression cost function is a sum
of squares, so it’s bounded below by 0. If A1 is satisfied, then this implies
b̃j = 0 whenever ãj = 0, so case 2 is ruled out. Assumption A2 rules out
cases 1(b) and 1(c). Hence, we’re left with only cases 1(a) and 3, implying
that coordinates with positive curvature will converge exponentially, and
coordinates with zero curvature will remain fixed.

Reasoning about individual coordinates can be tedious, so let’s translate
this all back into linear algebra. It can be shown that the iterates, in the
original coordinate system, are given by: The linear algebraic notation is

more compact, but be sure you
understand how it relates to the
coordinatewise analysis.

w(k) = w(∞) + (I− αA)k(w(0) −w(∞)), (13)

6

CSC2541 Winter 2021 Chapter 1: A Toy Model

(a) (b) (c)

Figure 2: The dynamics of gradient descent on convex quadratics. (a) If A is full rank, and α is small
enough, then the iterates converge to the unique global minimum (red and green). If the learning rate
is too large, then the iterates diverge (magenta). (b) If A is low rank and α is small enough, then the
iterates converge linearly to the closest point in the minimum cost subspace (blue). (c) The projections
of the iterates from figure (a) onto the eigenvectors q1 (top) and q2 (middle) are exponential functions.
The projection onto an arbitrary direction (bottom) is generally not an exponential (in fact, it’s a
superposition of exponentials).

where w(∞) is the projection of w(0) onto the subspace which achieves the
minimum cost:

w(∞) = arg min
w

‖w −w(0)‖2 s.t. w ∈ arg min
w′

J (w′),

Recall that the minimum cost subspace is given explicitly by:

arg min
w

J (w) = {w? + ∆w : ∆w ∈ null space of A},

where w? is any particular minimizer of J . Observe that the iterates con-
verge exponentially to w(∞), which justifies this choice of notation.

To give a convenient equation for w(∞), we’ll need an operation called
the pseudoinverse, which is a generalization of the matrix inverse to pos-
sibly non-invertible matrices. If a (possibly non-square) matrix B has the
singular value decomposition (SVD) B = USV>, then its pseudoinverse,
denoted B†, is given by:

B† = VS†U>

where the diagonal matrix S† has a diagonal entry s−1
j for each nonzero sin-

gular value sj , and an entry of 0 for each 0 singular value. The pseudoinverse
can also be written explicitly as

B† = (B>B)−1B>

in the case where B>B is invertible. Furthermore, it agrees with the ordi-
nary inverse, i.e. B† = B−1 if B is invertible. In general,

B†c = arg min
v

‖v‖2 s.t. v ∈ arg min
v′

‖Bv′ − c‖2.

For a symmetric matrix A, the SVD agrees with the eigendecomposition
QDQ>, so the pseudoinverse can be written as:

A† = QD†Q>,

7

CSC2541 Winter 2021 Chapter 1: A Toy Model

where D† is obtained by replacing diagonal entries with reciprocals or 0,
analogously to S†.

Now back to the minimum norm solution for quadratics. In the case
where w(0) = 0 (as is common practice for linear regression), w(∞) is the
minimum norm vector in the minimum cost subspace. It can be shown that

Exercise: show this. Also, what is
the generalization of this formula
when w(0) 6= 0?

w(∞) = −A†b. (14)

Note also that if A is full rank, then the optimal solution w(∞) = w? =
−A−1b is unique (because the null space of A is trivial).

Now, what happens to the loss? Keeping the transformed coordinate
system (and denoting irrelevant constants with ci), the loss also decomposes
into an independent term for each coordinate:

J̃ (w̃) = 1
2w̃>Ãw̃ + b̃>w̃ + c1

=
∑
j

[
ãj
2
w̃2
j + b̃jw̃j

]
+ c1

=
∑
j:ãj>0

ãj
2

(w̃j − w̃?j)2 +
∑
j:ãj=0

b̃jw̃j + c2.

The first term corresponds to Case 1, while the second term corresponds
to Cases 2 and 3. But note that in Case 3, bj = 0, so Case 3 doesn’t
contribute to the objective. As long as A1 is satisfied, Case 2 is impossible,
so the second term drops out entirely. Observe that in Case 2, the

objective is unbounded below, so
the optimum is −∞. This
obviously can’t happen for linear
regression, since the objective is a
sum of squares and therefore
nonnegative.

This leaves Case 1. Plugging in our

formula for w̃
(k)
j , we get:

J (w(k)) = J̃ (w̃(k)) =
∑
j:ãj>0

ãj
2

(w̃
(0)
j − w̃?j)

2(1− αãj)2k.

If condition A2 isn’t satisfied, then some of the terms will grow exponen-
tially — not too surprising, since we know the iterates diverge in that case.
As long as A2 is satisfied, each term decays exponentially as (1 − αãj)2k.

In the field of optimization, this
exponential decay is referred to as
linear convergence, to contrast
it with the quadratic convergence
obtained by second-order
optimizers. I’ll avoid using this
term since it’s confusing in the
context of ML, where we often
want to contrast exponential
convergence with sub-exopnential
convergence rates we find in the
stochastic optimization setting.

Observe that for small αãj , we have

(1− αãj)2k ≈ exp(−2αãjk). (15)

Hence, 2αãj can be thought of as the rate of convergence for that dimension.
At the beginning of training, it’s likely that many of the high curva-

ture eigenvalues will contribute significantly to the cost, hence the cost will
appear to decay at a rate faster than 2αãmin. However, the term(s) which
decay the most slowly, i.e. the lowest curvature dimension(s), will eventually
come to dominate. Hence, asymptotically, the loss will decay proportionally
to (1− αãmin)2. (We use ãmin to denote the minimum nonzero eigenvalue.)
This behavior is shown in Figure 3.

Since the cost is asymptotically dominated by the lowest curvature di-

8

CSC2541 Winter 2021 Chapter 1: A Toy Model

Figure 3: Convergence of gradient descent on a quadratic objective with
curvature eigenvalues {1, . . . , 10}. Blue is the total cost, while red is the
cost only for the lowest curvature direction. Note the log scale on the y-
axis.

rection(s), we can model the asymptotic behavior as follows:

J (w(k))− J (w?) ≈ Jmin(w(k)) for large k

= (1− αãmin)2kJmin(w(0))

≈ exp(−2αãmink)Jmin(w(0)) Eqn. 15

≈ exp

(
−4ãmin

ãmax
k

)
Jmin(w(0)) Assumption A1

= exp(−4κ−1k)Jmin(w(0)).

Here, Jmin denotes the component(s) of the cost corresponding to the min-
imum curvature direction(s), and κ = ã−1

minãmax is known as the condition
number. In general, κ measures the difficulty of the optimization prob-
lem, and analogues can be defined for non-quadratic objectives as well. The
smallest possible condition number is κ = 1, and if κ is close to 1, the prob-
lem is said to be well-conditioned. If κ � 1, the problem is said to be
ill-conditioned.

Another way to think about the above convergence rate is that if you
want to reach some small cost ε, it will require O(κ log 1

ε) iterations. Hence,
gradient descent is said to be an O(κ) algorithm. (Here, we ignore the
dependence on ε.) We’ll soon see that it’s possible to achieve O(

√
κ) for

convex quadratics using other gradient-based iterative algorithms.

2.3 Without Loss of Generality

In the above derivation, we explicitly reparameterized the problem, i.e. trans-
formed it to a coordinate system where A was diagonal. While this works,
it results in a clunky notation with lots of tildes. We’d like to avoid clunky
notation, if possible. So instead, we will say something like, “Assume we
choose a coordinate system such that A is diagonal”, or more tersely, “As-
sume without loss of generality (WLOG) that A is diagonal.” The
meaning of WLOG generally needs to be inferred from context, but what
it means here is that it is always possible to transform the problem to a
coordinate system which satisfies some particular property. In the above

9

CSC2541 Winter 2021 Chapter 1: A Toy Model

derivation, we exploited the rotation invariance of gradient descent, com-
bined with the Spectral Theorem.

When making a WLOG argument, it’s necessary to keep in mind what
constraints were already imposed on the coordinate system. E.g., if one
already assumed WLOG that A is diagonal, then one can’t also assume
WLOG that some other symmetric matrix B is also diagonal, since there
might not be any coordinate system that simultaneously diagonalizes both
matrices. This will all come naturally once

you’re used to it. But if you’re
confused about whether WLOG is
justified, you need to be able to go
through the same sort of analysis
we did above.

(Unless, of course, A and B are known to be codiagonalizable.)
It’s also important to ensure that the dynamics are actually rotation in-
variant. E.g., one can’t assume diagonal A WLOG when analyzing an
optimization algorithm based on diagonal rescaling, such as RMSprop or
Adam.

When analyzing the behavior of an update rule close to an optimum
or a fixed point w?, it is common to assume WLOG that w? = 0. What
this means is that, as long as the dynamics are translation invariant (as is
normally the case), we can transform to a coordinate system whose origin
is at w?.

2.4 Back to Linear Regression

Now let’s apply what we’ve learned to linear regression. Recall that we’re
trying to minimize

J (w̆) = 1
2N ‖Φ̆w̆ − t‖2

= 1
2N w̆>Φ̆

>
Φ̆w̆ − 1

N t>Φ̆w̆ + 1
2N t>t.

Clearly this is an instance of the optimization problem in Eqn. 4 with

A = 1
N Φ̆

>
Φ̆ and b = − 1

N Φ̆
>

t. (Recall that the ·̆ notation indicates the
homogeneous parameterization.)

It’s easy to check that condition A1 is satisfied, since the cost function
is a sum of squares and therefore nonnegative. So assuming a small enough
learning rate (as in A2), the iterates are given by Eqn. 13:

w̆(k) = w̆(∞) + (I− αA)k(w̆(0) − w̆(∞)),

where w̆(∞) is, among the set of all optimal weight vectors, the one closest
to the initialization w̆(0). In particular, if w̆(0) = 0 (as is common practice
for linear regression), then w̆(∞) is the minimum norm solution. We saw
earlier (see Eqn. 14) that the min-norm solution is given explicitly by The last step uses the identity

(B>B)†B> = B†, which holds for
any matrix B.w̆(∞) = −A†b

= (Φ̆
>

Φ̆)†Φ̆
>

t

= Φ̆
†
t.

(16)

It’s interesting to compare this result with the optimal solution to ridge
regression, i.e. linear regression with an `2 regularization term. Recall that
this involves penalizing the norm of the weights: Note that, in practice, we don’t

normally regularize the bias
parameter, so this formulation
isn’t quite standard.Jλ(w̆) = 1

2N ‖Φ̆w̆ − t‖2 +
λ

2
‖w̆‖2,

10

CSC2541 Winter 2021 Chapter 1: A Toy Model

where λ > 0 is a hyperparameter controlling the strength of the regular-

ization. This is also a quadratic cost function, with A = 1
N Φ̆

>
Φ̆ + λI and

b = 1
N Φ̆

>
t. Unlike the unregularized case, A is guaranteed to be positive

definite, because Φ̆
>

Φ̆ is positive semidefinite and λI is positive definite.
Therefore, there is always a unique optimal solution

w̆λ = arg min
w̆

Jλ(w̆) = (Φ̆
>

Φ̆ + λI)−1Φ̆
>

t.

Larger values of λ imply stronger regularization, and λ = 0 turns off
the regularization entirely. We already saw that wλ is undefined for λ = 0
(since the optimum might not be unique), but we can instead take the limit
as λ→ 0: You can determine the limit by

expanding out the SVD of Φ̆ and
simplifying.lim

λ→0
w̆λ = Φ̆

†
t.

This coincides exactly with the stationary solution w̆(∞) to the unreg-
ularized problem! This phenomenon, where the dynamics of optimization
produce regularization-like behavior even in the absence of an explicit reg-
ularizer, is known as implicit regularization. This is an important topic
of study in deep learning today, and will be a recurring theme throughout
the course.

3 Why Normalize the Features?

A common preprocessing trick in deep learning, and machine learning more
generally, is to normalize, or standardize, the input features by trans-
forming them to have zero mean and unit variance. Mathematically,

φ̃j(x) =
φj(x)− µj

σj

µj =
1

N

N∑
i=1

φj(x
(i))

σ2
j =

1

N

N∑
i=1

(φj(x
(i))− µj)2

Observe that the transformed features have zero mean and unit variance.
Why is this a good idea? Sometimes we transform the data

to be zero mean, but skip the
rescaling step. This is known as
centering, and data with zero
mean is said to be centered.

Intuitively, many features have arbitrary units. Lengths can be mea-
sured in feet or miles, and time can be measured in seconds or years. The
choice of zero can also be arbitrary, for instance if the input represents a
calendar year. Clearly, we don’t want our statistical analysis to depend on
an arbitrary choice of units, and normalizing the inputs eliminates this un-
wanted source of variability. But what actually goes wrong mechanistically
if we don’t normalize?

In some cases, nothing goes wrong. For instance, suppose we fit an un-
regularized linear regression model, collect enough data to ensure a unique
optimal solution, and compute the exact optimal solution. In this case,
we find the optimal linear predictor of the targets from the input features,

11

CSC2541 Winter 2021 Chapter 1: A Toy Model

and (as a basic fact of linear algebra) this predictor is invariant to linear
reparameterizations of the features (of which normalization is an instance).
Hence, normalization doesn’t matter.

However, the dynamics of gradient descent are not invariant to linear
transformations of the inputs, and neither is the minimum norm solution
w̆(∞) that the iterates converge to. To understand the gradient descent

dynamics, consider the curvature matrix A = 1
N Φ̆

>
Φ̆:

A = 1
N Φ̆

>
Φ̆

= 1
N

(
Φ>

1>

)(
Φ 1

)
=

(
1
N

∑N
i=1 φ(x(i))φ(x(i))> 1

N

∑N
i=1 φ(x(i))

1
N

∑N
i=1 φ(x(i))> 1

)

=

(
Σ + µµ> µ

µ> 1

)
(17)

Here, µ and Σ denote the empirical feature mean and covariance, respec-
tively. The final step uses the identity E[vv>] = Cov(v)+E[v]E[v]>, which
holds for any random vector v.

Recall that, to understand the dynamics, we are interested in the eigen-
vectors and eigenvalues of A. It’s hard to say much about the general case
that provides much insight, so instead we’ll try to get some intuition by
plugging in in a few particular choices of µ and Σ.

1. Suppose µ = 0 and Σ = I. Such a data distribution is referred to
as white, by analogy with white noise. Plugging these values into
Eqn. 17, you can check that A = I, the (D + 1) × (D + 1) identity
matrix. This is the ideal case for optimization, because the condition
number is κ = 1. Gradient descent heads directly for the optimal
solution.

2. Suppose µ = 0 and Σ is a diagonal matrix whose entries are in the
interval [σ2

min, σ
2
max], with σ2

min ≤ 1 ≤ σ2
max. The data are centered,

but not white. Then A is also a diagonal matrix, whose diagonal
entries are the feature variances (i.e. the diagonal entries of Σ), plus
a 1 for the homogeneous coordinate. The coordinates which train
the fastest (i.e. the ones with the highest curvature) are the features
with the largest variance. The smaller variance dimensions train more
slowly. The condition number is κ = σ2

max/σ
2
min, so it is beneficial for

the speed of optimization that the variances of different dimensions
be close together.

3. As before, suppose Σ is a diagonal matrix whose entries are in the
interval [σ2

min, σ
2
max], but now let µ 6= 0. Hence, the data are uncen-

tered.

We start by decomposing Eqn. 17:

A =

(
Σ

0

)
+

(
µ
1

)(
µ> 1

)

12

CSC2541 Winter 2021 Chapter 1: A Toy Model

Let’s look at the two terms separately. The first term is a diagonal
matrix whose nonzero eigenvalues are the diagonal entries of Σ, which
are bounded between σ2

min and σ2
max. The second term, as stated

above, is a rank-1 matrix whose nonzero eigenvalue is ‖µ‖2 + 1. As
we increase the feature dimension D, the eigenvalues of the first term
remain bounded, while the nonzero eigenvalue of the second term
grows proportionally to D.

In general, there is no direct relationship between the eigendecompo-
sition of a sum C + D and the eigendecomposition of the component
matrices C and D. However, in the present case it is possible to show
the following: I don’t know of an easy derivation

of this fact about eigenvalues. It
can be shown using the variational
characterization of eigenvalues;
see, e.g., Section 4.3 of Horn and
Johnson (2012).

if the nonzero eigenvalue of the second term is much
larger than the eigenvalues of the first term, then A will have a large
outlier eigenvalue greater than or equal to ‖µ‖+ 1, approximately in
the direction (µ> 1)>. The remaining eigenvalues will be in the range
[0, σ2

max].

Hence, the condition number is bounded as κ ≥ (‖µ‖2 + 1)/σ2
max,

which grows linearly in the feature dimension. We can actually say a
bit more. The maximum stable learning rate is bounded by (‖µ‖2 +
1)−1, while most of the signal is contained in directions whose curva-
ture is bounded above by σ2

max. Hence, as the dimension increases, the
learning rate must get smaller, and hence the signal will be learned
more and more slowly. This problem is solved if we center the data,
as then µ = 0.

So we’ve seen examples of how uncentered and unnormalized data can
make optimization more difficult by increasing the condition number. Hence,
it should be intuitive that normalizing the data will improve the condition-
ing.

3.1 Full Whitening

Sometimes we go even further and whiten the data, by transforming it
to have zero mean and unit covariance. This can be achieved with the
transformation Possible choices for S include (1)

the matrix square root
Σ1/2 = QD1/2Q, where
Σ = QDQ is the spectral
decomposition; or (2) the Cholesky
factor L, i.e. the unique lower
triangular matrix such that
Σ = LL>.

φ̃(x) = S−1(φ(x)− µ),

where S is any matrix such that SS> = Σ. Based on example 1 above, this
is clearly the optimal choice from the standpoint of optimization, i.e. if we
are simply trying to minimize the training loss as fast as possible. But we
need to be careful: if the data covariance contains useful information, then
whitening might hurt generalization.

In general, gradient descent will train faster in the directions of larger
feature variance, and the stationary solution will favor explaining the data
using the directions of higher variance. Whether this is a feature or a bug
depends on the context. When we discussed centering and coordinatewise
rescaling, we observed that the mean and variance were determined by ar-
bitrary choices of units. Since this source of variability contains no useful
information, we might as well get rid of it.

However, the correlations between different dimensions might contain
useful information. It’s a common assumption that more highly corre-
lated features are more likely to contain signal rather than noise; this is

13

CSC2541 Winter 2021 Chapter 1: A Toy Model

the motivation for the common step of preprocessing the data by project-
ing onto the dominant principal components. Hence, the fact that gradient
descent learns more quickly in the top principal components can be seen as
a kind of inductive bias, or modeling assumption, and can help general-
ization. Hence, despite the optimization benefits, we can’t always assume
that whitening is a good idea. Indeed, sometimes even

coordinatewise rescaling can be
unhelpful, since the variances can
contain information about the
relative importance of different
input dimensions. E.g., in MNIST,
the boundary pixels have small
variance because they contain no
signal, so we don’t want to amplify
them.

In practice, it is rarely done when training
neural nets, even when it’s computationally tractable.

As an example of this phenomenon, consider a toy problem where each
data instance is generated by first sampling a scalar-valued target t ∼
N (0, 1), and the inputs consist of independent noisy observations of t,
i.e. each xj ∼ N (t, σ2

x) for σ2
x � 1. We observe the input vector x and

a noisy version of the target, t̂ ∼ N (t, σ2
t). You can check that the covari-

ance Σ contains one large eigenvalue corresponding to the signal, and the
remaining eigenvalues are much smaller and correspond to noise. Gradient
descent, therefore, will quickly learn the signal and only later overfit by
fitting the noise. By whitening the data, we can dramatically speed up op-
timization of the training loss, based on the arguments above. However, we
achieve this by speeding up convergence along the noise directions, resulting
in severe overfitting. We can fix this overfitting by collecting lots more data
or perhaps applying a clever regularizer, but at the end of the day we still
won’t get any speedup on the validation set because gradient descent was
already fitting the signal essentially as fast as possible.

This dilemma exemplifies a recurring theme in this course: we can’t fully
decouple optimization from generalization. If we discover a trick that speeds
up the optimization of the training loss on a finite dataset, we shouldn’t
blindly apply it. We need to think carefully about why the trick speeds
up optimization, and then think about whether this effect will speed up
generalization as well. If the trick speeds up learning of the true underlying
structure, then it might help us achieve low validation error faster (or some-
times even converge to a lower asymptotic validation error). On the other
hand, if the trick speeds up training set convergence by more efficiently
memorizing training examples, then this won’t translate into improvements
on the validation set no matter how carefully we regularize. We’ll see lots
more examples of this as the course goes on.

3.2 Lessons for Neural Nets

The effects of normalization have long been understood by neural net re-
searchers; in fact, the analysis above is loosely based on LeCun (1998)’s
classic tutorial, “Efficient Backprop”. Impressively, most of the advice

from Efficient Backprop is still
relevant today. It is also very
prescient, in that it discussed or
touched upon many of the key
ideas from the first half of this
course.

This sort of analysis was the source
of various classic tricks for neural net training, including (most directly)
normalizing the inputs.

Less obviously, the scaling and centering of intermediate activations af-
fect optimization in much the same ways as scaling and centering of the
inputs, but are harder to control. (We’ll make this claim more precise in a
later lecture.) Back before the days of ReLU activations, the vanilla acti-
vation function was the logistic function:

σ(z) =
1

1 + exp(−z)
.

14

CSC2541 Winter 2021 Chapter 1: A Toy Model

The problem is, the outputs range from 0 to 1, meaning the activations must
have nonzero mean. Interestingly, ReLU suffers from

the same uncentering problem as
the logistic function, but no
solution analogous to tanh has
been adopted. Batch norm was
invented shortly after ReLU
became popular, so evidently it
was timed just right to meet the
newfound need for activation
centering!

The clever solution (which was standard practice for
neural net training pre-ReLU) was to replace the activation function with
tanh:

tanh(z) =
exp(2z)− 1

exp(2z) + 1
.

It can be shown that tanh can be obtained from the logistic function through
affine transformations of inputs and outputs, implying that networks with
logistic and tanh activations are equally expressive. But the tanh function
ranges from -1 to 1, so its outputs aren’t necessarily uncentered. Therefore,
tanh networks can in practice train much faster than logistic networks.
Based on this line of reasoning, there were various attempts to find ways
to exactly center (and sometimes rescale) the activations. The first one to
become widely adopted was batch norm (discussed in detail in Chapter 5).

4 Double Descent

We introduced the phenomenon of “double descent” in the Introduction.
This phenomenon happens for plain (unregularized) linear regression as
well as neural nets. Ideally, we’d like to use a linear regression model to
understand why increasing model capacity past the interpolation threshold
can improve generalization. Unfortunately, there isn’t a clean analogue of
“increasing the number of parameters” of a linear regression model, Hastie et al. (2019) analyze the

limit for random linear regression
problems as D →∞, N →∞, and
D/N → γ. Analyzing the
asymptotic risk as γ is varied gives
a more direct analogue of the
double descent effect for neural
nets. But this construction is a bit
too involved for an introductory
lecture.

since
the number of parameters is the same as the input dimension D, and adding
input dimensions makes more information available to the learner (unlike
adding more hidden units). Instead, let’s look at the behavior for fixed
D as the number of data points N is varied. We set D = 50, sample the
input dimensions i.i.d. xj ∼ N (0, 1), compute the true labels as t = w>x for
w ∼ N (0, 0.1), and observe noisy versions of the targets as t̂ ∼ N (t, 1). The
training set consists of {(x(i), t̂(i))}Ni=1. We use the raw inputs (i.e. φ(x) = x)
and we exactly compute the stationary (i.e. min-norm) weights w(∞) for the
training set. Figure 4(a) shows the training and test error as N is varied
from 1 to 200. We observe a double descent effect, whereby the test error
peaks at N = D, a point called the interpolation threshold. The term interpolation threshold

refers to the idea that when
D > N , the model is basically
interpolating the training data.
The regime where D > N is known
as the interpolation regime.

This is
perhaps even more surprising than the original double descent effect (where
the number of parameters was varied), since we wouldn’t expect adding
more data to hurt the performance.

What’s going on? For N > D, with high probability the matrix X>X
is invertible, so w(∞) is the unique global minimum of the cost function.
As N → ∞, the test error decreases because there’s more information and
less overfitting, just as classical learning theory predicts. But when N < D,
the model is overparameterized, so w(∞) is the minimum norm solution.
Intuitively, when N ≈ D, it’s just barely possible to fit all the training
data, i.e. this requires a large norm for w(∞). When N is much smaller
than D, it’s possible to fit the training data using a much smaller weight
norm. Smaller norm weight vectors are more robust to overfitting (hence
the motivation for `2 regularization), so they might generalize better.

To understand this mathematically, consider the closed-form expression
for the min-norm weights, w(∞) = X†t (see Eqn. 16). Roughly speaking,

15

CSC2541 Winter 2021 Chapter 1: A Toy Model

(a) (b)

Figure 4: Double descent effect for linear regression. (a) Training and test error as a function of
N , the number of training examples. The solid line is the unregularized model, and the dotted
line uses `2 regularization with λ = 1. (The regularized and unregularized training set curves are
nearly indistinguishable.) The dashed line indicates the interpolation threshold, N = D. (b) The
minimum nonzero singular value of X, as a function of N .

w(∞) will be large when X† is large. Since X† is defined by inverting the
nonzero singular values of X, it will be large when X has small nonzero
singular values. Figure 4(b) plots the smallest nonzero singular value of X
as a function of D. The minimum singular value gets closest to zero at the
interpolation threshold. Explaining why this happens is beyond the scope
of this course, but it follows from a basic result of a field of mathematics
called random matrix theory.

The observation that performance can get worse as more data is added
indicates that the double descent effect is somehow pathological. Adding
more information shouldn’t hurt. Indeed, the pathology can be basically
eliminated (in our regression example) by adding a small amount of `2
regularization (λ = 1), without noticeably hurting the training or test error
outside the pathological regime, as shown in Figure 4(b). The fact that
double descent still happens even for modern, well-tuned neural nets See Nakkiran et al. (2019) for lots

of empirical demonstrations of
various forms of double descent in
modern neural nets.

is a
reflection of how we haven’t found a regularizer for neural nets that’s as
principled and robust as `2 regularization is for linear regression.

The above discussion only scratches the surface of what’s known about
double descent. Hastie et al. (2019) gave basically a complete characteriza-
tion of double descent for linear regression. They broke the generalization
risk down into bias and variance terms, and determined the asymptotic
behavior of these terms under a variety of assumptions about the data dis-
tribution. It all boils down to random matrix theory.

5 Beyond Linear Regression: Strongly Convex Op-
timization

We’ve done a lot of work analyzing one particular system: gradient descent
for linear regression. What about other cost functions? Gradient descent
dynamics are hard to analyze in general, since a lot of different things can
happen. General cost functions can have saddle points and local optima.

16

CSC2541 Winter 2021 Chapter 1: A Toy Model

Even for convex objectives, gradient descent is a discrete time system, and
so could have pretty complex behavior. So in order to prove convergence,
we’ll need to make some assumptions.

When analyzing optimization algorithms, it’s common to assume strong
convexity — that the cost function curves upwards reasonably quickly.
It’s also common to make some sort of smoothness assumption so that the
gradient doesn’t change too quickly. Here are a fairly representative set of
assumptions. They are satisfied for various problems we might be interested
in solving in machine learning, such as ridge regression or `2-regularized
logistic regression. Don’t worry about understanding

this section in detail. We won’t
build on it very much; I just
include it to give you a sense of
what a proper optimization proof
looks like.

C1. Strong convexity. For any two points w and w′,

J (w′) ≥ J (w) +∇J (w)>(w′ −w) +
m

2
‖w′ −w‖2.

C2. Lipschitz smoothness. For any two points w and w′,

‖∇J (w′)−∇J (w)‖ ≤M‖w′ −w‖.

Under these assumptions, we can show the following:

Theorem 1. For a differentiable cost function J satisfying assumptions
C1 and C2, if the learning rate α ≤ 1

M , using the gradient descent update

w(k+1) = w(k) − α∇J (w(k)),

the cost converges as:

J (w(k+1))− J (w?) ≤ (1− αm)(J (w(k))− J (w?)).

Proof. The proof has two steps. First, we need to show that each update
reduces the cost by a sufficient amount. Second, we need to show that the
optimal cost cannot be very much better than the current one.

To show a sufficient decrease, we apply the Fundamental Theorem of
Calculus to J (w(k+1))− J (w(k)). The idea is to use Lipschitz smoothness
(C2) to show that the trajectory continues to move downhill at a certain
rate, because we start out opposite the gradient direction and the gradi-
ent doesn’t change too much. Representing the interpolation between two
consecutive iterates as

w(k+λ) = λw(k+1) + (1− λ)w(k) = w(k) − λα∇J (w(k)),

we have:

J (w(k+1))− J (w(k)) =

∫ 1

0

(w(k+1) −w(k))>∇J (w(k+λ)) dλ

=

∫ 1

0

(w(k+1) −w(k))>∇J (w(k))︸ ︷︷ ︸
=T1

dλ +

∫ 1

0

(w(k+1) −w(k))>
[
∇J (w(k+λ))−∇J (w(k))

]
︸ ︷︷ ︸

=T2

dλ

Plugging in the update rule, we get that T1 = −α‖∇J (w(k))‖2. On the
other hand,

17

CSC2541 Winter 2021 Chapter 1: A Toy Model

T2 ≤
∫ 1

0

‖w(k+1) −w(k)‖ · ‖∇J (w(k+λ))−∇J (w(k))‖ dλ (Cauchy-Schwartz)

≤
∫ 1

0

‖w(k+1) −w(k)‖ ·M‖w(k+λ) −w(k)‖ dλ (C2)

=

∫ 1

0

α2Mλ‖∇J (w(k))‖2 dλ

=
α2M

2
‖∇J (w(k))‖2

≤ α

2
‖∇J (w(k))‖2 (assumption on α)

Putting these results together,

J (w(k+1))− J (w(k)) = T1 + T2 ≤ −
α

2
‖∇J (w(k))‖2. (18)

The second part of the proof is to show that the current point is not too
suboptimal. Intuitively, this follows directly from strong convexity (C1):
this assumption lower bounds the cost function with a quadratic, so J (w?)
can be no smaller than the minimum of this quadratic:

J (w?) ≥ J (w(k)) +∇J (w(k))>(w? −w(k)) +
m

2
‖w? −w(k)‖2

≥ J (w(k))− 1

2m
‖∇J (w(k))‖2. (19)

Combining Equations 18 and 19, we find that

J (w(k+1))− J (w?) ≤ (1− αm)(J (w(k))− J (w?)).

We can relate this result to our analysis of convex quadratics. For a
quadratic cost function, C1 lower bounds the minimum eigenvalue of A as
m. Similarly, C2 upper bounds the maximum eigenvalue as M . Analogously
to quadratics, the learning rate is bounded by 1

M . Assuming we set α = 1
M ,

the cost decreases in each iteration by a factor of 1 − m
M . The quantity

κ = M
m can be seen as the condition number of the cost function, so we

obtain essentially the same linear dependence on κ as we did in the convex
quadratic case.

The strongly convex optimization setting has a clear advantage relative
to our analysis of quadratics and linear regression: it applies to cost func-
tions which aren’t quadratic. Furthermore, many cost functions we might
actually be interested in optimizing satisfy the assumptions, in which case
we have formal guarantees on the optimizer we’re actually using.

On the other hand, analyzing linear regression as a model system has
some distinct advantages:

1. Unregularized linear regression is not strongly convex, so the strongly
convex analysis is not strictly a generalization of our linear regression
analysis.

18

CSC2541 Winter 2021 Chapter 1: A Toy Model

2. One particular feature of strongly convex problems is that they have
a unique global optimum which the optimizer coverges to. Hence, the
strongly convex analysis is incapable of explaining the implicit regu-
larization and double descent effects, which require understanding the
detailed dynamics to determine which stationary point is converged
to.

3. The linear regression analysis makes more specific predictions than
Theorem 1. E.g., we saw that faster convergence along a particular
direction can be either a feature or a bug (see Sction 3.1). The linear
regression analysis lets us understand which directions train faster,
an insight that can’t be obtained from the strongly convex analysis.
(A reader who already has a sophisticated intuition for optimization
might be able to deduce similar conclusions by reading the proof, but
this probably depends on already having worked through examples
like the quadratic case.)

4. We could carry out all the steps of the linear regression analysis with-
out guessing the answer in advance. Each step we went through is
entirely natural, or should seem so by the end of this course. By con-
trast, the strongly convex optimization proof is something you’d come
up with post-hoc after having thought hard about the problem. In
fact, an optimization researcher would probably come up with such a
proof by way of reasoning through model problems including quadrat-
ics. It’s just that all of this reasoning is hidden once the abstract result
is formulated.

As you’ve probably guessed, I tend to favor model systems. It’s very
hard to formulate rigorous proofs in abstract settings when the assumptions
are general enough to capture real neural networks. And once this is done,
the proof is often so complicated that it obscures the underlying ideas. On
the other hand, for any neural net phenomenon, there’s probably a model
system that we can analyze in detail in order to get better understanding.

Of course, mathematical analyses of simple toy problems don’t directly
prove anything about the neural nets we train in practice. (And for that
matter, neither do proofs involving idealized neural net training scenarios!)
But these idealized analyses are very useful for making educated guesses
about what might happen for neural net training, and many of the impor-
tant advances in neural nets were invented precisely by reasoning through
toy examples.

If we truly want to understand what is happening for real neural nets,
we need to go a step further, and validate the predictions made by the
model system. Just like with any other experimental science, the way to
do this is to make lots of specific quantitative and qualitative predictions
— e.g. predict how one measurement changes as a result of changing some
independent variable — and then compare these predictions against the be-
havior of real networks. Since simpler model systems often yield more pre-
dictions than complicated ones, simplistic toy problems can often be more
useful for understanding neural net behavior than more abstract settings
with supposedly weaker or more realistic assumptions.

19

CSC2541 Winter 2021 Chapter 1: A Toy Model

6 Discussion

This is supposed to be a course on neural net training dynamics. Why did
we just spend an entire lecture on linear regression? There are multiple
reasons:

1. Linear regression is an important model system, and can give us a lot
of intuition for how neural nets behave. Analyzing linear regression
doesn’t directly prove anything about neural nets, but it lets us for-
mulate hypotheses to explain phenomena we’ve observed. Sometimes
it yields testable predictions beyond the original phenomenon, and we
can use this to validate the explanation for neural nets.

In this sense, linear regression is part of a toolbox of model problems
which also includes, e.g., noisy quadratic objectives, linear neural net-
works, Gaussian processes, matrix completion, and bilinear games.

2. We can approximate a nonlinear system by taking a Taylor approxima-
tion around some point of interest (e.g. the initialization or the opti-
mal solution). A second-order Taylor approximation of a cost function
around the optimum reduces the problem to a convex quadratic, so
this lecture’s analysis directly applies. In classical mechanics, taking
a second-order Taylor approximation to a potential energy results in
a harmonic oscillator; so the harmonic oscillator is universal. This
lecture’s gradient descent dynamics are universal in the same sense.

3. Amazingly, in certain situations deep neural networks have been shown
to behave like linear regression on a high-dimensional random feature
space. This surprising property allows us to prove optimization and
generalization bounds for real neural nets. Admittedly, the settings
where this theory applies don’t quite match the state-of-the-art on
real applications, but it comes close enough that it’s interesting to try
to understand exactly how the theory breaks down. This is currently
a major topic of interest in deep learning theory.

References

Milkhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling
modern machine-learning practice and the classical bias-variance trade-
off. Proceedings of the National Academy of Sciences, 2019.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshi-
rani. Surprises in high-dimensional ridgeless least squares interpolation.
arXiv:1903.08560v4, 2019.

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge Uni-
versity Press, 2012.

Yann LeCun. Efficient backprop. In Neural Networks: Tricks of the Trade.
Springer, 1998.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak,
and Ilya Sutskever. Deep double descent: Where bigger models and more
data hurt. arXiv:1912.02292v1, 2019.

20

	Some Motivating Phenomena
	Gradient Descent for Linear Regression
	Some Observations about Gradient Descent
	Closed Form Dynamics for Convex Quadratics
	Without Loss of Generality
	Back to Linear Regression

	Why Normalize the Features?
	Full Whitening
	Lessons for Neural Nets

	Double Descent
	Beyond Linear Regression: Strongly Convex Optimization
	Discussion

