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Today

PV = NRT

Many systems become much simpler at a macroscopic scale, since
the behaviors of the component parts can be summarized
statistically

Neural nets are an example of this: their behavior can become
much simpler when they’re extremely wide
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Today

The plan for today:

Review of Bayesian regression and kernels

Bayesian linear regression
Gaussian processes

Two ways of taking infinite width limits

Wide Bayesian neural nets → GPs
Gradient descent on wide (non-Bayesian) networks, and the Neural
Tangent Kernel
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Recap: Full Bayesian Inference

Recall: full Bayesian inference makes predictions by averaging over
all likely explanations under the posterior distribution.

Compute posterior using Bayes’ Rule:

p(w | D) ∝ p(w)p(D |w)

Make predictions using the posterior predictive distribution:

p(t |x,D) =

∫
p(w | D) p(t |x,w) dw

Doing this lets us quantify our uncertainty.
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Bayesian Linear Regression

Bayesian linear regression considers various plausible explanations
for how the data were generated.

It makes predictions using all possible regression weights, weighted
by their posterior probability.

Prior distribution: w ∼ N (0,S)

Likelihood: t |x,w ∼ N (w>φ(x), σ2)

Assuming fixed/known S and σ2 is a big assumption. More on this
later.
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Bayesian Linear Regression: Posterior

Posterior distribution:

w | D ∼ N (µ,Σ)

µ = σ−2ΣΦ>t

Σ−1 = σ−2Φ>Φ + S−1

Since a Gaussian prior leads to a Gaussian posterior, this means
the Gaussian distribution is the conjugate prior for linear
regression!

Compare µ the closed-form solution for linear regression:

w = (Φ>Φ + λI)−1Φ>t
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Bayesian Linear Regression

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

Example with radial basis function (RBF) features

φj(x) = exp

(
−(x− µj)2

2s2

)

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

Functions sampled from the posterior:

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

Posterior predictive distribution:

p(t |x,D) =

∫
p(t |x,w)︸ ︷︷ ︸
N (t ;w>φ(x),σ)

p(w | D)︸ ︷︷ ︸
N (w ;µ,Σ)

dw

Another interpretation: t = w>φ(x) + ε, where ε ∼ N (0, σ) is
independent of w.

By the linear combination rules for Gaussian random variables, t
is a Gaussian distribution with parameters

µpred = µ>φ(x)

σ2pred = φ(x)>Σφ(x) + σ2

Hence, the posterior predictive distribution is N (t ; µpred, σ
2
pred).
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Bayesian Linear Regression

Here we visualize confidence intervals based on the posterior predictive
mean and variance at each point:

— Bishop, Pattern Recognition and Machine Learning

NNTD (UofT) CSC2541-Lec5 11 / 55



Gaussian Processes
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Towards Gaussian Processes

Gaussian Processes are distributions over functions.

They’re actually a simpler and more intuitive way to think about
regression, once you’re used to them.

— GPML
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Towards Gaussian Processes

A Bayesian linear regression model defines a distribution over
functions:

f(x) = w>φ(x)

Here, w is sampled from the prior N (µw,Σw).

Let f = (f1, . . . , fN ) denote the vector of function values at
(x1, . . . ,xN ).

By the linear transformation rules for Gaussian random variables,
the distribution of f is a Gaussian with

E[fi] = µ>wφ(x)

Cov(fi, fj) = φ(xi)
>Σwφ(xj)

In vectorized form, f ∼ N (µf ,Σf ) with

µf = E[f ] = Φµw

Σf = Cov(f) = ΦΣwΦ>
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Towards Gaussian Processes

Recall that in Bayesian linear regression, we assume noisy
Gaussian observations of the underlying function.

yi ∼ N (fi, σ
2) = N (w>φ(xi), σ

2).

The observations y are jointly Gaussian, just like f .

E[yi] = E[f(xi)]

Cov(yi, yj) =

{
Var(f(xi)) + σ2 if i = j

Cov(f(xi), f(xj)) if i 6= j

In vectorized form, y ∼ N (µy,Σy), with

µy = µf

Σy = Σf + σ2I
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Towards Gaussian Processes

Bayesian linear regression is just computing the conditional
distribution in a multivariate Gaussian!

Let y and y′ denote the observables at the training and test data.

They are jointly Gaussian:(
y
y′

)
∼ N

((
µy

µy′

)
,

(
Σyy Σyy′

Σy′y Σy′y′

))
.

The predictive distribution is a special case of the conditioning
formula for a multivariate Gaussian:

y′ |y ∼ N (µy′|y,Σy′|y)

µy′|y = µy′ + Σy′yΣ−1yy(y − µy)

Σy′|y = Σy′y′ −Σy′yΣ−1yyΣyy′

We’re implicitly marginalizing out w!

NNTD (UofT) CSC2541-Lec5 16 / 55



Towards Gaussian Processes

To summarize:

µf = Φµw

Σf = ΦΣwΦ>

µy = µf

Σy = Σf + σ2I

µy′|y = µy′ + Σy′yΣ−1yy(y − µy)

Σy′|y = Σy′y′ −Σy′yΣ−1yyΣyy′

p(y |X) = N (y;µy,Σy)

After defining µf and Σf , we can forget about w!

What if we just let µf and Σf be anything?
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Gaussian Processes

When I say let µf and Σf be anything, I mean let them have an
arbitrary functional dependence on the inputs.

We need to specify

a mean function E[f(xi)] = µ(xi)
a covariance function called a kernel function:
Cov(f(xi), f(xj)) = k(xi,xj)

Let KX denote the kernel matrix for points X. This is a matrix
whose (i, j) entry is k(x(i),x(j)), and is called the Gram matrix.

We require that KX be positive semidefinite for any X. Other
than that, µ and k can be arbitrary.

NNTD (UofT) CSC2541-Lec5 18 / 55



Gaussian Processes

We’ve just defined a distribution over function values at an arbitrary finite set
of points.

This can be extended to a distribution over functions using a kind of black
magic called the Kolmogorov Extension Theorem. This distribution over
functions is called a Gaussian process (GP).

We only ever need to compute with distributions over function values. The
formulas from a few slides ago are all you need to do regression with GPs.

But distributions over functions are conceptually cleaner.

How do you think these plots were generated?
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Kernel Trick

This is an instance of a more general trick called the Kernel Trick.

Many algorithms (e.g. linear regression, logistic regression, SVMs)
can be written in terms of dot products between feature vectors,
φ(x)>φ(x′).

A kernel implements an inner product between feature vectors,
typically implicitly, and often much more efficiently than the
explicit dot product.

For instance, the following feature vector is quadratic in size:

φ(x) = (1,
√

2x1, ...,
√

2xd,
√

2x1x2,
√

2x1x3, ...
√

2xd−1xd, x
2
1, ..., x

2
d)

But the quadratic kernel can compute the inner product in linear
time:

k(x,x′) = φ(x)>φ(x′) = 1 +

d∑
i=1

2xix
′
i +

d∑
i,j=1

xixjx
′
ix
′
j = (1 + x>x′)2
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Kernel Trick

Many algorithms can be kernelized, i.e. written in terms of kernels,
rather than explicit feature representations.

We rarely think about the underlying feature space explicitly.
Instead, we build kernels directly.

Useful composition rules for kernels (to be proved in Homework
7):

A constant function k(x,x′) = α is a kernel.
If k1 and k2 are kernels and a, b ≥ 0, then ak1 + bk2 is a kernel.
If k1 and k2 are kernels, then the product
k(x,x′) = k1(x,x′)k2(x,x′) is a kernel. (Interesting and surprising
fact!)

Before neural nets took over, kernel SVMs were probably the
best-performing general-purpose classification algorithm.
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Kernel Trick: Computational Cost

The kernel trick lets us implicitly use very high-dimensional (even
infinite-dimensional) feature spaces, but this comes at a cost.

Bayesian linear regression:

µ = σ−2ΣΦ>t

Σ−1 = σ−2Φ>Φ + S−1

Need to compute the inverse of a D ×D matrix, which is an O(D3)
operation. (D is the number of features.)

GP regression:

µy′|y = µy′ + Σy′yΣ−1yy(y − µy)

Σy′|y = Σy′y′ −Σy′yΣ−1yyΣyy′

Need to invert an N ×N matrix! (N is the number of training
examples.)
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Kernel Trick: Computational Cost

This O(N3) cost is typical of kernel methods. Most exact kernel
methods don’t scale to more than a few thousand data points.

Kernel SVMs can be scaled further, since you can show you only
need to consider the kernel over the support vectors, not the entire
training set. (This is part of why they were so useful.)

Scaling GP methods to large datasets is an active (and
fascinating) research area.
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GP Kernels

One way to define a kernel function is to give a set of basis
functions and put a Gaussian prior on w.
But we have lots of other options. Here’s a useful one, called the
squared-exp, or Gaussian, or radial basis function (RBF) kernel:

kSE(xi,xj) = σ2 exp

(
−‖xi − xj‖2

2`2

)
More accurately, this is a kernel family with hyperparameters σ
and `.
It gives a distribution over smooth functions:
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GP Kernels

kSE(xi, xj) = σ2 exp

(
− (xi − xj)

2

2`2

)
The hyperparameters determine key properties of the function.

Varying the output variance σ2:

Varying the lengthscale `:
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GP Kernels

The choice of hyperparameters heavily influences the predictions:

In practice, it’s very important to tune the hyperparameters
(e.g. by maximizing the marginal likelihood).
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Wide BNNs → GPs
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Wide Nets → GPs

Some insights from Radford Neal’s visionary PhD thesis (1993):

GPs are useful for machine learning

(Bayesian) neural nets can generalize well despite being highly
overparameterized

Posterior sampling using HMC

Infer the model complexity using Automatic Relevance
Determination

The infinite width limit of a Bayesian neural net is a GP

His presentation of BNNs is very close to our full modern
understanding!

NNTD (UofT) CSC2541-Lec5 28 / 55



Wide BNNs → GPs

Two views of Bayesian regression:

Weight Space
(e.g. Bayesian linear regression)

p(t |x,D) =

∫
p(t |x,w) p(w | D) dw

p(w | D) =
p(w) p(D |w)

p(D)

Function Space
(e.g. GPs)

p(t |x,D) =

∫
p(t |x, f) p(f | D) df

p(f | D) =
p(f) p(D | f)

p(D)

f is a vector of function values (e.g. at training and query points)

If we want to take a limit of models with different parameter
spaces, we need to work in function space

Since p(t |x, f) and p(D | f) depend only on the observation model
(which we’ll take as fixed), the important object to study is the
prior p(f)
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Wide BNNs → GPs

Vanilla BNN model definition

y = f(x) =
∑
i

wihi(x) + b

=
∑
i

wiψ(v>i x + ai) + b

Priors (all independent)

wi ∼ N (0, σ2w)

b ∼ N (0, σ2b )

vij ∼ N (0, σ2v)

ai ∼ N (0, σ2a)

NH units

<latexit sha1_base64="Ss1nxbpT0fboWN4IoVyeDhntQXw="></latexit>x

<latexit sha1_base64="7iPpYBj0jKT3em1J1GCXtPSdoa0="></latexit>y

<latexit sha1_base64="2C8pRV6DfHfbv7AW7ye16OpAJSo=">AAAEO3icdVNNb9QwEHUbPsrytYUjF6sVEhJVla0Q9FjRIpAAsQi2rWhWK8eZbKx17Mh20lbBd34NV7jwQzhzQ1y54+xmq9ZbLMWZzHsz8zzOxAVn2oThz6Xl4MrVa9dXbnRu3rp952539d6+lqWiMKCSS3UYEw2cCRgYZjgcFgpIHnM4iCe7DX5QgdJMio/mtIBhTsaCpYwS41yj7lqUE5PFab1v8dw8sfjx2Qexo+56uBlOF140eq2xjtrVH60GS1EiaZmDMJQTrY96YWGGNVGGUQ62E5UaCkInZAxHzhQkBz2sp4ex+KHzJDiVyj3C4Kn3fERNcq1P89gxG4naxxrnZdhRadLtYc1EURoQdFYoLTk2EjedwQlTQA0/dQahijmtmGZEEWpc/zqdSMAxlXlORFJHE56wytZ1pHK8Z0fT9+s31vqs50RpW0cb0edow4F74Pqh4K3T9q4ARYxUjlUBtXWzXYyGk8LpcdHTm4jrF/Z/GXal09JsnsrCqc91IzOWPGmaJjmOTAaG+FJTpjNQLq3HfukTi1Q0FEo4/uRjgpj+pSUvKZjL5veYMVOsfViXadpiYx8bg/hgiIEWP7H+uauYkXnmhcLZOTD2wWNg4+xM1YEPV2wOVQtpWdJCWaPHDU3PH5FFY39rs/d0M3z/ZH1nux2fFfQAraFHqIeeoR30CvXRAFH0BX1F39D34EfwK/gd/JlRl5famPvowgr+/gO8t3jR</latexit>

Vx + a
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w>h + b
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Wide BNNs → GPs

Expectation of the function:

E[f(x)] = E

[∑
i

wihi(x) + b

]
=
∑
i

E [wihi(x)] + E[b]︸︷︷︸
=0

=
∑
i

E[wi]︸ ︷︷ ︸
=0

E[hi(x)] (by independence)

= 0
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Wide BNNs → GPs

Variance of the function:

Var(f(x)) = Var(
∑
i

wihi(x) + b)

= NH Var(wihi(x)) + Var(b) (i.i.d. prior)

= NH(E[(wihi(x))2]− E[wihi(x)]2︸ ︷︷ ︸
=0

) + Var(b) (prev. slide)

= NH E[w2
i ]E[hi(x)2] + Var(b) (independence)

= NH σ2
w E[hi(x)2] + σ2

b

So we need to scale the variance as σ2w = ω
NH

for some ω in order
to have a consistent limit!
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Wide BNNs → GPs

Covariance of the function: with an analogous derivation,

Cov(f(x), f(x′)) = ω E[hi(x)hi(x
′)] + σ2b

= ω

∫
ψ(v>x + a)ψ(v>x′ + a) p(v, a) d{v, a} + σ2b

The vector of values f(x) at various points x is the sum of
i.i.d. random variables, so (assuming finite variance) a multivariate
version of the Central Limit Theorem implies their limit is
Gaussian

(informal?) so the limiting distribution over functions is a GP

Neal’s thesis derives kernels associated with various activation
functions
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Wide BNNs → GPs

BNN with hard threshold activations → Brownian motion (Left:
NH = 300, Right: NH = 10000)

(Neal, 1993)
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Wide BNNs → GPs

BNN with tanh activations, small σ2v → smooth GP

(Neal, 1993)
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Wide BNNs → GPs

Two dimensions (Left: hard threshold, Right: tanh)

(Neal, 1993)
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Wide BNNs → GPs

Going beyond GPs by sampling the weight variance for each hidden
unit from a distribution rather than setting it to a fixed σ2v

(Neal, 1993)
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Wide BNNs → GPs

Lee et al., 2017, “Deep neural networks as Gaussian processes”

Extended Neal’s analysis to multilayer BNNs
The infinite width limit is still a GP
This limiting regime (distinct from the Neural Tangent Kernel
regime, discussed next) is now called neural net Gaussian process
(NNGP)
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Mean Field Approximation

Poole et al., 2016, “Exponential expressivity in neural networks
through transient chaos”

Introduced the mean field approximation for studying deep, wide
networks with random weights

Extension of Neal’s analysis

In Neal’s analysis, the hidden units are all i.i.d. random variables,
so (by the Central Limit Theorem) the sum of their contributions
to the next layer is approximately Gaussian

Only important information about the distribution of h is the
covariance function Cov(hi(x), hi(x

′))

Poole et al. apply this insight recursively and analyze how the
covariance evolves as a function of depth
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Mean Field Approximation

There are two regimes: an ordered regime (correlations → 1,
degenerate function) and a chaotic regime (correlations → 0,
exponential expressivity)

You want to be on the boundary between them. This gives a way
to choose σw and σb.

(Poole et al., 2016)
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Mean Field Approximation

(Poole et al., 2016)
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Neural Tangent Kernel
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Neural Tangent Kernel

Bayesian inference and the GP limit give a lot of insight into how
overparameterized neural networks can generalize well

But explicitly training BNNs would be a radical departure from
current practice

Can we apply a similar interpretation to ordinary gradient descent
on the sorts of networks we use routinely?

Goal: analyze the dynamics of gradient descent on an extremely
wide neural net
Just like with BNNs, everything simplifies in the infinite limit

In order to take the infinite limit, we need to work in function
space
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Output Space View of Linear Regression

Consider linear regression (assume bias absorbed into φ):

y = w>φ(x) y = Φw

The output space view of gradient descent:

∆y = Φ∆w

= Φ[−α∇J (w)]

= − α
N

ΦΦ>︸ ︷︷ ︸
=K

(y − t)

The matrix K = ΦΦ> is the Gram matrix
Same as the Kernel matrix K for a GP, if we put a spherical
Gaussian prior on w

Solving the recurrence:

y(k) = t + (I− α

N
K)k(y(0) − t)
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Output Space View of Linear Regression

K = ΦΦ>

Recall: the Hessian for linear regression is H = Φ>Φ (if we
remove the typical 1/N scaling from the cost function)

Observe: H and K are symmetric matrices which share the same
nonzero eigenvalues, which are the squared singular values of Φ

If Φ = UDV> is the SVD of Φ, then

H = VD2V> (spectral decomposition of H)

K = UD2U> (spectral decomposition of K)

Interpretation: the directions of high curvature are the
directions of high sensitivity, i.e. the directions in weight space
that have the largest effect on the predictions
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Output Space View of Linear Regression

Recall from Lecture 1

x1 x2 t
114.8 0.00323 5.1
338.1 0.00183 3.2
98.8 0.00279 4.1
...

...
...
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Output Space View of Linear Regression

Recall from Lecture 1

x1 x2 t
1003.2 1005.1 3.3
1001.1 1008.2 4.8
998.3 1003.4 2.9

...
...

...
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Neural Tangent Kernel

We can apply a similar analysis to neural networks

Consider full batch gradient descent (no straightforward way to
apply this to SGD!)

Let z̄ denote all of the outputs (e.g. logits) on the entire dataset,
stacked into a vector, and J̄ be the Jacobian of z̄ with respect to w

∆z̄ ≈ J̄∆w

= J̄[−α∇J (w)]

= J̄[− α
N

J̄>∇L(z̄)]

= − α
N

J̄J̄>︸︷︷︸
=K

∇L(z̄)

The matrix K = J̄J̄> is the neural tangent kernel (NTK)
Unlike for regression, the above model is only approximate
because

∆z̄ is a nonlinear function of ∆w
K changes over time
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Neural Tangent Kernel

K = J̄J̄>

Consider the finite sample approximation to the Gauss-Newton
matrix (Ji is the Jacobian for training example i)

G =
1

N

∑
i

J>i Ji =
1

N
J̄>J̄

Gauss-Newton Hessian for squared error loss
pullback metric for Euclidean distance

G and K have the same eigenvalues (up to scaling), which are the
squared singular vectors of J̄

J̄ measures the sensitivity of the predictions to a direction in weight
space
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Neural Tangent Kernel

This interpretation becomes exact when we consider the gradient
flow, the continuous time limit of gradient descent (i.e. lots of
steps with tiny learning rate)

dw

dt
= −α∇J (w)

The flow in output space is:

dz̄

dt
= − α

N
K(t)∇L(z̄)

I wrote K(t) to remind us that K is time dependent (which makes
this ODE difficult to solve in general)
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Neural Tangent Kernel

Jacot et al., 2018. “Neural tangent kernel: Convergence and
generalization in neural networks”

Considers a wide neural net limit distinct from the NNGP one
(main difference is the effective learning rates, in the sense of
Lecture 5)

As the width goes to infinity, K approaches a well-defined limit

As the width increases, the distance in weight space required to fit
the training set goes to 0

In the limit, J̄, and therefore, K, are constant

The flow for a regression problem (just a linear ODE!)

dz̄

dt
= − α

N
K(y − t)

y(t) = t + exp

(
−αt
N

K

)
(y(0)− t)

More details in the student presentation next week
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Neural Tangent Kernel

Lee et al., 2019. “Wide networks of any depth evolve as linear models under
gradient descent”

For wide (but finite) networks, J̄ changes slowly enough over training
that the network is well approximated by its first-order Taylor
approximation around w0

I.e., it behaves like a linear model, where the features are the
columns of J̄

This requires wider networks than we normally use (but not ridiculously
so), a smaller learning rate, and full batch training

There’s still a gap between linearized training and SOTA, so probably
neural nets are more than just linear random feature models
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Neural Tangent Kernel

These ideas lead to provable bounds for wide but finite networks.
A big challenge is proving that the Jacobian changes slowly
enough with high probability.

Du et al., 2019. “Gradient descent provably optimizes
over-parameterized neural networks”

Optimization: gradient descent on a randomly initialized wide
network provably converges linearly to a global optimum (despite
non-convexity!)

Arora et al., 2019. “Fine-grained analysis of optimization and
generalization for overparameterized two-layer neural networks”

Generalization: if the training and validation labels are
well-aligned with the large eigenvalues of K, then a network trained
with gradient descent will generalize well (despite
overparameterization!)
Sort of like a function space view of the min-norm analyses from
Lecture 1
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Neural Tangent Kernel

Zhang et al., 2019. “Fast convergence of natural gradient descent for
overparameterized neural networks”

In Lecture 3, we motivated natural gradient descent as an
approximation to “gradient descent on the outputs”

In the infinite width limit, because the network becomes more
linear, this interpretation becomes more accurate.

As a result can prove faster convergence rates for (exact) NGD
than the analogous wide network results for GD.
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Neural Tangent Kernel

Output space trajectories for GD and NGD updates. Top: 100
units/layer. Bottom: 6000 units/layer.
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