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Empirical Deep Learning

Studying neural nets presents an unusual set of scientific challenges

AI used to feel like engineering

Start with a goal (optimization, prediction, etc.), ask how a rational
agent would solve it, and figure out how to implement that solution

Now we’re doing a lot more reverse engineering

The neural net somehow (apparently) solves a problem, and we
have to figure out how

This course didn’t give the answers, but it did cover some
conceptual tools we need to look for the answers

Linearization, metrics, implicit regularization, stochasticity, infinite
limits, dynamical systems, etc.
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Bilevel Optimization

Much of the progress of AI has been about automating aspects of
AI engineering

Hand-coded knowledge ⇒ statistical learning
Hand-coded reasoning ⇒ SAT solvers, probabilistic inference
Feature engineering ⇒ deep learning

What’s next?

Hyperparameters, optimizers, architectures, regularizers, curricula,
data augmentation strategies, self-supervised learning objectives,
search algorithms, debiasing

In principle, much of this can be formulated as bilevel optimization

Our understanding of bilevel optimization is comparable to deep
learning circa 2008. Things sometimes work if we get lucky
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Bilevel Optimization and NNTD

Understanding bilevel optimization, meta-learning, etc. requires
thinking about NNTD in both the inner and outer levels
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Short-Horizon Bias in Stochastic Meta-Optimization
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Short-Horizon Bias

We saw that it’s possible (in principle) to learn an optimizer using
meta-descent

Can we solve the much easier problem of adapting the learning
rate? If we can’t even do this, then meta-optimization is hopeless!

We’ll even ignore the computational cost of the meta-optimization
itself and just ask if it gives a reasonable solution.

What actually happens?
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Short-Horizon Bias

Wu et al., 2018, “Understanding
short-horizon bias in stochastic
meta-optimization”

Offline adaptation of a parametric
learning rate schedule for SGD

αk =
α0

(1 + k/K)β

Hyperparameters α0, K, β

Estimate hypergradient with
unrolling

Evaluate the validation loss after
{100, 1000, 5000, 20000} steps (the
horizon)

MNIST dataset
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Short-Horizon Bias

Hyperparameter trajectories for different horizons

Why does this happen?
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Short-Horizon Bias

Remember the Noisy Quadratic Model? (Lecture 7)
This model captures the phenomenon

Over a short horizon, you want to use a small learning rate to
reduce the effects of gradient noise
Over a long horizon, you want to keep a high learning rate (to make
more progress in low-curvature directions) and then decay at the
end (to eliminate noise)

For a deterministic quadratic, a greedy (1-step) choice of learning
rate and momentum decay is optimal, since it’s equivalent to
conjugate gradient (Lecture 9)
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Short-Horizon Bias

Using dynamic programming, we can determine the expected loss
under any learning rate and momentum schdule (Lecture 7)
We can optimize the schedule using dynamic programming
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Short-Horizon Bias

The NQM gives a clear model for why short horizons bias us
towards small learning rates

This is a tough problem to get around, since large learning rates
help by making progress in low-curvature directions, which is
invisible if you only measure the loss over the short term
Maybe measuring more information would make meta-descent
work? But what information?

I believe this is a fundamental problem not just for meta-descent
on learning rate (schedules), but also for any meta-optimizer that
can express a learning rate (schedule), e.g.

Rescaling a preconditioner is equivalent to changing the learning
rate
ε in RMSprop/Adam, damping parameter in K-FAC
Batch norm implicit decay effect
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Closing Thoughts
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Closing Thoughts

Some (mostly) open questions about bilevel optimization dynamics:

When is the outer objective smooth or chaotic?

When should we use a simultaneous vs. a Stackelberg game?

What are the effects of various ways of approximating H−1?

We assumed the inner and outer objectives had unique optima.
What if one (or both) is overparameterized?

What implicit regularization is encoded in bilevel optimization, and
how does it depend on the inner and outer optimizers?

How is it affected by stochastic gradients?

Are we in the noise-dominated or curvature-dominated regime, and
are these even the right concepts to consider?

Can we understand and improve the game dynamics for STNs and
other approaches?

What do H, G, etc. for the inner and outer objectives tell us about
the game dynamics? (E.g., how to understand the centering effect
in ∆-STNs?)
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