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Differentiable Games

@ So far, we have been exclusively discussing minimization problems:

z" € argmin f(z)
z
(minimizing a single objective)
o What if we have multiple players and each of them optimizes their own
objective?
z; € argmin f;(z;,2" ;)

(now, we're trying to find local/global Nash equilibrium)

@ Examples: Generative Adversarial Networks, multi-agent RL, PCA,
off-policy evaluation, robust optimization, ...
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Generative Adversarial Networks

minmax f(D, &) = Eonpga, [108(D(@))] + Eznp. [log(1 = D(G(2)))]
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Nash Equilibrium

NNTD

A stays silent
(cooperates)

A betrays B

(UofT)

z; € argmin f;(z;,2" )

THE PRISONER’S DILEMMA
B stays silent B betrays A
(cooperates) (defects)

(defects)

Both serve 1 year

A serves 3 years,
B goes free

A goes free,
B serves 3 years

Both serve 2 years
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Differentiable Games

@ Differentiable games are much harder to solve (even only two-player)!
min max f(x,y)
x y

(It’s called minimax optimization, saddle-point problem)
@ Why are they more challenging?

e In the nonconvex-nonconcave case, local Nash equilibria might not
exist. Even when they exist, finding a local Nash equilibrium is
PPAD-complete.

e In the convex-concave setting, standard gradient descent can
diverge with any positive step size or enter limit cycles.

e Even when gradient descent converges, the rate of convergence may
be too slow in practice (our focus today).

Left: bilinear game with

f(z,y) = 10zy
Right: f(z,y) = 0.52% + 102y — 0.59°
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Today

@ We are going to focus on two-player,
strongly-convex strongly-concave, zero-sum
games.

min max f(x,y)
x y

(many insights carry over to more general
settings)

@ Strong duality (minimax theorem) holds, i.e.,
minmax f(x,y) = maxmin f(x,y)
x y y x

@ Local Nash equilibrium is global and it is unique.

@ Even for this simple setting, convergence can be slow because the
“rotational force” necessitate extremely small learning rates.
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A Closer Look of Linear Case

@ Consider the general dynamics:
zkt1) — (k) _ nF(z(k))

(where F is a vector field)

@ Linear case: F(z) = Hz
e Minimization: H is symmetric and all eigenvalues are real
e Differentiable Games: H is non-symmetric and can have
complex eigenvalues (with large imaginary parts)
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Simultaneous Gradient Descent-Ascent
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Simultaneous Gradient Descent-Ascent

@ Sim-GDA is a naive extension to gradient descent to the game setting

xFHD) o xB) _ o, f(x®), y )
y D y(’“) +Vy f(x®,y W)
@ We can compactly write it as z*+1) « z(®) — P (2(*)) where
z=[x",y"]" and F(z) = [V f(x,y) ", =Vy f(x,¥)"]"
@ Assuming a quadratic problem f(x,y) = %XTAX +x "By — %yTCy

e We have the dynamics:

25+ (1 - pH)z®

where z =[x,y "]" and H = [ A B]

-BT C
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Convergence Analysis of Sim-GDA

@ Setting: Smooth and strongly-monotone games

o Define the gradient vector field F(z) = [Vxf(x,¥)",—Vyf(x,¥)"]"
e Lipschitz Smooth: a vector field F' is Lipschitz if for any z;,zs and
a parameter L:

[1F(21) = F(z2)]| < Ljz1 — 2o

o Strongly Monotone: a vector field F' is strongly monotone if for any
Z1,Z2 and a parameter u:

(F(z1) — F(22)) " (21 — 22) > |21 — 2o

o . A
e Condition number: x = %

® Quadratic case: F'(z) = Hz where H > pl and |H|| < L

NNTD (UofT) CSC2541-Lecl0 10 /27



Convergence Analysis of Sim-GDA

@ Recall that the dynamics of Sim-GDA: z*+1) « (I — nH)z*)

@ Its convergence rate is min, p(I —nH) = min, maxecgpm) |1 — ||

10if e VP =127

-10i
0 5 10

Eigenvalues of H

Image Credit: Negative Momentum for
Improved Game Dynamics

@ The best convergence rate is limited by the eigenvalue
A= pu+/L?— p?i.

@ The optimal convergence rate is 1 — é, which implies that Sim-GDA
takes roughly O(k?) steps to converge. Recall that gradient descent only
takes O(k) steps to converge in minimizing a strongly-convex function!
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Could we accelerate the convergence of Sim-GDA?
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Alternating Gradient Descent-Ascent

@ Alt-GDA updates multiple players
sequentially:

KD ) g p(x(0) $(0)
y D ey 4y fx D,y ®)

@ Alt-GDA converges with O(x) steps
(which matches the coarse lower-bound).

@ The result could be extended to n-player
setting (ongoing work).

@ In the bilinear case, Alt-GDA is a

symplectic integrator applied on the
continuous dynamic.

Left: f(z,y) = 10zy;
Right: 0.522 + 10zy — 0.5y2;
Top: Sim-GDA;
Bottem: Alt-GDA.

@ The discussion of simultaneous and alternating updates dates back to
the Jacobi and Gauss-Seidel methods in numerical linear algebra, see the

celebrated Stein-Rosenberg theorem.

see more details in “Don’t fix what ain’t broke: near-optimal local convergence of alternating gradient

descent-ascent for minimax optimization”
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Alternating Gradient Descent-Ascent

@ Consider the quadratic problem f(x,y) =

@ We have Alt-GDA as the following form:

|:X(k+1):| - |: | = nA
yh+D nBT(I—nA)

%XTAX +x"By — %yTCy.

_nB

< (F)
I-nC-7n*B'B| |y

Jare

@ Recall Sim-GDA dynamcis for the

quadratic case:
—nB | [x®
I-nC| |y®

{x(k"‘l)} [I —nA
y(E+D) nBT
Jsim

o Alt-GDA allows us to use larger step
sizes. The optimal step size for
Sim-GDA is 5 while the optimal one
for Alt-GDA is roughly %
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Eigenvalues of Ja); (green dots) and Jgjm,
(red dots) for the minimax problem
f(z,y) = 0.32% + 1.2zy — 0.3y%. Their
trajectories as n sweeps in [0, 1] are shown
from light colors to dark colors
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Alternating Gradient Descent-Ascent

@ We are implicitly using alternating updates in GAN training.
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DCGAN on CIFAR-10. Left: SGD as base optimizer; Right: AMSGrad as base optimizer.
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Negative Momentum

@ Negative momentum is basically Heavy-ball momentum with a negative
damping value:

25D (14 8)2® — B2V _ pF(z®)

@ Intuition: negative momentum reduces the imaginary parts of complex
eigenvalues, and hence suppresses the rotational behaviour. (recall the
rate of Sim-GDA was limited by the eigevalue A\ = pu + /L2 — p2i)

@ Negative momentum converges in O(x') steps, which is slightly faster than

Sim-GDA (recall the complexity of O(x?)). However, this rate is suboptimal as
some other algorithms converge in O(k) steps.

@ Proving this convergence rate is extremely hard! Need to leverage the
connection between Chebyshev polynomial and Heavy-ball momentum. Check
out my paper “On the suboptimality of negative momentum for minimax
optimization”.
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Negative Momentum

@ Negative momentum is basically Heavy-ball momentum with a negative
damping value:

25 (14 8)z®) — gzt+=Y — ()

@ Fact: Heavy-ball momentum with an optimally-tuned damping
parameter is optimal when all eigenvalues of H fall within an ellipse in
the complex plane.

e a > b: optimal 3 is positive

_ 2 ) )2
(RA —d) + (SX) <1 e a < b: optimal  is negative

e a = b: optimal 3 is zero

@ Another fun fact: Negative momentum retains the same convergence rate
when the function f is not quadratic. (Recall that Heavy-ball
momentum only achieves acceleration when f is quadratic)

see more details in “Don’t fix what ain’t broke: near-optimal local convergence of alternating gradient
descent-ascent for minimax optimization”
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Negative Momentum

Py

Image Credit: Negative Momentum for Improved Game Dynamics
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Proximal Point Method

@ The proximal point method (Rockafeller, 1976) is an implicit method:

25D 50 _ Py

@ Intuition: compute gradient at a future point, but it is not
implementable in many cases (chicken and egg situtation).

@ In optimization, the proximal point method is largely regarded as a
“conceptual” guiding principle for accelerating optimization algorithms.
NAG can be derived from the proximal point method (see “From
Prozimal Point Method to Nesterov’s Acceleration” paper).

@ It can be shown that for smooth and strongly monotone games, the
proximal point method converges linearly for any #:

k
* 1 *
2 - 2P < (5 ) 12 - 2P

check out the proof in “A Unified Analysis of First-Order Methods for Smooth Games via Integral
Quadratic Constraints”
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Could we approximate proximal point method and achieve
acceleration?
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Extra-gradient method

@ The Extra-gradient method computes the gradient with one-step
lookahead (extrapolated gradient):

zk+1/2) o S (k) _ nF(z(k))
7kt (k) _ 77F(Z(l'wrlﬂ))
o It was first proposed by Korpelevich in 70’s to solve monotone
variational inequality problem.

o It was recently re-introduced by Gidel, et.al (2019) and Mokhtari, et.al
(2019) in the context of differentiable games and minimax optimization.

@ Over the last three years, more than 10 papers discussed the
extra-gradient method in different settings.
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Extra-gradient method

@ The extra-gradient method computes the gradient with one-step
lookahead:

2(FH1/2) ) p(58)
2EFD) g ) _ pp((+1/2))

o Intuition: approximate F(z(*t1)) with F(z(*+1/2) hoping to inherit the
convergence properties of proximal point method.

e Formally, it can shown that starting with the same z*), the solution of

(k+1)
g

extra-gradient ze after one step is relatively close to the solution of

proximal point method zg’;ﬁf):

28 — 25Dl < o)

@ Under the same set of assumptions, the extra-gradient method converges
linearly

k
1
2% = 2P < (1= ) 2 - 27|
K

see more details in “A Unified Analysis of Extra-gradient and Optimistic Gradient Methods for Saddle
Point Problems: Proximal Point Approach”
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Optimistic Gradient Method

@ Optimistic Gradient update rule:

25D g0 (2 8) — gk 1)

@ You could understand it as replacing the first step of extra-gradient with

the following:
z(FH1/2)  g(k) | (k) _ ,(k=1)

@ It has pretty much the same convergence properties as extra-gradient
but only compute the gradient once in every iteration!

Under the same set of assumptions, optimistic gradient converges linearly

k
1
9 -2 < (1- 1) 120 -2
K
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Optimistic Gradient Method

@ In which case should we use optimistic gradient method?
o In the situation that you are only allowed to query the gradient
once every iteration.
o In (no-regret) online learning with an arbitrary adversary,
extra-gradient is not no-regret.
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Comparison between different algorithms

Distances to the optimum as a function of iterations on a quadratic minimax problem.
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Important directions that I didn’t cover

@ General convex-concave setting (without strong convexity/concavity). In
this setting, one can only achieve sublinear convergence (see e.g., [1,2]).

@ Stochastic settings (see e.g., [3, 4]).
@ Second-order methods (see e.g., [5, 6]).

@ Sequential games when f is nonconvex-nonconcave (see e.g., [7, 8]). In
this case, Nash equilibrium might not exist and other equilibrium
concepts were proposed. Moreover, the order of different players matters
since min max # max min

[1] Convergence rate of o(1/k) for optimistic gradient and extragradient methods in smooth
convex-concave saddle point problems.

[2] Last iterate is slower than averaged iterate in smooth convex-concave saddle point problems.
[3] On the convergence of single-call stochastic extragradient methods.

[4] Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Vari-
able Stepsize Scaling.

[5] Differentiable Game Mechanics.

[6] Competitive Gradient Descent.

[7] What is Local Optimality in Nonconvex-Nonconcave Minimax Optimization?

[8] On Solving Minimax Optimization Locally: A Follow-the-Ridge Approach.
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Summary

e Differentiable game dynamics is more complex.

o In the nonconvex setting, Nash equilibrium might not exist. Even
when it exists, finding local solution is much harder than finding
local minima in minimization.

e Even for convex-concave two-player setting, standard algorithms
could either diverge or cycle around the equilibrium.

e When converges, rotational component (caused by complex
eigenvalues) would slow down convergence.

@ When it comes to algorithm choice, alternating updates
significantly outperform simultaneous updates and negative
momentum is preferred in many cases.

e Extra-gradient and optimistic gradient method approximate
proximal point method, which accelerate the convergence.
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