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Differentiable Games

So far, we have been exclusively discussing minimization problems:

z∗ ∈ arg min
z

f(z)

(minimizing a single objective)

What if we have multiple players and each of them optimizes their own
objective?

z∗i ∈ arg min
zi

fi(zi, z
∗
−i)

(now, we’re trying to find local/global Nash equilibrium)

Examples: Generative Adversarial Networks, multi-agent RL, PCA,
off-policy evaluation, robust optimization, ...
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Generative Adversarial Networks

min
G

max
D

f(D,G) = Ex∼pdata
[log(D(x))] + Ez∼pz [log(1−D(G(z)))]
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Nash Equilibrium

z∗i ∈ arg min
zi

fi(zi, z
∗
−i)

NNTD (UofT) CSC2541-Lec10 4 / 27



Differentiable Games

Differentiable games are much harder to solve (even only two-player)!

min
x

max
y

f(x,y)

(It’s called minimax optimization, saddle-point problem)

Why are they more challenging?

In the nonconvex-nonconcave case, local Nash equilibria might not
exist. Even when they exist, finding a local Nash equilibrium is
PPAD-complete.
In the convex-concave setting, standard gradient descent can
diverge with any positive step size or enter limit cycles.
Even when gradient descent converges, the rate of convergence may
be too slow in practice (our focus today).

Left: bilinear game with
f(x, y) = 10xy
Right: f(x, y) = 0.5x2 + 10xy − 0.5y2
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Today

We are going to focus on two-player,
strongly-convex strongly-concave, zero-sum
games.

min
x

max
y

f(x,y)

(many insights carry over to more general
settings)

Strong duality (minimax theorem) holds, i.e.,

min
x

max
y

f(x,y) = max
y

min
x
f(x,y)

Local Nash equilibrium is global and it is unique.

Even for this simple setting, convergence can be slow because the
“rotational force” necessitate extremely small learning rates.
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A Closer Look of Linear Case

Consider the general dynamics:

z(k+1) = z(k) − ηF (z(k))

(where F is a vector field)

Linear case: F (z) = Hz

Minimization: H is symmetric and all eigenvalues are real
Differentiable Games: H is non-symmetric and can have
complex eigenvalues (with large imaginary parts)

min f(x, y) = 0.5x2 + 0.5y2 minx maxy f(x, y) = 0.5x2 + 10xy− 0.5y2
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Simultaneous Gradient Descent-Ascent
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Simultaneous Gradient Descent-Ascent

Sim-GDA is a näıve extension to gradient descent to the game setting

x(k+1) ← x(k) − η∇xf(x(k),y(k))

y(k+1) ← y(k) + η∇yf(x(k),y(k))

We can compactly write it as z(k+1) ← z(k) − ηF (z(k)) where
z = [x>,y>]> and F (z) = [∇xf(x,y)>,−∇yf(x,y)>]>.

Assuming a quadratic problem f(x,y) = 1
2x>Ax + x>By − 1

2y>Cy

We have the dynamics:

z(k+1) ← (I− ηH)z(k)

where z = [x>,y>]> and H =

[
A B
−B> C

]
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Convergence Analysis of Sim-GDA

Setting: Smooth and strongly-monotone games

Define the gradient vector field F (z) = [∇xf(x,y)>,−∇yf(x,y)>]>

Lipschitz Smooth: a vector field F is Lipschitz if for any z1, z2 and
a parameter L:

‖F (z1)− F (z2)‖ ≤ L‖z1 − z2‖

Strongly Monotone: a vector field F is strongly monotone if for any
z1, z2 and a parameter µ:

(F (z1)− F (z2))>(z1 − z2) ≥ µ‖z1 − z2‖2

Condition number: κ , L
µ

Quadratic case: F (z) = Hz where H � µI and ‖H‖ ≤ L
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Convergence Analysis of Sim-GDA

Recall that the dynamics of Sim-GDA: z(k+1) ← (I− ηH)z(k)

Its convergence rate is minη ρ(I− ηH) = minη maxλ∈Sp(H) ‖1− ηλ‖

Image Credit: Negative Momentum for
Improved Game Dynamics

Eigenvalues of H

The best convergence rate is limited by the eigenvalue
λ = µ+

√
L2 − µ2i.

The optimal convergence rate is 1− 1
κ2 , which implies that Sim-GDA

takes roughly O(κ2) steps to converge. Recall that gradient descent only
takes O(κ) steps to converge in minimizing a strongly-convex function!
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Could we accelerate the convergence of Sim-GDA?
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Alternating Gradient Descent-Ascent

Alt-GDA updates multiple players
sequentially:

x(k+1) ← x(k) − η∇xf(x(k),y(k))

y(k+1) ← y(k) + η∇yf(x(k+1),y(k))

Alt-GDA converges with O(κ) steps
(which matches the coarse lower-bound).

The result could be extended to n-player
setting (ongoing work).

In the bilinear case, Alt-GDA is a
symplectic integrator applied on the
continuous dynamic.

Left: f(x, y) = 10xy;

Right: 0.5x2 + 10xy − 0.5y2;
Top: Sim-GDA;

Bottem: Alt-GDA.

The discussion of simultaneous and alternating updates dates back to
the Jacobi and Gauss-Seidel methods in numerical linear algebra, see the
celebrated Stein-Rosenberg theorem.

see more details in “Don’t fix what ain’t broke: near-optimal local convergence of alternating gradient
descent-ascent for minimax optimization”
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Alternating Gradient Descent-Ascent

Consider the quadratic problem f(x,y) = 1
2x>Ax + x>By − 1

2y>Cy.

We have Alt-GDA as the following form:[
x(k+1)

y(k+1)

]
←
[

I− ηA −ηB
ηB>(I− ηA) I− ηC− η2B>B

]
︸ ︷︷ ︸

JAlt

[
x(k)

y(k)

]

Recall Sim-GDA dynamcis for the
quadratic case:[

x(k+1)

y(k+1)

]
←
[
I− ηA −ηB
ηB> I− ηC

]
︸ ︷︷ ︸

JSim

[
x(k)

y(k)

]

Alt-GDA allows us to use larger step
sizes. The optimal step size for
Sim-GDA is µ

L2 while the optimal one
for Alt-GDA is roughly 1

L .

Re

Im

Eigenvalues of JAlt (green dots) and JSim
(red dots) for the minimax problem

f(x, y) = 0.3x2 + 1.2xy − 0.3y2. Their
trajectories as η sweeps in [0, 1] are shown

from light colors to dark colors
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Alternating Gradient Descent-Ascent

We are implicitly using alternating updates in GAN training.
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DCGAN on CIFAR-10. Left: SGD as base optimizer; Right: AMSGrad as base optimizer.
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Negative Momentum

Negative momentum is basically Heavy-ball momentum with a negative
damping value:

z(k+1) ← (1 + β)z(k) − βz(k−1) − ηF (z(k))

Intuition: negative momentum reduces the imaginary parts of complex
eigenvalues, and hence suppresses the rotational behaviour. (recall the
rate of Sim-GDA was limited by the eigevalue λ = µ+

√
L2 − µ2i)

Negative momentum converges in O(κ1.5) steps, which is slightly faster than
Sim-GDA (recall the complexity of O(κ2)). However, this rate is suboptimal as
some other algorithms converge in O(κ) steps.

Proving this convergence rate is extremely hard! Need to leverage the
connection between Chebyshev polynomial and Heavy-ball momentum. Check
out my paper “On the suboptimality of negative momentum for minimax
optimization”.
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Negative Momentum

Negative momentum is basically Heavy-ball momentum with a negative
damping value:

z(k+1) ← (1 + β)z(k) − βz(k−1) − ηF (z(k))

Fact: Heavy-ball momentum with an optimally-tuned damping
parameter is optimal when all eigenvalues of H fall within an ellipse in
the complex plane.

(<λ− d)2

a2
+

(=λ)2

b2
≤ 1

a > b: optimal β is positive

a < b: optimal β is negative

a = b: optimal β is zero

Another fun fact: Negative momentum retains the same convergence rate
when the function f is not quadratic. (Recall that Heavy-ball
momentum only achieves acceleration when f is quadratic)

see more details in “Don’t fix what ain’t broke: near-optimal local convergence of alternating gradient
descent-ascent for minimax optimization”
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Negative Momentum

Image Credit: Negative Momentum for Improved Game Dynamics
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Proximal Point Method

The proximal point method (Rockafeller, 1976) is an implicit method:

z(k+1) ← z(k) − ηF (z(k+1))

Intuition: compute gradient at a future point, but it is not
implementable in many cases (chicken and egg situtation).

In optimization, the proximal point method is largely regarded as a
“conceptual” guiding principle for accelerating optimization algorithms.
NAG can be derived from the proximal point method (see “From
Proximal Point Method to Nesterov’s Acceleration” paper).

It can be shown that for smooth and strongly monotone games, the
proximal point method converges linearly for any η:

‖z(k) − z∗‖2 ≤
(

1

1 + 2ηµ

)k
‖z(0) − z∗‖2

check out the proof in “A Unified Analysis of First-Order Methods for Smooth Games via Integral
Quadratic Constraints”
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Could we approximate proximal point method and achieve
acceleration?

NNTD (UofT) CSC2541-Lec10 20 / 27



Extra-gradient method

The Extra-gradient method computes the gradient with one-step
lookahead (extrapolated gradient):

z(k+1/2) ← z(k) − ηF (z(k))

z(k+1) ← z(k) − ηF (z(k+1/2))

It was first proposed by Korpelevich in 70’s to solve monotone
variational inequality problem.

It was recently re-introduced by Gidel, et.al (2019) and Mokhtari, et.al
(2019) in the context of differentiable games and minimax optimization.

Over the last three years, more than 10 papers discussed the
extra-gradient method in different settings.
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Extra-gradient method

The extra-gradient method computes the gradient with one-step
lookahead:

z(k+1/2) ← z(k) − ηF (z(k))

z(k+1) ← z(k) − ηF (z(k+1/2))

Intuition: approximate F (z(k+1)) with F (z(k+1/2)), hoping to inherit the
convergence properties of proximal point method.

Formally, it can shown that starting with the same z(k), the solution of

extra-gradient z
(k+1)
eg after one step is relatively close to the solution of

proximal point method z
(k+1)
ppm :

‖z(k+1)
eg − z(k+1)

ppm ‖ ≤ o(η2)

Under the same set of assumptions, the extra-gradient method converges
linearly

‖z(k) − z∗‖2 ≤
(

1− 1

2κ

)k
‖z(0) − z∗‖2

see more details in “A Unified Analysis of Extra-gradient and Optimistic Gradient Methods for Saddle
Point Problems: Proximal Point Approach”
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Optimistic Gradient Method

Optimistic Gradient update rule:

z(k+1) ← z(k) − ηF (2z(k) − z(k−1))

You could understand it as replacing the first step of extra-gradient with
the following:

z(k+1/2) ← z(k) + z(k) − z(k−1)

It has pretty much the same convergence properties as extra-gradient
but only compute the gradient once in every iteration!

Under the same set of assumptions, optimistic gradient converges linearly

‖z(k) − z∗‖2 ≤
(

1− 1

4κ

)k
‖z(0) − z∗‖2
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Optimistic Gradient Method

In which case should we use optimistic gradient method?

In the situation that you are only allowed to query the gradient
once every iteration.
In (no-regret) online learning with an arbitrary adversary,
extra-gradient is not no-regret.
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Comparison between different algorithms
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Distances to the optimum as a function of iterations on a quadratic minimax problem.
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Important directions that I didn’t cover

General convex-concave setting (without strong convexity/concavity). In
this setting, one can only achieve sublinear convergence (see e.g., [1,2]).

Stochastic settings (see e.g., [3, 4]).

Second-order methods (see e.g., [5, 6]).

Sequential games when f is nonconvex-nonconcave (see e.g., [7, 8]). In
this case, Nash equilibrium might not exist and other equilibrium
concepts were proposed. Moreover, the order of different players matters
since min max 6= max min

[1] Convergence rate of o(1/k) for optimistic gradient and extragradient methods in smooth
convex-concave saddle point problems.
[2] Last iterate is slower than averaged iterate in smooth convex-concave saddle point problems.
[3] On the convergence of single-call stochastic extragradient methods.
[4] Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Vari-
able Stepsize Scaling.
[5] Differentiable Game Mechanics.
[6] Competitive Gradient Descent.
[7] What is Local Optimality in Nonconvex-Nonconcave Minimax Optimization?
[8] On Solving Minimax Optimization Locally: A Follow-the-Ridge Approach.
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Summary

Differentiable game dynamics is more complex.

In the nonconvex setting, Nash equilibrium might not exist. Even
when it exists, finding local solution is much harder than finding
local minima in minimization.

Even for convex-concave two-player setting, standard algorithms
could either diverge or cycle around the equilibrium.

When converges, rotational component (caused by complex
eigenvalues) would slow down convergence.

When it comes to algorithm choice, alternating updates
significantly outperform simultaneous updates and negative
momentum is preferred in many cases.

Extra-gradient and optimistic gradient method approximate
proximal point method, which accelerate the convergence.
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