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Today

So far, we’ve focused entirely on gradient descent dynamics

In the remainder of the course, we’ll branch out to more general
dynamics
o Today

e What can happen in more general dynamical systems?
o Momentum optimization

o understanding your homework derivation
o Nesterov Accelerated Gradient
e accelerated convergence

@ Lots of similar ideas used to understand differentiable game
dynamics
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Dynamical Systems

@ So far, all of our analysis has been based on a single recurrence:
wF) = k=1 _ avj(w(k—l))
(preconditioning = GD in another coordinate system)
@ Linear case (H symmetric):
wh) = whkD _oHwkD o wk) = (I - o H)Fw(©
o Gradient flow
w=—-aVJ(w)=—-aoHw = w(t) = exp(—atH)w(0)

@ What can happen?
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Dynamical Systems

e Now let’s move beyond this and consider other sorts of dynamics

o Today: momentum (accelerating convergence for ordinary
optimization)

o Next week: simultaneous optimization for differential games

e Weeks 11 and 12: bilevel optimization

o Consider more general dynamics
e Discrete time:

wk) = wk=D _ of (wk=1)

o Continuous time:
w = —af(w)

o f is a vector field which is not necessarily integrable, i.e. not
necessarily the gradient of any function
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Dynamical Systems

e Linear case:
o f(w) = Aw, with A not necessarily symmetric
e Discrete time:

wh) = wk=1) _ g Awk—D = w®) = (I — aA)rFw©
e Continuous time:
W= —aAw = w(t) = exp(—atA)w(0)

e If A is not symmetric, it can have complex and/or repeated
eigenvalues. This leads to more possible behaviors:

Image: https://en.wikipedia.org/wiki/Dynamical_system
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Dynamical Systems

What else can happen in the nonlinear case?

@ In 2 dimensions or higher, you can get limit cycles:

, —
2 / “
. / /)‘ Image: By User:XaosBits at English

Wikipedia, CC BY 2.5, https://commons.
W wikimedia.org/w/index.php?curid=732841
A = -
-1 0 1

o In 3 dimensions or higher, you can get chaotic dynamics, such as
strange attractors. Here’s the Lorenz system:

=a(y —xz)
y=alb—z2) -y
zZ=xy—cz

Image: By Dschwen - Own work, CC BY

2.5, https://commons.wikimedia.org/w/index.
php?curid=494694
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Dynamical Systems

For discrete mappings, chaos can arise even more easily.
fx)=35z(1—=x)

fe(z) = 22+

y= () =@

9 Image: https:
(,Ty large //en.wikipedia.org/wiki/Mandelbrot_set
T

%

y= GG Y=o o ()

6 times
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Heavy Ball Momentum
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Heavy Ball Momentum

e Heavy ball momentum is a simple and highly effective method for
speeding up convergence of gradient descent

v gy _ v 7 (wh)

k+1) k+1)

w —wh 4yl

@ « is the learning rate, just like in gradient descent.

e [ is a damping/viscosity parameter. It should be slightly less than
1 (e.g. 0.9 or 0.99). Why not exactly 17

e Continuous dynamics (ignore learning rate for simplicity):

V(t) = —pv(t) = VI (w(t))
w(t) = v(t)

o Physical analogy: imagine a “heavy ball” rolling on a nearly flat
surface, where J represents height
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Heavy Ball Momentum

Why is this a good idea?
e No one-sentence explanation that I'm aware of
e Ordinary gradient descent corresponds to 8 = 0 (extremely high

damping/viscosity). This is like submerging the ball in a thick
fluid

o In the high curvature directions, the 20
gradients cancel each other out, so 10
momentum dampens the oscillations. 0

@ In the low curvature directions, the _10

gradients point in the same direction,
allowing the parameters to pick up
speed. 0 10 0 10 2

—-20

Goodfellow et al., Deep Learning
e For homework, you analyzed its convergence in the quadratic case

by computing the system’s eigenvalues. Let’s try to understand
why you got the answer that you did.
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Heavy Ball Momentum

In the problem set, you analyzed the dynamics of HB for convex
quadratics. Recap:

Fixed points: VJ(w) =0,v =0
Rotation invariant

Can assume diagoal WLOG, in which case each coordinate evolves
independently
There’s a critical threshold 7" such that directions with 0 < h; < T

approach 0 monotonically (the overdamped case) and directions
with T' < hj < hmax oscillate (the underdamped case)

e Underdamped directions have only real eigenvalues, while
overdamped directions have complex eigenvalues

o T=a'(1-yB)?2=0('(1-75)?
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Heavy Ball Momentum

e Dynamics of different eigendirections with 5 = 0.9 (all directions

overdamped)
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e And here’s 5 = 0.999 (all directions underdamped)
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e Figures from Lucas et al., “Aggregated momentum: Stability

through passive damping”
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Heavy Ball Momentum

e Phase space visualization (plots both w and v) from Goh, “Why

momentum really works”
(https://distill.pub/2017/momentum/)

Momentum g

Underdamping

When A is too large we're
under-damping. Here the
resistance is too small, and
spring oscillates up and down
forever, missing the optimal
value over and over.

Critical Damping
The best value of § lies in the
middle of the two extremes.
This sweet spot happens when
the eigenvalues of R are
repeated, when

B=(1-yaX)

AN

reaches
optimum

CSC2541-Lec9

Overdamping

When A is too small (e.g. in
Gradient Descent, 8 = 0),
we're over-damping. The
particle is immersed in a
viscous fluid which saps it of
its kinetic energy at every
timestep.

13 /31


https://distill.pub/2017/momentum/

Heavy Ball Momentum

The overdamped case:

o If the gradient is constant (i.e. the cost surface is a plane), the
parameters will reach a terminal velocity of

o
—1C BV](W),

which resembles gradient descent with learning rate & = /(1 — ). This
quantity is the effective learning rate.

@ If « or h is very small (the highly overdamped case), the particle will
move slowly, and this should be a good approximation.

@ For a convex quadratic, the spectral radius for SGD with learning rate &
is |1 — ahl.

@ In your homework, you probably derived an answer like:

s(Y+V2—48)  y=1+pB-ah

With a bunch of algebra, you can show this is approximately 1 — &h for
small a. (Try looking at the limit as a — 0.)
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Heavy Ball Momentum

The underdamped case:
o Let’s start with the continuous dynamics:

W(t) = —pv(t) — VI (w(2)
w(t) = v(t)

e A common way to prove stability of a dynamical system is to find
a Lyapunov function, which is nonincreasing and is minimized at
the equlibrium point

For systems based on physics, this is often related to the energy
Define

E= Jw) o+ VP

potential energy  kinetic energy

Change in energy over time (i.e. dissipation):
E=w'VI(wW)+v'v
=v'VI(w) - VI(w) ' v—pv'v
= —pllv|
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Heavy Ball Momentum

e Consider the dynamics for a convex quadratic along one
eigenvector with curvature h

@ Suppose there’s no damping, i.e. © = 0. Then energy is conserved.

e Eliminating v, we can rewrite the dynamics as
w(t) = —hw

e This is a simple harmonic oscillator. If w(0) > 0 and v(0) = 0,
then it has the solution

w(t) = Acoswt
v(t) = w(t) = —wAsinwt
A =w(0)

I
>

@ Observe that £ = %w2A2 = %hA2
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Heavy Ball Momentum

o Now suppose u is small. There are two timescales:
e On the short timescale, it’s a harmonic oscillator with amplitude

A(t)

e On the long timescale, energy dissipates

e Instantaneous dissipation:
E(t) = —pllv(D)II* = —pw?A(t)? sin® wi

e On a long timescale, the rate of dissipation is the temporal average
of £, which is

— 3P A(t)? = —phA(t)? = —pé(t)

o Differential equation:
5(2’:) = _/'Lga
which is exponential decay with timescale 1/u

e Note: this is independent of h!
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Heavy Ball Momentum

o Compare to the observed behavior
e 5 =0.9 (overdamped):

2000
Iterations (t)
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— =07

Heavy Ball Momentum 101|500 /7

— p=097

@ For homework, you derived the spectral o B J
radius = E’“”/
Sy+vr2—4B) ifh<T gr0°
r VB ifh>T on
T=a '(1-+/B)?

@ This is plotted on the right (assuming
_h—l ) 10% 107° 107* 107% 1072 107! 10°
Q= Npax hihmax

@ Based on this figure, you want to choose § such that the minimum
curvature direction is critically damped, i.e., T = hyin

1\2
=(1- %)
@ Rate of convergence (all directions are underdamped):
—logp=—3logB~1/Vk

e Compare to 1/ for gradient descent
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Heavy Ball Momentum

An aside:

o We analyzed the underdamped case for the continuous dynamics
(damped harmonic oscillator).

e Why does this predict the behavior in the discrete case? Shouldn’t
the discretization error hurt convergence?
e In particular, if 3 = 1, then the spectral radius is 1.
o In the continuous case, we explained this using conservation of
energy. Does this extend to the discrete dynamics?
e No! Energy is not conserved!
e The actual reason is very deep.
o I noticed this puzzle when typing up the homework solutions.
Thanks to Chris Maddison for pointing me to the answer!
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Heavy Ball Momentum

e By shifting the “start” of the update by half a time step, we can
rewrite HB momentum as a leapfrog integrator, a kind of
symplectic integrator:

v+3) — k) _ %Vj(w(k))
W+ ) o yk+d)
v+ = y+d) _ %Vj(w(kJrl))
e Symplectic integrators can be shown to approximately conserve a
different but related function called the shadow Hamiltonian. For

quadratics, it’s exact. See Hairer et al., “Geometric numerical
integration”
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Nesterov Accelerated Gradient
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Nesterov Accelerated Gradient

e Polyak invented HB momentum in 1964 (and discussed the physics
analogy)
o Nesterov invented a similar update rule in 1983 now called the

Nesterov Accelerated Gradient (NAG) which he proved achieved
optimal convergence for convex quadratics

e Even though Nesterov was Polyak’s student, he seems not to have
mentioned the physics analogy

@ Methods similar to HB and NAG are often called accelerated
methods. Ironically, the term “accelerated” has nothing to do with
the physics analogy and just refers to converging faster.

e “Chebyshev acceleration” predated the HB paper by about a decade

e Sutskever et al. (2013) popularized NAG in machine learning and
revived the momentum interpretation
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Nesterov Accelerated Gradient

e NAG update rule (as presented in d’Aspremont et al.,
“Accelerated Methods”):
wktl) = (k) _ aij(y(k))
ZFD) (k) _ ’y;CVj(y(k))
o Nesterov used a carefully chosen schedule of ay, 7, and v to

obtain optimal convergence rates. In DL, we tend to use constant
values.
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Nesterov Accelerated Gradient

e Sutskever et al. (2013) rewrote the update in
a way that emphasizes its similarity to HB:

wlk+D) — k) | D)

o This extrapolation trick is commonly used to
dampen oscillations in dynamical systems.
Some other examples:

o The D term in PID controllers can be
interpreted as extrapolating the state, and
can dampen the oscillations created by the I

Top: HB momentum.

term. Bottom: NAG
e See Hu and Lessard, 2017, “Control (Sutskever et al., 2013)
interpretations for first-order optimization
methods”

o Extragradient, an algorithm for solving
differentiable games (Lecture 10)
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Nesterov Accelerated Gradient

@ Compared to HB, NAG dampens the high-frequency oscillations.

5\ [ — ‘ THK I\ ‘1"N I
EE—— |Hl i “HHW’WWWP}HF
= w [y s
— A=le-05 — A=1le-05
- - - \ktrat‘i’:ns(t) " - " \krrat?:ns(k) " -
(&) CM (B = 0.9) (b) CM (5 = 0.999)
‘ N J| Y‘\.\ .
sl o o] —
AN AN _ AN\ —
a1k WA NGRSt I | T |
NI e =S SR —
o LA — e ) S
: = - T vertions - - T tertionsw
(c) Nesterov (8 = 0.999) (d) AggMo (B = [0,0.9,0.99, 0.999))

@ Figure from Lucas et al.,
momentum (= HB

“Aggregated momentum”. CM = classical
). AggMo is our algorithm which generalizes NAG.

@ This effect doesn’t affect the convergence rate for quadratics (since the
low frequency oscillations come to dominate), but I'd guess this is helpful
for non-quadratics (where high-frequency oscillations might cause bigger

problems)
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Accelerated Convergence
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Accelerated Convergence

o Recall:
o Condition number & = hmax/Pmin
o Gradient descent on a convex quadratic requires O(k) iterations to
reach a given loss (Lecture 1)
o Conjugate gradient requires O(/k) iterations
e In the problem set, you showed much faster convergence was
possible using HB
o How fast do HB and NAG converge?

e Can we do better, e.g. with a fancier update rule, or using more
than 2 past iterates?
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Accelerated Convergence

e Oracle model of optimization: in each iteration, you query a weight
vector w¥)| and the oracle returns J(w*)) and V.7 (w(¥)).

o Think of the oracle as an adversary (it can choose values and
gradients to make life hard for your algorithm)
e You can’t query things like the sparsity pattern, curvature, etc., so

this rules out preconditioning
o Captures iterative methods like GD, HB, NAG, CG

e Strongly convex optimization:
o Strong convexity: for all w and w’, and a parameter pu,

J(w) = T (W) + VI (W) (w—w)+ §w—w|?
o Lipschitz smoothness: for all w and w’ and a parameter L,
VT (w) = VI (W) < Llw — w'|

o Condition number x = L/u (generalizes the quadratic case)

NNTD (UofT) CSC2541-Lec9 29 /31



Accelerated Convergence

@ Nesterov’s worst function in the world is a convex quadratic:

-1

J(w) = 5( 1—w12+2§wj+1—wj)2

7j=1
@ Observe: H is tridiagonal
o Initialization: wy =--- =wp =0
e Optimal solution: wy =---=wp =1
o Information diffuses slowly:

e The Krylov subspace Ky is spanned by the first & coordinate
vectors. Therefore, the kth iterate can make at most the first k
coordinates nonzero

e Subject to this constraint, the minimum achievable loss in k
iterations is 1/k

e Variants of this function can be used to show an O(y/k) lower

bound for convergence under the oracle model. See Nesterov,
“Introductory lectures on convex optimization”
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Accelerated Convergence

e HB momentum achieves the optimal convergence rate for
quadratics (as we showed earlier in lecture)

o But HB doesn’t achieve this convergence rate for general strongly
convex functions!

e See Lessard et al., ” Analysis and design of optimization algorithms
via integral quadratic constraints”

e This paper uses techniques from control theory to automatically
analyze convergence rates of first-order optimizers (including GD,
HB, NAG) by solving certain semidefinite programs

o Among many interesting contributions, they exhibit a convex
function for which HB fails to achieve the optimal convergence rate

@ NAG achieves the optimal convergence rate for strongly convex
functions

e Nesterov’s proof is very involved, and I haven’t yet seen an
explanation I could cover in the scope of this lecture
e Conjugate gradient (which is exactly optimal for quadratics) often
behaves a lot like HB momentum for ill-conditioned quadratics
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