
CSC 2541: Neural Net Training Dynamics
Lecture 3 - Metrics

Roger Grosse

University of Toronto, Winter 2021

NNTD (UofT) CSC2541-Lec3 1 / 44



Today

Today’s question: how to measure the “distance” between neural
networks?

Euclidean distance between weights isn’t very meaningful, since
neural nets are complicated nonlinear functions
Instead, we’ll look at distance in the space of functions represented
by the networks
Taking the second-order Taylor approximation of function space
distance gives a metric, which we can build interesting algorithms
out of
If the ouptuts represent probabilities, this yields the Fisher-Rao
metric

Main motivating example: optimization (natural gradient descent)

NNTD (UofT) CSC2541-Lec3 2 / 44



Motivating Example

Here’s the Rosenbrock function, a famous toy problem from
optimization:

h(x1, x2) = (a− x1)2 + b(x2 − x21)2

Gradient descent bounces across the valley and gets stuck:

NNTD (UofT) CSC2541-Lec3 3 / 44



Motivating Example

We can understand the Rosenbrock function as a composition of
two functions, analogously to cost functions in ML. This is known
as composite optimization.

J (x1, x2) = L(f(x1, x2))

f(x1, x2) = (a− x1,
√
b(x2 − x21))

L(z1, z2) = z21 + z22 .

Here’s the gradient descent trajectory in parameter space and
output space:

NNTD (UofT) CSC2541-Lec3 4 / 44



Motivating Example

If we could do gradient descent on the outputs, then it would
converge instantly. Of course, this is cheating.

This solution doesn’t directly carry over to neural nets

Mapping from parameters to weights may not be invertible, or not
easily invertible
Will the solution generalize?

But we can achieve a similar effect using proximal optimization

NNTD (UofT) CSC2541-Lec3 5 / 44



Proximal Optimization

NNTD (UofT) CSC2541-Lec3 6 / 44



Proximal Optimization

Suppose we want to minimize J (w). The proximal point method
trades off the cost and the distance from the current iterate:

w(k+1) = proxJ ,λ(w(k)) = arg min
u

[
J (u) + λρ(u,w(k))

]
ρ is a dissimilarity function (like a distance, but doesn’t need to
satisfy all the axioms)

λρ(u,w(k)) is the proximity term, and proxf,λ is the proximal
operator

NNTD (UofT) CSC2541-Lec3 7 / 44



Proximal Optimization

Example: ρ(w,w′) = 1
2‖w −w′‖2

Note: this is an idealized update rule, not something we can
efficiently implement. E.g., if λ = 0, it simply optimizes J directly.

NNTD (UofT) CSC2541-Lec3 8 / 44



Proximal Optimization

w(k+1) = proxJ ,λ(w(k)) = arg min
u

[
J (u) + λρ(u,w(k))

]
Setting the gradient equal to 0 and rearranging:

proxJ ,λ(w(k)) = u? = w(k) − λ−1∇J (u?)

This is implicit gradient descent: it’s almost a gradient descent
update, except that the gradient is evaluated at u?.

Not a practical algorithm, but often convenient to analyze.

NNTD (UofT) CSC2541-Lec3 9 / 44



Proximal Optimization

Approximation 1: linearize the cost around the current weights

proxJ ,λ(w(k)) = arg min
u

[
J (w(k)) +∇J (w(k))>(u−w(k)) + λρ(u,w(k))

]
= arg min

u

[
∇J (w(k))>u + λρ(u,w(k))

]
Setting the gradient to 0:

∇uρ(u?,w
(k)) = −λ−1∇J (w(k)).

This is called mirror descent, for reasons explained in the readings

A foundational technique in online learning
Closed form solutions for many ρ of interest (e.g. KL divergence)

The case of squared error reduces to ordinary gradient descent

NNTD (UofT) CSC2541-Lec3 10 / 44



Proximal Optimization

Approximation 2: Take the infinitesimal limit, λ→∞.

Then we take the first-order Taylor approximation to J and
second-order Taylor approximation to ρ:

ρ(u,w(k)) = 1
2(u−w(k))>G(u−w(k)) +O(‖u−w(k)‖3)

G = ∇2
uρ(u,w(k))

∣∣
u=w(k)

G is the metric matrix
NNTD (UofT) CSC2541-Lec3 11 / 44



Proximal Optimization

Plugging in both approximations:

proxJ ,λ(w(k)) = arg min
u

[
∇J (w(k))>u + λ

2 (u−w(k))>G(u−w(k))
]

Optimal solution:

u? = w(k) − λ−1G−1∇J (w(k))

For certain ρ, G−1∇J (w(k)) is called the natural gradient

If ρ is squared Euclidean distance, this is just ordinary gradient
descent

NNTD (UofT) CSC2541-Lec3 12 / 44



Proximal Optimization

Approximation 3: Second-order Taylor approximations to both
J and ρ

Update rule:

w(k+1) = w(k) − (H + λG)−1∇J (w(k))

If ρ is squared error, then G = I, and this gives a damped Newton
update:

w(k+1) = w(k) − (H + λI)−1∇J (w(k))

Relationship to trust-region methods (see readings for details)

NNTD (UofT) CSC2541-Lec3 13 / 44



Fisher Information

NNTD (UofT) CSC2541-Lec3 14 / 44



Fisher Information

So far we’ve only considered squared error proximity terms. If
we’re optimizing over probability distributions, a more meaningful
dissimilarity function is KL divergence:

DKL(q ‖ p) = Ex∼q[log q(x)− log p(x)]

Doesn’t satisfy some of the axioms of distance metrics (symmetry,
triangle inequality), but that’s OK

Nonnegative, equals 0 iff p = q

Information theoretic interpretation as relative entropy: the
number of bits wasted if you encode data from q using a code
designed for p

This formula doesn’t mention the parameters, so it’s an intrinsic
dissimilarity function

But we’ll typically optimize over a parametric family {pθ}
parameterized by θ

NNTD (UofT) CSC2541-Lec3 15 / 44



Fisher Information

The metric matrix is the Fisher information matrix (derivation in
the readings):

∇2
uDKL(pu ‖ pθ)

∣∣
u=θ

= Fθ

= Covx∼pθ(∇θ log pθ(x))

= Ex∼pθ

[
(∇θ log pθ(x))(∇θ log pθ(x))>

]
The vectors ∇θ log pθ(x) are called Fisher scores

Intuitively, ∆θ>Fθ∆θ tells you how much the distribution
changes if you adjust the parameters by ∆θ

NNTD (UofT) CSC2541-Lec3 16 / 44



Fisher Information

Fisher metric for univariate Gaussians:

NNTD (UofT) CSC2541-Lec3 17 / 44



Fisher Information

Proximal operator:

proxJ ,λ(θ) = arg min
u

[J (u) + λDKL(pu ‖ pθ)]

Infinitesimal limit:

θ(k+1) = θ(k) − αF−1θ ∇J (θ(k))

= θ(k) − α∇̃J (θ(k)),

where α = λ−1

The vector ∇̃J (θ) = F−1θ ∇J (θ) is the natural gradient, and the
update rule is natural gradient descent

The term natural indicates that the update direction is equivalent
in any coordinate system. This works because KL divergence is an
intrinsic dissimilarity function.

NNTD (UofT) CSC2541-Lec3 18 / 44



Exponential Families

(omitted due to time constraints; see the NNTD readings)

NNTD (UofT) CSC2541-Lec3 19 / 44



Function Space Distance

NNTD (UofT) CSC2541-Lec3 20 / 44



Function Space Distance

Motivations

“Output space gradient descent” can be more efficient
Natural gradient descent is invariant to parameterization

Can we do the same for neural nets?

Idea: define a metric on the outputs of a network and pull it back
to weight space

Pullback of a function:

f∗g(x1, . . . ,xK) = g(f(x1), . . . , f(xK))

NNTD (UofT) CSC2541-Lec3 21 / 44



Function Space Distance

We compute the metric matrix by taking a second-order Taylor
approximation to f∗ρ around the current point

The decomposition is similar to the Gauss-Newton Hessian
(Lecture 2), except this time it’s exact

Gx = ∇2
xf
∗ρ(x,x0)

∣∣
x=x0

= J>zx

[
∇2

zρ(z, z0)
∣∣
z=z0

]
Jzx +

∑
a

∂ρ

∂za
∇2

x[f(x)]a︸ ︷︷ ︸
=0

= J>zxGzJzx

NNTD (UofT) CSC2541-Lec3 22 / 44



Function Space Distance

Let’s revisit the Rosenbrock function. Instead of doing output
space gradient descent, put a Euclidean metric on the outputs and
pull it back to parameter space.

ρeuc(z, z
′) = 1

2‖z− z′‖2

f∗ρeuc(x,x
′) = 1

2‖f(x)− f(x′)‖2

Gz = I, so
Gx = J>zxGzJzx = J>zxJzx

Approximating the proximal point update with this metric:

NNTD (UofT) CSC2541-Lec3 23 / 44



Function Space Distance

For neural nets, function space distance measures how dissimilar
the outputs are in expectation:

ρpull(w,w
′) = Ex[f∗xρ(w,w′)] = Ex[ρ(f(w,x), f(w′,x))]

or the finite sample version:

ρpull(w,w
′) =

1

N

N∑
i=1

[ρ(f(w,x(i)), f(w′,x(i)))]

NNTD (UofT) CSC2541-Lec3 24 / 44



Function Space Distance

Second-order Taylor approximation:

Gw = ∇2
wρpull(w,w

′)
∣∣
w=w′

= Ex

[
∇2

wρ(f(w,x), f(w′,x))
]

= Ex[J>zwGzJzw].

I’ll call this the pullback metric (there isn’t a standard term in our
field)

We’ll overload notation by using G for both the pullback metric
and the Gauss-Newton Hessian. This is OK since the two matrices
often coincide.

NNTD (UofT) CSC2541-Lec3 25 / 44



Matrix-Vector Products

Computing matrix-vector products:

def pullback_mvp(f, rho, w, v):

z0, R_z = jvp(f, (w,), (v,))

rho_z0 = lambda z: rho(z, z0)

R_gz = hvp(rho_z0, z0, R_z)

_, f_vjp = vjp(f, w)

return f_vjp(R_gz)[0]

Compare with Gauss-Newton Hessian-vector products:

def gnhvp(f, L, w, v):

z, R_z = jvp(f, (w,), (v,))

R_gz = hvp(L, z, R_z)

_, f_vjp = vjp(f, w)

return f_vjp(R_gz)[0]

NNTD (UofT) CSC2541-Lec3 26 / 44



Connection to Gauss-Newton Hessian

NNTD (UofT) CSC2541-Lec3 27 / 44



Connection to Gauss-Newton Hessian

Recall:

Gauss-Newton Hessian: G = Ex[J>zwHzJzw]
Pullback metric: G = Ex[J>zwGzJzw]

These are equal if Gz = Hz. When does this happen?

Special case: squared error loss, with a Euclidean metric on the
outputs. Then Hz = Gz = I, and G = Ex[J>zwJzw] is the
Gauss-Newton matrix

NNTD (UofT) CSC2541-Lec3 28 / 44



Bregman Divergence

Let φ be a strictly convex function of z

Bregman divergence:

Dφ(z, z′) = φ(z)− φ(z′)−∇φ(z′)>(z− z′)

Examples:
(squared) Euclidean distance:

φ(z) = 1
2‖z‖

2 =⇒ Dφ(z, z′) = 1
2‖z− z′‖2

z are natural parameters of an exponential family, φ is the log
partition function ⇒ Dφ is KL divergence

NNTD (UofT) CSC2541-Lec3 29 / 44



Bregman Divergence

The Hessian of a Bregman divergence Dφ is just the Hessian of φ:

∇2
zDφ(z, z′)

∣∣
z=z′

= ∇2
z

[
φ(z)− φ(z′)−∇φ(z′)>(z− z′)

] ∣∣∣
z=z′

= ∇2
z[φ(z)]

∣∣
z=z′

= ∇2φ(z′)

If the output loss L is convex, we can choose φ = L
Then Gz = Hz, and therefore the GN Hessian equals the metric
matrix.

NNTD (UofT) CSC2541-Lec3 30 / 44



Fisher Information Matrix

NNTD (UofT) CSC2541-Lec3 31 / 44



Fisher Information Matrix

An important special case of pullback metrics is when the outputs
parameterize a probability distribution and ρ is KL divergence

Then Gz = ∇2ρ is the Fisher information matrix Fz

Pullback metric is Ex[J>zwFzJzw] as usual

While the Fisher metric has many convenient properties, there’s
nothing that special about it when it comes to neural nets. For
most algorithms, you’re free to choose another output space
metric.

NNTD (UofT) CSC2541-Lec3 32 / 44



Fisher Information Matrix

Let Dz = ∇z log p(t | z)

We can simplify the pullback metric:

Fw = Ex∼pdata

[
J>zwFzJzw

]
(def’n)

= Ex∼pdata

[
J>zwEt∼r(· |x)[DzDz>]Jzw

]
(def’n)

= Ex∼pdata
t∼r(· |x)

[
J>zwDzDz>Jzw

]
= Ex∼pdata

t∼r(· |x)
[DwDw>] (Chain Rule)

Since the final formula closely resembles that of the Fisher
information matrix, we call this the Fisher information matrix for
the network.

NNTD (UofT) CSC2541-Lec3 33 / 44



Fisher Information Matrix

NNTD (UofT) CSC2541-Lec3 34 / 44



Fisher Information Matrix

F = Ex∼pdata
t∼r(· |x)

[DwDw>]

Caution: don’t confuse the Fisher matrix with the empirical
Fisher matrix:

Femp = Ex,t∼pdata [DwDw>]

The difference is that the true Fisher matrix samples the targets
from the model’s predictions, while the empirical Fisher uses the
training targets.

Only the true Fisher is related to the Hessian. Using the empirical
Fisher to approximate the Hessian is a common mistake (even in
published papers!)

NNTD (UofT) CSC2541-Lec3 35 / 44



Invariance

NNTD (UofT) CSC2541-Lec3 36 / 44



Invariance

Various fields have bookkeeping devices to prevent us from
performing nonsensical operations, e.g.

dimensional analysis
types in programming

Recall from Lecture 1: gradient descent applied to linear
regression is not invariant to affine transformations of the inputs

What if we try to assign units to a linear regression problem:

NNTD (UofT) CSC2541-Lec3 37 / 44



Invariance

Trying to attach units to the gradient descent update:

No consistent assignment of dimensions!

NNTD (UofT) CSC2541-Lec3 38 / 44



Invariance

Look what happens to the gradient descent update when you
change from minutes to seconds:

The gradient gets 3600 times larger!

NNTD (UofT) CSC2541-Lec3 39 / 44



Invariance

Mathematicians have developed lots of abstractions to ensure that
things are invariant to the choice of coordinate system.

Vectors vs. covectors

Important distinction: vectors can be pushed forward, and
covectors can be pulled back.

NNTD (UofT) CSC2541-Lec3 40 / 44



Invariance

Pulling back a covector:

NNTD (UofT) CSC2541-Lec3 41 / 44



Invariance

Pulling back a metric:

NNTD (UofT) CSC2541-Lec3 42 / 44



Invariance

The thing we call the “gradient” is really a covector called the
differential. We know it’s a covector because you can pull it back
(i.e. backprop).

In order to update the parameters, you need a vector.

Using a Riemannian metric, you can convert between covectors
and vectors (this is the musical isomorphism)

If the metric is defined in a coordinate-independent way
(e.g. pullback from output space), then it is natural.

When computed in a coordinate system, this coincides with our
formula for the natural gradient:

∇̃J (w) = G−1∇J (w)

NNTD (UofT) CSC2541-Lec3 43 / 44



Invariance

To the first order, the natural gradient update is invariant to
differentiable reparameterizations of the model.

I.e., the natural gradient updates in two coordinate systems will be
equivalent (to first order) in terms of the functions represented by
the network
If the coordinate systems are related by an affine transformation,
then the invariance is exact

In our field, “natural gradient” is often assumed to mean the
Fisher metric, but there are lots of other natural metrics (and
Amari considered other examples in his paper)

E.g., the pullback of a Euclidean metric on outputs is independent
of how the network is parameterized (except for the output layer)

NNTD (UofT) CSC2541-Lec3 44 / 44


