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Today

So far, we’ve focused entirely on gradient descent dynamics

In the remainder of the course, we’ll branch out to more general
dynamics

Today

What can happen in more general dynamical systems?
Momentum optimization

understanding your homework derivation
Nesterov Accelerated Gradient
accelerated convergence

Lots of similar ideas used to understand differentiable game
dynamics
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Dynamical Systems

So far, all of our analysis has been based on a single recurrence:

w(k) = w(k−1) − α∇J (w(k−1))

(preconditioning = GD in another coordinate system)

Linear case (H symmetric):

w(k) = w(k−1) − αHw(k−1) ⇒ w(k) = (I− αH)kw(0)

Gradient flow

ẇ = −α∇J (w) = −αHw ⇒ w(t) = exp(−αtH)w(0)

What can happen?
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Dynamical Systems

Now let’s move beyond this and consider other sorts of dynamics

Today: momentum (accelerating convergence for ordinary
optimization)
Next week: simultaneous optimization for differential games
Weeks 11 and 12: bilevel optimization

Consider more general dynamics

Discrete time:

w(k) = w(k−1) − αf(w(k−1))

Continuous time:
ẇ = −αf(w)

f is a vector field which is not necessarily integrable, i.e. not
necessarily the gradient of any function
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Dynamical Systems

Linear case:
f(w) = Aw, with A not necessarily symmetric
Discrete time:

w(k) = w(k−1) − αAw(k−1) ⇒ w(k) = (I− αA)kw(0)

Continuous time:

ẇ = −αAw ⇒ w(t) = exp(−αtA)w(0)

If A is not symmetric, it can have complex and/or repeated
eigenvalues. This leads to more possible behaviors:

Image: https://en.wikipedia.org/wiki/Dynamical_system
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Dynamical Systems

What else can happen in the nonlinear case?

In 2 dimensions or higher, you can get limit cycles:

Image: By User:XaosBits at English
Wikipedia, CC BY 2.5, https://commons.
wikimedia.org/w/index.php?curid=732841

In 3 dimensions or higher, you can get chaotic dynamics, such as
strange attractors. Here’s the Lorenz system:

ẋ = a(y − x)

ẏ = x(b− z)− y
ż = xy − cz

Image: By Dschwen - Own work, CC BY
2.5, https://commons.wikimedia.org/w/index.
php?curid=494694
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Dynamical Systems

For discrete mappings, chaos can arise even more easily.

f(x) = 3.5x (1− x)

fc(z) = z2 + c

Image: https:

//en.wikipedia.org/wiki/Mandelbrot_set
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Heavy Ball Momentum
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Heavy Ball Momentum

Heavy ball momentum is a simple and highly effective method for
speeding up convergence of gradient descent

v(k+1) ← βv(k) − α∇J (w(k))

w(k+1) ← w(k) + v(k+1)

α is the learning rate, just like in gradient descent.

β is a damping/viscosity parameter. It should be slightly less than
1 (e.g. 0.9 or 0.99). Why not exactly 1?

Continuous dynamics (ignore learning rate for simplicity):

v̇(t) = −µv(t)−∇J (w(t))

ẇ(t) = v(t)

Physical analogy: imagine a “heavy ball” rolling on a nearly flat
surface, where J represents height

NNTD (UofT) CSC2541-Lec9 9 / 31



Heavy Ball Momentum

Why is this a good idea?

No one-sentence explanation that I’m aware of

Ordinary gradient descent corresponds to β = 0 (extremely high
damping/viscosity). This is like submerging the ball in a thick
fluid

In the high curvature directions, the
gradients cancel each other out, so
momentum dampens the oscillations.

In the low curvature directions, the
gradients point in the same direction,
allowing the parameters to pick up
speed.

Goodfellow et al., Deep Learning

For homework, you analyzed its convergence in the quadratic case
by computing the system’s eigenvalues. Let’s try to understand
why you got the answer that you did.
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Heavy Ball Momentum

In the problem set, you analyzed the dynamics of HB for convex
quadratics. Recap:

Fixed points: ∇J (w) = 0,v = 0

Rotation invariant

Can assume diagoal WLOG, in which case each coordinate evolves
independently

There’s a critical threshold T such that directions with 0 < hj < T
approach 0 monotonically (the overdamped case) and directions
with T < hj < hmax oscillate (the underdamped case)

Underdamped directions have only real eigenvalues, while
overdamped directions have complex eigenvalues
T = α−1(1−

√
β)2 = O(α−1(1− β)2)
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Heavy Ball Momentum

Dynamics of different eigendirections with β = 0.9 (all directions
overdamped)

And here’s β = 0.999 (all directions underdamped)

Figures from Lucas et al., “Aggregated momentum: Stability
through passive damping”
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Heavy Ball Momentum

Phase space visualization (plots both w and v) from Goh, “Why
momentum really works”
(https://distill.pub/2017/momentum/)
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Heavy Ball Momentum

The overdamped case:

If the gradient is constant (i.e. the cost surface is a plane), the
parameters will reach a terminal velocity of

− α

1− β
∇J (w),

which resembles gradient descent with learning rate α̃ = α/(1− β). This
quantity is the effective learning rate.

If α or h is very small (the highly overdamped case), the particle will
move slowly, and this should be a good approximation.

For a convex quadratic, the spectral radius for SGD with learning rate α̃
is |1− α̃h|.
In your homework, you probably derived an answer like:

1
2 (γ +

√
γ2 − 4β) γ = 1 + β − αh

With a bunch of algebra, you can show this is approximately 1− α̃h for
small α. (Try looking at the limit as α→ 0.)
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Heavy Ball Momentum
The underdamped case:

Let’s start with the continuous dynamics:

v̇(t) = −µv(t)−∇J (w(t))

ẇ(t) = v(t)

A common way to prove stability of a dynamical system is to find
a Lyapunov function, which is nonincreasing and is minimized at
the equlibrium point
For systems based on physics, this is often related to the energy
Define

E = J (w)︸ ︷︷ ︸
potential energy

+ 1
2‖v‖

2︸ ︷︷ ︸
kinetic energy

Change in energy over time (i.e. dissipation):

Ė = ẇ>∇J (w) + v̇>v

= v>∇J (w)−∇J (w)>v − µv>v

= −µ‖v‖2
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Heavy Ball Momentum

Consider the dynamics for a convex quadratic along one
eigenvector with curvature h

Suppose there’s no damping, i.e. µ = 0. Then energy is conserved.

Eliminating v, we can rewrite the dynamics as

ẅ(t) = −hw

This is a simple harmonic oscillator. If w(0) > 0 and v(0) = 0,
then it has the solution

w(t) = A cosωt

v(t) = ẇ(t) = −ωA sinωt

A = w(0)

ω =
√
h

Observe that E = 1
2ω

2A2 = 1
2hA

2
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Heavy Ball Momentum

Now suppose µ is small. There are two timescales:
On the short timescale, it’s a harmonic oscillator with amplitude
A(t)
On the long timescale, energy dissipates

Instantaneous dissipation:

Ė(t) = −µ‖v(t)‖2 = −µω2A(t)2 sin2 ωt

On a long timescale, the rate of dissipation is the temporal average
of Ė , which is

−1
2µω

2A(t)2 = −1
2µhA(t)2 = −µE(t)

Differential equation:
Ė(t) = −µE ,

which is exponential decay with timescale 1/µ

Note: this is independent of h!
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Heavy Ball Momentum

Compare to the observed behavior

β = 0.9 (overdamped):

β = 0.999 (underdamped):
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Heavy Ball Momentum
For homework, you derived the spectral
radius

ρ =

{
1
2
(γ +

√
γ2 − 4β) if h ≤ T

√
β if h > T .

T = α−1(1−
√
β)2

This is plotted on the right (assuming
α = h−1max)

Based on this figure, you want to choose β such that the minimum
curvature direction is critically damped, i.e., T = hmin

Solving for β,

β =

(
1− 1√

κ

)2

Rate of convergence (all directions are underdamped):

− log ρ = − 1
2 log β ≈ 1/

√
κ

Compare to 1/κ for gradient descent
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Heavy Ball Momentum

An aside:

We analyzed the underdamped case for the continuous dynamics
(damped harmonic oscillator).

Why does this predict the behavior in the discrete case? Shouldn’t
the discretization error hurt convergence?

In particular, if β = 1, then the spectral radius is 1.

In the continuous case, we explained this using conservation of
energy. Does this extend to the discrete dynamics?

No! Energy is not conserved!
The actual reason is very deep.

I noticed this puzzle when typing up the homework solutions.
Thanks to Chris Maddison for pointing me to the answer!
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Heavy Ball Momentum

By shifting the “start” of the update by half a time step, we can
rewrite HB momentum as a leapfrog integrator, a kind of
symplectic integrator:

v(k+ 1
2 ) = v(k) − α

2
∇J (w(k))

w(k+1) = w(k) + v(k+ 1
2 )

v(k+1) = v(k+ 1
2 ) − α

2
∇J (w(k+1))

Symplectic integrators can be shown to approximately conserve a
different but related function called the shadow Hamiltonian. For
quadratics, it’s exact. See Hairer et al., “Geometric numerical
integration”
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Nesterov Accelerated Gradient
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Nesterov Accelerated Gradient

Polyak invented HB momentum in 1964 (and discussed the physics
analogy)

Nesterov invented a similar update rule in 1983 now called the
Nesterov Accelerated Gradient (NAG) which he proved achieved
optimal convergence for convex quadratics

Even though Nesterov was Polyak’s student, he seems not to have
mentioned the physics analogy

Methods similar to HB and NAG are often called accelerated
methods. Ironically, the term “accelerated” has nothing to do with
the physics analogy and just refers to converging faster.

“Chebyshev acceleration” predated the HB paper by about a decade

Sutskever et al. (2013) popularized NAG in machine learning and
revived the momentum interpretation
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Nesterov Accelerated Gradient

NAG update rule (as presented in d’Aspremont et al.,
“Accelerated Methods”):

y(k) = w(k) + τk(z(k) −w(k))

w(k+1) = y(k) − αk∇J (y(k))

z(k+1) = z(k) − γk∇J (y(k))

Nesterov used a carefully chosen schedule of αk, τk, and γk to
obtain optimal convergence rates. In DL, we tend to use constant
values.
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Nesterov Accelerated Gradient

Sutskever et al. (2013) rewrote the update in
a way that emphasizes its similarity to HB:

v(k+1) = βv(k) − α∇J (w(k)+βv(k))

w(k+1) = w(k) + v(k+1)

This extrapolation trick is commonly used to
dampen oscillations in dynamical systems.
Some other examples:

The D term in PID controllers can be
interpreted as extrapolating the state, and
can dampen the oscillations created by the I
term.

See Hu and Lessard, 2017, “Control
interpretations for first-order optimization
methods”

Extragradient, an algorithm for solving
differentiable games (Lecture 10)

Top: HB momentum.

Bottom: NAG

(Sutskever et al., 2013)
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Nesterov Accelerated Gradient

Compared to HB, NAG dampens the high-frequency oscillations.

Figure from Lucas et al., “Aggregated momentum”. CM = classical
momentum (= HB). AggMo is our algorithm which generalizes NAG.

This effect doesn’t affect the convergence rate for quadratics (since the
low frequency oscillations come to dominate), but I’d guess this is helpful
for non-quadratics (where high-frequency oscillations might cause bigger
problems)
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Accelerated Convergence
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Accelerated Convergence

Recall:

Condition number κ = hmax/hmin

Gradient descent on a convex quadratic requires O(κ) iterations to
reach a given loss (Lecture 1)
Conjugate gradient requires O(

√
κ) iterations

In the problem set, you showed much faster convergence was
possible using HB

How fast do HB and NAG converge?

Can we do better, e.g. with a fancier update rule, or using more
than 2 past iterates?
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Accelerated Convergence

Oracle model of optimization: in each iteration, you query a weight
vector w(k), and the oracle returns J (w(k)) and ∇J (w(k)).

Think of the oracle as an adversary (it can choose values and
gradients to make life hard for your algorithm)
You can’t query things like the sparsity pattern, curvature, etc., so
this rules out preconditioning
Captures iterative methods like GD, HB, NAG, CG

Strongly convex optimization:

Strong convexity: for all w and w′, and a parameter µ,

J (w) ≥ J (w′) +∇J (w′)>(w −w′) + µ
2 ‖w −w′‖2

Lipschitz smoothness: for all w and w′ and a parameter L,

‖∇J (w)−∇J (w′)‖ ≤ L‖w −w′‖

Condition number κ = L/µ (generalizes the quadratic case)
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Accelerated Convergence

Nesterov’s worst function in the world is a convex quadratic:

J (w) = 1
2(1− w1)

2 +

D−1∑
j=1

1
2(wj+1 − wj)

2

Observe: H is tridiagonal

Initialization: w1 = · · · = wD = 0

Optimal solution: w1 = · · · = wD = 1
Information diffuses slowly:

The Krylov subspace Kk is spanned by the first k coordinate
vectors. Therefore, the kth iterate can make at most the first k
coordinates nonzero
Subject to this constraint, the minimum achievable loss in k
iterations is 1/k

Variants of this function can be used to show an O(
√
κ) lower

bound for convergence under the oracle model. See Nesterov,
“Introductory lectures on convex optimization”
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Accelerated Convergence

HB momentum achieves the optimal convergence rate for
quadratics (as we showed earlier in lecture)

But HB doesn’t achieve this convergence rate for general strongly
convex functions!

See Lessard et al., ”Analysis and design of optimization algorithms
via integral quadratic constraints”
This paper uses techniques from control theory to automatically
analyze convergence rates of first-order optimizers (including GD,
HB, NAG) by solving certain semidefinite programs
Among many interesting contributions, they exhibit a convex
function for which HB fails to achieve the optimal convergence rate

NAG achieves the optimal convergence rate for strongly convex
functions

Nesterov’s proof is very involved, and I haven’t yet seen an
explanation I could cover in the scope of this lecture

Conjugate gradient (which is exactly optimal for quadratics) often
behaves a lot like HB momentum for ill-conditioned quadratics
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