
CSC 2541: Neural Net Training Dynamics
Lecture 5 - Adaptive Gradient Methods,

Normalization, and Weight Decay

Roger Grosse

University of Toronto, Winter 2021

NNTD (UofT) CSC2541-Lec5 1 / 30



Today

We consider three ideas that have become staples of modern
neural net training:

1 Adaptive gradient methods (RMSprop, Adam, etc.)
2 Normalization (esp. batch norm)
3 Weight decay

Deceptively simple, commonly misunderstood

Unifying theme: you can figure out quite a lot by just reasoning
about the scales of weights, activations, etc.

NNTD (UofT) CSC2541-Lec5 2 / 30



Batch Norm

From Ali Rahimi’s classic NeurIPS 2017 Test of Time talk (emphasis
mine):

Batch Norm is a technique that speeds up gradient descent on deep
nets. You sprinkle it between your layers and gradient descent goes
faster. I think it’s ok to use techniques we don’t understand. I only
vaguely understand how an airplane works, and I was fine taking
one to this conference. But it’s always better if we build systems on
top of things we do understand deeply? This is what we know about
why batch norm works well. But don’t you want to understand why
reducing internal covariate shift speeds up gradient descent? Don’t
you want to see evidence that Batch Norm reduces internal covariate
shift? Don’t you want to know what internal covariate shift is? Batch
Norm has become a foundational operation for machine learning. It
works amazingly well. But we know almost nothing about
it.

NNTD (UofT) CSC2541-Lec5 3 / 30



Batch Norm

Be careful about saying “nothing” is known!

Why should we expect “Why does batch norm help?” to have a
simple answer that holds in all cases?

Some arguments made in the original 2015 paper (and often
ignored by critics):

Internal covariate shift leads to unstandardized activations, which
hurts the conditioning

BN fixes this problem (by removing the ICS?)

Prevent dead/saturated units
Stochastic regularization effect caused by noisy estimates of the
statistics
Maintain stability at high learning rates

A more recently discovered learning rate schedule effect

NNTD (UofT) CSC2541-Lec5 4 / 30



Internal Covariate Shift

Recall from Lecture 1: for linear regression, uncentered
activations create a large outlier eigenvalue, dramatically slowing
down gradient descent
For linear regression, we can solve this by explicitly centering the
features
For neural nets, the hidden activations can become uncentered,
and there’s no straightforward fix

Pointed out by LeCun (1991)
The BN authors refer to this problem as Internal Covariate Shift
(not a great name!)

Classical recommendation: use tanh instead of logistic
activations

NNTD (UofT) CSC2541-Lec5 5 / 30



Internal Covariate Shift

We can make this reasoning more precise using more recent ideas

Recall the K-FAC approximation (Lecture 4):

Ĝ`` = A`−1 ⊗ S`

Uncentered activations cause an outlier eigenvalue in A`−1

Recall (Lecture 4):

Spectral decomposition for symmetric A = QADAQ>
A and

B = QBDBQ>
B

A⊗B = (QA ⊗QB)(DA ⊗DB)(Q>
A ⊗Q>

B)

Therefore, if the eigenvalues of A are λi and the eigenvalues of B
are νj , then the eigenvalues of A⊗B are the products λiνj
If the corresponding eigenvectors of A are ri and for B are sj , then
the eigenvectors of A⊗B are ri ⊗ sj

NNTD (UofT) CSC2541-Lec5 6 / 30



Internal Covariate Shift

This leads to:

ICS Conditioning Hypothesis. For a network with output
dimension M , if m = E[a`−1] is far from zero, we’d expect G`` to have
as many as M large eigenvalues, namely νλi for each eigenvalue λi of
S`, where ν = ‖m‖2 + 1. The corresponding eigenvectors are of the
form m⊗ v for some vector v.

NNTD (UofT) CSC2541-Lec5 7 / 30



ICS and Invariance

Good scientific practice: change one thing at a time

How can we eliminate the ill-conditioning effects of ICS while
changing almost nothing else?

Idea: standardize the activations using an affine transformation of
the parameters

a` = φ(W`a`−1 + b`)

ã`−1 = Σ−1/2(a`−1 −m)

Transforming the weights so that the network computes the same
function:

W̃`ã`−1 + b̃` = W`a`−1 + b`,

achieved by

W̃` = W`Σ
1/2 b̃` = b` + W`m

Updates in this coordinate system are immune to ICS

NNTD (UofT) CSC2541-Lec5 8 / 30



ICS and Invariance

Equivalent to pre-multiplying by RR>, where

R−1 =

(
Σ1/2 ⊗ I 0
m> ⊗ I 1

)
[RR>]−1 =

(
(Σ + mm>)⊗ I m⊗ I

m> ⊗ I 1

)
The matrix [RR>]−1 is supposed to approximate H.

This matrix is “almost” diagonal, so preconditioners of this form
are called quasi-diagonal

Minimal overhead relative to ordinary neural net operations, just
like diagonal preconditioning

NNTD (UofT) CSC2541-Lec5 9 / 30



ICS and Invariance

Another way to arrive at quasi-diagonal preconditioners is to
reason about invariance:

If the parameters are chosen such that these two networks
compute the same function, then the same should be true after
running the algorithm.

Quasi-diagonal natural gradient is invariant to affine
transformations of individual units (e.g. tanh vs. logistic)
K-FAC is invariant to affine transformations of the layer as a whole

NNTD (UofT) CSC2541-Lec5 10 / 30



Batch Normalization

NNTD (UofT) CSC2541-Lec5 11 / 30



Batch Normalization

Näıve motivation: if the architecture explicitly normalizes every
unit, this eliminates ICS and improves the conditioning. Right?

Batch normalization (BN):

X̃ = BN(X) = (X− 1µ(X)>)� 1σ(X)>

Training time: Statistics are estimated from the current batch

Test time: Use averages of training statistics

Typically apply BN to pre-activations rather than activations

Note: in practice, we fit additional parameters for the mean and
variance after normalization, but I’ll ignore these for this lecture

NNTD (UofT) CSC2541-Lec5 12 / 30



Batch Normalization

Main difference from our preconditioning-based solution: BN is
part of the architecture, so we differentiate through it

The computation graph contains a direct path and a statistics
path:

Another difference: the statistics are estimated from the current
batch, which injects noise

NNTD (UofT) CSC2541-Lec5 13 / 30



Batch Normalization

Preconditioning changes the conditioning of the cost function, and
nothing else

BN also changes the effective initialization, adds stochastic
regularization, completely changes the scales of the gradients, ...

Motivations from the original paper:

Ameliorating the optimization effects of ICS
Preventing dead or saturated units
Maintaining stability at higher learning rates
Stochastic regularization

Additionally, there’s an important implicit learning rate decay
effect which I believe the authors weren’t aware of

NNTD (UofT) CSC2541-Lec5 14 / 30



A Wrinkle

NNTD (UofT) CSC2541-Lec5 15 / 30



A Wrinkle

We argued that ICS creates outlier eigenvalues in the Hessian due
to uncentered activations

“ICS Conditioning Hypothesis”: BN helps by removing the outlier
eigenvalues

We can also formulate:

ICS Removal Hypothesis: BN improves optimization by centering
and/or normalizing the previous layer’s activations.

These hypotheses are logically independent

BN could remove the outlier eigenvalues through some means other
than preventing ICS
Preventing ICS could have some optimization benefit other than
improving conditioning

NNTD (UofT) CSC2541-Lec5 16 / 30



A Wrinkle

Two pieces of evidence against the ICS Removal Hypothesis:

It generally works better to apply BN before the activation
function, rather than after

Santurkar et al. (2018) ran a sort of knockout experiment where
they added ICS back in and tested if BN still improved training

I.e., after BN, linearly transform the activations to have some other
mean and variance
The network still trained just as efficiently

NNTD (UofT) CSC2541-Lec5 17 / 30



A Wrinkle

Key insight: consider what happens when BN is applied in the
next layer, before the activation function

A` = f`(A`−1,W`) = φ`(BN(A`−1W
>
` ))

This function is invariant to rescaling and shifting a`−1

If the activations are shifted, the network still computes the same
function (for any particular w), so the optimization trajectories
are identical.

The outlier eigenvalues of have no effect!

So the ICS Conditioning hypothesis could still be correct, even
though the ICS Removal hypothesis appears to be incorrect

Good class project to test this

NNTD (UofT) CSC2541-Lec5 18 / 30



A Wrinkle

The same result can be derived by analyzing the mechanics of
backprop through the BN operation

Consider batch centering, which centers but doesn’t scale the
activations

It turns out (derivation in the readings):

W = S
>

A (without BC)

W = S
>

Ã, (with BC)

where Ã are the centered activations

It’s the statistics path that’s responsible for this effect

NNTD (UofT) CSC2541-Lec5 19 / 30



Implicit Learning Rate Decay

NNTD (UofT) CSC2541-Lec5 20 / 30



Implicit Learning Rate Decay

Batch norm and other normalizers create an implicit learning rate
decay effect

Even if you use a fixed learning rate, the training behaves as if you
are gradually decaying the learning rate

For this most part, this is probably beneficial — learning rate
decay is very useful in stochastic optimization (Lecture 7)

But it’s a major gotcha, since you probably aren’t expecting it,
e.g.

Why does weight decay speed up optimization on the training set?
Different optimization algorithms can have different implicit decay
schedules
This explains a significant fraction of confusing neural net
phenomena

NNTD (UofT) CSC2541-Lec5 21 / 30



Implicit Learning Rate Decay

The BN operation is invariant to rescaling the vector wj of
incoming weights to a unit j by a scalar γ > 0:

BN(AW>) = BN(AW>Γ) for any diagonal matrix Γ � 0.

Therefore, each layer’s computations, and the network as a whole,
are invariant to this rescaling:

f`(A,W) = f`(A,ΓW)

Scale invariant cost function:

NNTD (UofT) CSC2541-Lec5 22 / 30



Implicit Learning Rate Decay

A function g is homogeneous of degree k if

g(γx) = γkg(x) for any x

Scale invariant = homogeneous of degree 0

Euler showed that if g is homogeneous
of degree k, then

∇g(γx) = γk−1∇g(x)

Since BN is scale invariant, its
gradient is homogeneous of degree -1:

∇J (γwj) = γ−1∇J (wj)

NNTD (UofT) CSC2541-Lec5 23 / 30



Implicit Learning Rate Decay

Since the scale of wj doesn’t matter, we can canonicalize it to a
unit vector:

ŵj = wj/‖wj‖

Approximating the update to ŵj :

ŵ
(k+1)
j =

w
(k)
j − α∇J (w

(k)
j )

‖w(k)
j − α∇J (w

(k)
j )‖

≈
w

(k)
j − α∇J (w

(k)
j )

‖w(k)
j ‖

= ŵ
(k)
j − α‖w

(k)
j ‖

−1∇J (w
(k)
j )

=

effective LR︷ ︸︸ ︷
ŵ

(k)
j − α ‖w

(k)
j ‖−2∇J (ŵ

(k)
j )︸ ︷︷ ︸

effective gradient

NNTD (UofT) CSC2541-Lec5 24 / 30



Implicit Learning Rate Decay

Observe that ‖wj‖ increases monotonically

Since wj ⊥ ∇J (wj), we can apply the Pythagorean Theorem:

‖w(k+1)
j ‖2 = ‖w(k)

j + α∇J (w
(k)
j )‖2

= ‖w(k)
j ‖

2 + α2‖∇J (w
(k)
j )‖2

= ‖w(k)
j ‖

2 +
α2‖∇J (ŵ

(k)
j )‖2

‖w(k)
j ‖2

NNTD (UofT) CSC2541-Lec5 25 / 30



Implicit Learning Rate Decay

If ‖∇J (ŵ
(k)
j )‖ is constant throughout training (admittedly a bad

assumption), then the weight norm grows roughly as:

‖w(k)
j ‖

2 ∝
√

1 + k/k0 for some k0

This translates into an effective learning rate schedule:

α̂k =
α̂0√

1 + k/k0

The explicit learning rate hyperparameter α gives you surprisingly
little control over the effective learning rate

NNTD (UofT) CSC2541-Lec5 26 / 30



Implicit Learning Rate Decay

Bengio (2012):

The [learning rate] is often the single most important hyperpa-
rameter and one should always make sure that it has been tuned
(up to approximately a factor of 2). . . If there is only time to
optimize one hyper-parameter and one uses stochastic gradient
descent, then this is the hyper-parameter that is worth tuning.

Today: not a big deal

Aside: Cohen et al., “Gradient descent in neural networks
typically occurs at the edge of stability” showed that even in
non-BN networks, for full-batch gradient descent, the network’s
curvature adapts to compensate for the learning rate, through a
completely different mechanism!

NNTD (UofT) CSC2541-Lec5 27 / 30



Implicit Learning Rate Decay

Counteracting the implicit LR effect:

Exponentially increasing LR schedule (Li and Arora, 2020)

Use weight decay (up next!)

Explicitly normalize each wj to unit norm

Then the effective LR is just α
This is not common practice, but I expect it could eliminate a lot of
experimental confounds

NNTD (UofT) CSC2541-Lec5 28 / 30



Implicit Learning Rate Decay

The above argument suggests that BN implements a O(1/
√
k)

decay schedule

Some reasons this is not exactly true:

Above analysis assumes ‖∇J (ŵ
(k)
j )‖ is constant, which is hopefully

not the case (if you succeeded in learning anything!)
Separate learning rate for each unit (so features that have already
changed a lot get slowed down more) — maybe a sort of feedback
control
Effect doesn’t apply to the output layer, which doesn’t feed into BN
— therefore, the output layer trains faster later in training
Different algorithms can have different decay schedules

E.g. K-FAC is invariant to affine transformations, and therefore
immune to this effect

NNTD (UofT) CSC2541-Lec5 29 / 30



More coming...

NNTD (UofT) CSC2541-Lec5 30 / 30


