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Adaptive Gradient Methods,

Normalization, and Weight Decay

Roger Grosse

1 Introduction

This lecture considers three staples of modern deep learning systems: adap-
tive gradient methods (such as RMSprop and Adam), normalization layers
(such as batch norm, weight norm, and layer norm), and weight decay.
While the three parts of the lecture are somewhat independent, there are
some threads that tie them together. All three components create surpris-
ing interactions between all the various knobs we have to tune to get a deep
learning system to work. And, for the most part, one can reason pretty well
about the behavior of these components using only elementary arithmetic;
no fancy math required.

The second component, normalization layers, is a particularly interesting
case to consider because it’s often served as the canonical example of a
deep learning architecture we don’t understand. To begin with, consider
Rahimi (2017)’s NeurIPS 2017 Test of Time talk, which was remarkably
well-delivered and entertaining, and launched a conversation about the state
of scientific rigor in our field. He characterized the state of deep learning
research as “alchemy,” in the sense of having discovered a wide array of
pratical and useful tricks, but lacking a foundational understanding of the
principles (analogously to not having an atomic theory). He cited BN, and
in particular its justification in terms of ICS, as a specific example of this
(emphasis mine):

Batch Norm is a technique that speeds up gradient descent on
deep nets. You sprinkle it between your layers and gradient
descent goes faster. I think it’s ok to use techniques we don’t
understand. I only vaguely understand how an airplane works,
and I was fine taking one to this conference. But it’s always
better if we build systems on top of things we do understand
deeply? This is what we know about why batch norm works
well. But don’t you want to understand why reducing internal
covariate shift speeds up gradient descent? Don’t you want to
see evidence that Batch Norm reduces internal covariate shift?
Don’t you want to know what internal covariate shift is? Batch
Norm has become a foundational operation for machine learning.
It works amazingly well. But we know almost nothing
about it.
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Clearly, this was a somewhat lighthearted talk that didn’t put heavy em-
phasis on nuance. The claim that we know “almost nothing” about BN was
probably not meant to be taken literally. However, it’s been taken both
seriously and literally by much of our community as a statement about our
then-current (i.e. as of 2017) best scientific understanding. Perhaps as a
result, a lot of researchers don’t appreciate what was already understood
about normalization even at the time.

There is indeed a sense in which we don’t understand BN, but not the
one which is widely believed. Contra the “alchemy” claim, the problem isn’t
that we lack an atomic theory. The problem, rather, is that neural nets
have many moving parts, which makes it challenging to reason through the
consequences of the theory in any particular situation. Asking “why does
BN help?” is like asking an organic chemist, “what does nitrogen do?” The
chemist could discuss nitrogen’s role in particular molecules and reactions,
perhaps down to the quantum level if needed, and abstract away some
general patterns and principles. In cases where its role isn’t understood,
they could suggest experiments that could disentangle different hypotheses.
But it is impossible to formulate a succinct list of rules to explain nitrogen’s
role in all the situations one is likely to encounter. Similarly, the original BN
paper (Ioffe and Szegedy, 2015) listed a variety of effects BN might have,
all of which could be analyzed in more detail using principles which were
understood at the time. I believe their analysis was very close to the modern
understanding. But it is hard to give a succinct summary of what BN does,
because there are multiple effects going on, and which ones are important in
any particular case will depend on the specific task, optimization algorithm,
and architecture.

The goal of this lecture is to give you the tools you need to reason about
adaptive gradient methods, normalization, and weight decay. Most of the
analysis will be fairly elementary, only involving basic arithmetic. Most of
it will appear obvious in hindsight. However, it’s a very important lecture,
because it contains a lot of gotchas that arise when trying to understand
a deep learning system. I said earlier in this course that half of neural
net phenomena can be explained by reasoning about linear networks. I’d
estimate that half of the remaining phenomena can be explained using the
ideas covered in this lecture. It’s likely that, after internalizing the ideas
in this lecture, you’ll start to notice a lot of unaccounted-for confounds in
papers purporting to explain neural net phenomena.

2 Adaptive Gradient Methods

The main workhorse of neural net training is gradient-based optimization,
where the gradients are computed using backpropagation. A significant
fraction of the time, the optimization is done using stochastic gradient de-
scent (SGD), or SGD with momentum (covered in Chapter 9). Most of
the remainder is made up of adaptive gradient methods, which rescale
each individual entry of the gradient according to a running average of its
magnitude. Prominent examples include RMSprop (Tieleman and Hinton,
2012), Adagrad (Duchi et al., 2011), and Adam (Kingma and Ba, 2015).

Let’s start with RMSprop (Tieleman and Hinton, 2012), which applies
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the following update rule. Here, � denotes elementwise division, and squares
and powers are taken elementwise. Iterations are denoted with

subscripts k rather than
superscripts to avoid clutter.gk ← ∇Jk(wk)

sk ← βsk−1 + (1− β)g2
k

wk ← wk−1 − αgk �
√

sk + ε1

The interpretation is simple: s is an exponential moving average of the
squared gradient g2

k. The hyperparameter β can be seen
as determining the timescale. The
squared gradients are averaged
over approximately the last
(1− β)−1 iterations.

The final step is like the SGD update, except that
the update is scaled inversely proportional to

√
sk + ε1, the estimate of the

standard deviation of the gradient. (The ε1 in the denominator is a small
positive number added for stability.)

One way to understand RMSprop is that the updates to each weight are
scaled such that their magnitude is approximately α. Why is this useful?
For ordinary SGD, individual derivatives might be very large or very small,
and taking too large or too small an update can be problematic for opti-
mization. By ensuring that each update has magnitude approximately α
(for a small value of α such as 10−3), we ensure that each weight is changed
by only a little bit in each iteration, but over many (e.g. 1000) iterations,
the weights still have the opportunity to move a long distance.

The entrywise scale factors are sometimes referred to as adaptive learn-
ing rates, but we need to be careful with this interpretation. RMSprop
still has a learning rate parameter α, and performance is still sensitive to
the choice of α, albeit less so than for SGD.

RMSprop is closely related to Adagrad (Duchi et al., 2011), an algo-
rithm for online convex optimization. The update for Adagrad is broadly
similar to that of RMSprop:

gk ← ∇Jk(wk)

fk ← fk−1 + g2
k

wk ← wk−1 − αgk �
√

fk + ε1

The main difference from RMSprop is that Adagrad maintains the sum
of squared gradients fk =

∑k
κ=1 g2

κ, rather than the exponential moving
average sk. Observe that the sum and the average have different scales: if
the gradient scale remains consistent, then they will differ by approximately
a factor of k. Hence, the Adagrad update to the weights will differ from
the RMSprop update by a scale factor of O(1/

√
k). We’ll see in Section 4.3 that

normalization layers cause an
implicit learning rate decay, also of
O(1/

√
k) in the case of SGD. This

could be why the Adagrad decay
schedule, which is so important for
convergence in the online convex
optimization setting, doesn’t seem
to help for neural net optimization.

This means Adagrad
implements an implicit learning rate decay schedule, which is essential for
proving convergence in the online convex optimization setting, but which
in practice can be either helpful or harmful for neural net optimization,
depending on the task and architecture. One reason RMSprop and Adam
are generally preferred to Adagrad is likely the lack of an implicit learning
rate decay schedule.

Adam (Kingma and Ba, 2015) is a variant of RMSprop which includes
a sort of heavy ball momentum, and also uses a slightly different estimator
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of the variances which avoids a certain bias at the start of training. Note that in the denominator for
the weight update, ε is outside the
square root for Adam, while it is
inside the square root for
RMSprop and Adagrad. As far as
I know, this doesn’t reflect any
interesting difference between the
algorithms. But it is a minor
gotcha when doing algorithmic
comparisons, since the
hyperparameter ε has a different
scale between the algorithms.

gk ← ∇Jk(wk−1)

mk ← β1mk−1 + (1− β1)gk

sk ← β2sk−1 + (1− β2)g2
k

m̂k ←mk/(1− βk1 )

ŝk ← sk/(1− βk2 )

wk ← wk−1 − αm̂k � (
√

ŝk + εI)

Observe that mk is an exponential moving average of the gradients. Us-
ing mk for the weight update instead of gk is essentially like heavy ball
momentum (discussed in Chapter 9). One gotcha is that α has a

different interpretation from that
of ordinary heavy ball momentum.
In heavy ball momentum, the
effective learning rate (terminal
velociy) is α(1− β)−1, while in
Adam, the effective learning rate is
α. See Chapter 9.

The hyperparameter β1 functions
like the momentum decay parameter, hence the default value is 0.9. The
hyperparameter β2 is like β in RMSprop, and the default value is 0.999
(correspoding to a timescale of 1000 steps for averaging the gradient magni-
tudes). The bias-corrected moments m̂k and ŝk are intended to compensate
for the fact that the moments are initialized to zero (and hence the estimates
would otherwise be too small at the start of training).

2.1 Use of Second-Order Information

Adaptive gradient methods are sometimes viewed as approximate second-
order optimizers. To understand why, recall our discussion of the true and
empirical Fisher information matrices from Chapter 3. The true Fisher
information matrix

F = Ex∼pdata
t∼r(· |x)

[DwDw>] (1)

is the covariance of the log-likelihood gradients when the targets are sampled
from the model’s output distribution. We saw that F is equivalent to the
Gauss-Newton Hessian G when the output layer represents the natural pa-
rameters of an exponential family, and the loss is its negative log-likelihood.
In Chapter 2, we saw that under certain conditions, G is a good approxima-
tion to the true Hessian H. Hence, F can be treated as an approximation
to H.

In Chapter 3, we also briefly introduced the empirical Fisher matrix. In
the case where the batch size is 1, the matrix is given by: Note that, unlike with the true

Fisher matrix, the
∇J (w)∇J (w)> term does not
drop out because the cost gradient
may be nonzero.

Femp = E(x,t)∼pdata [∇Jx,t(w)∇Jx,t(w)>]

= Cov(x,t)∼pdata(∇Jx,t(w)) +∇J (w)∇J (w)>,
(2)

where J (w) = E(x,t)∼pdata [Jx,t(w)] is the full batch cost. The second term,

∇J (w)∇J (w)>, is rank-1. But
because algorithms like RMSprop
and Adam use an exponential
moving average of the
second-order statistics, in practice
its contribution to Femp will have
rank larger than 1.

Like with the true
Fisher, this is an uncentered covariance matrix of gradients. The difference
is that it uses the training labels, rather than samples from the output
distribution. The second moments estimated by RMSprop and Adam can
be seen as estimates of the diagonal entries of Femp. (A summary of all the
matrices covered in this course is given in Figure 1.)

Unfortunately, the argument that F ≈ H doesn’t carry over to Femp.
The two matrices are expected to be similar if the model is close to the
optimum (so that∇Jx,t(w) is approximately zero-mean), there is significant
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Figure 1: A summary of the relationships between the matrices used in this course. New
items are in blue, and items yet to be covered are grayed out.
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Figure 2: From Kunstner et al. (2019). Comparison of optimization paths of gradient
descent, natural gradient descent, and empirical-Fisher-preconditioned gradient descent
for a deterministic least squares problem (fitting the regression dataset shown on the left).

label noise, and the predictions are well calibrated (such that the training
labels behave as if they were sampled from the model’s output distribution).
If these conditions are not satisfied, then Femp can behave very differently
from H. For instance, consider the extreme case of the full-batch gradient
(so that the gradient covariance is 0 and therefore Femp is an exponential
moving average of ∇J (w)∇J (w)>), and imagine we substitute in Femp for
H in the Newton update:

w(k) ← w(k−1) − F−1
emp∇J (w(k−1)). (3)

Roughly speaking, we can see that Femp scales quadratically in the size of
the gradient. Therefore, the algorithm will take a smaller step in directions
that consistently have a larger gradient signal. This feels like an undesirable
property from an optimization standpoint, and indeed, Figure 2 shows that
preconditioning using F−1

emp results in a rather bizarre path when applied
to a simple least-squares problem. This effect is why algorithms based on
the empirical Fisher matrix (such as RMSprop, Adam, etc.) nearly always

precondition using F
−1/2
emp rather than F−1

emp. See Kunstner et al. (2019) for
a more detailed discussion of the problems with the empirical Fisher matrix
when it comes to optimization.

The defition of Femp above assumed a batch size of 1. In practice, like
SGD, adaptive gradient methods are typically run on batches of data. In
principle, the proper thing to do would be to find a way to estimate Eqn. 2
in a way that uses batch operations. Unfortunately, this is hard to do
in practice, so instead one simply substitutes the batch gradients for the
per-example gradients in Eqn. 2. Letting B denote a training batch, the
empirical Fisher matrix becomes:

Fbatch
emp = EB∼pdata [∇JB(w)∇JB(w)>]

= CovB∼pdata(∇JB(w)) +∇J (w)∇J (w)>,

=
1

|B|
Cov(x,t)∼pdata(∇Jx,t(w)) +∇J (w)∇J (w)>.

(4)

So while the true empirical Fisher matrix Femp is independent of |B|, the
version computed in practice depends on |B|. As |B| gets larger, Fbatch

emp

gets smaller. This means larger batch sizes imply larger effective learning
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rates, a surprising gotcha when tuning hyperparameters (and one not shared
by SGD). Also, the covariance term shrinks relative to the gradient outer
product term, causing it to less resemble the true Fisher matrix.

The original Adam paper is one of the most highly cited scientific pa-
pers ever, and there have been dozens of follow-up papers proposing minor
variations on the algorithm. Given that there are such profound differences
between the empirical and true Fisher matrices, as well as between the
per-example and per-batch versions of the empirical Fisher, you’d expect
someone to have measured the effects of these various choices on optimiza-
tion performance. But to the best of my knowledge, this hasn’t been done.
Good opportunity for a class project!

2.2 Why are diagonal approximations effective?

In Chapter 4, we considered Kronecker-factored approximations to neural
net curvature. But in practice, the most widely used adaptive gradient
methods all use the much cruder diagonal approximations. This isn’t in-
evitable, e.g. Shampoo (Gupta et al., 2018) is an adaptive gradient method
which uses a K-FAC-like factorization. But why have diagonal precondi-
tioners been so successful? There isn’t that much to distinguish individual
coordinates in neural net training, so we wouldn’t expect the eigenvectors
of H, G, etc. to be well-aligned with the coordinate axes.

Agarwal et al. (2020) argue that what’s actually important isn’t so much
diagonal rescaling as layerwise rescaling. Different layers in a network play
different computational roles, for instance because some feed into normal-
ization layers and others don’t (see Section 4). Normalization operations can have

a dramatic effect on the scales of
gradients for individual layers; see
Section 4.3.

The gradients will have
different scales in different layers, and it’s useful to be able to correct for
that. Because each parameter belongs to one layer, diagonal rescaling will
be able to capture the effect of layerwise rescaling. It’s questionable whether
diagonal rescaling is doing much more than this. E.g., Agarwal et al. (2020)
run experiments where they modify SGD updates with layerwise rescaling
so that each layer’s scale matches that of Adam (or vice versa). For a va-
riety of benchmarks, this simple manipulation closes the performance gap
between algorithms, suggesting that more fine-grained diagonal scaling of
the gradients within a layer isn’t very important for optimization.

3 The Problem of Internal Covariate Shift

All the way back in Chapter 1, we analyzed the gradient descent dynamics
for linear regression. Since the cost function is quadratic, the convergence
rate depends on the condition number of the Hessian, which is given by

H =
1

N

N∑
i=1

Φ̆
>

Φ̆,

where Φ̆ is the design matrix with a homogeneous coordinate. We observed
that if the features are uncentered, i.e. E[φ(x)] = m 6= 0, then H has a
large outlier eigenvalue of magnitude 1 + ‖m‖2; this is an outlier because
‖m‖2 grows linearly in the dimension. Another way that ill-conditioning
can arise is if all the features have different variances. In the case of linear
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regression, there was a straightforward fix: normalize the inputs to be zero-
mean and unit variance. This does not guarantee that the optimization
problem will be well-conditioned, but it fixes the specific aforementioned
source of ill-conditioning.

A fully connected layer of a neural network computes a linear function
of the previous layer’s activations a`−1, followed by a nonlinear activation
function. Since the linear part resembles linear regression, it’s a reasonable
guess that the Hessian with respect to the weights W` will be better con-
ditioned if a`−1 has zero mean and unit variance. Unfortunately, unlike in
the linear regression case, there is no straightforward way to normalize the
activations, since they are computed from a learned feature map. Even if
the network is somehow initialized so that the activations have zero-mean
and unit variance, the statistics will change as the network trains, a problem
referred to as internal covariate shift (ICS). This is not a new observa-
tion: it was made by LeCun et al. (1991), only a few years after backprop
was invented (though the term ICS is more recent).

We can actually make a more precise prediction about the effect of ICS
on optimization. Recall from Chapter 4 that the K-FAC approximation to
the Gauss-Newton Hessian for layer ` is given by:

Ĝ`` = A`−1 ⊗ S`, (5)

where A`−1 and S` are the (uncentered) covariances of the activations and
pre-activation pseudo-gradients, respectively. Since A`−1 is defined exactly
analogously to H in the linear regression problem, all of our conclusions
about the eigenvalues of H also apply directly to the eigenvalues of A`−1.
In particular, if a`−1 is uncentered, then we’d expect A`−1 to have a single
large outlier eigenvalue (call it ν). Observe now that the eigenvalues of a
Kronecker product are the products of the eigenvalues of the two factors.
This leads to the following prediction about the conditioning of G``:

ICS Conditioning Hypothesis. For a network with output
dimension M , if m = E[a`−1] is far from zero, we’d expect G``

to have as many as M large eigenvalues, namely νλi for each
eigenvalue λi of S`, where ν = ‖m‖2 + 1. The corresponding
eigenvectors are of the form m⊗ v for some vector v.

The above argument is only heuristic, as K-FAC is only an approxima-
tion. Does it hold up in practice? This is actually pretty hard to answer,
since it’s hard to obtain reliable information about the eigenspectra of neu-
ral net Hessians. Even though theories of ICS and conditioning are decades
old, we’ve only recently started to see concrete evidence. Ghorbani et al.
(2019) found evidence for a small number of outlier eigenvalues which disap-
pear when batch norm is applied. Papyan (2020) Papyan (2020) found C large

eigenvalues (where C is the
number of classes), rather than M ,
as claimed above. You could
probably argue that if the network
is close to linear, then S` will be
close to rank-C, and therefore you
get C large eigenvalues.

performed a more rigorous
mathematical analysis of the spectra of neural net Hessians and reached a
similar conclusion, namely that there are a small number of outlier eigen-
values related to the un-centering of the activations. This conclusion was
backed up with extensive experimental evidence. Therefore, I feel comfort-
able asserting that ICS exerts a significant effect on the conditioning of
neural net Hessians.
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3.1 Changing One Thing at at Time: Preconditioning

The above analysis was indeed one of the main motivations behind batch
norm, but it’s important to remember that batch norm wasn’t the first
normalization scheme for neural nets. Rather, it followed on a long line
of other normalization schemes, and was designed to achieve other goals
in addition to improving the conditioning. A good scientist changes only
one thing at a time, so let’s consider how one might directly fix the ill-
conditioning caused by ICS while changing as little as possible about the
training. The following analysis is fairly

representative of predecessors to
batch norm, but isn’t intended to
exactly match any particular
algorithm.

The way to do this is with preconditioning. Recall from Chapter 4 that
preconditioning refers to transforming to another coordinate system where
the Hessian is better conditioned. Suppose we have a fully connected layer
that computes:

a` = φ(W`a`−1 + b`). (6)

We’d like to normalize the activations using estimates of the first- and
second-order statistics, for instance estimated using exponential moving av-
erages. Let m be the estimated mean and Σ be a diagonal matrix containing
the estimated variances. The normalized activations are defined as:

ã`−1 = Σ−1/2(a`−1 −m). (7)

We’d like to choose weights and biases to ensure that the network still
computes the same function, i.e.

W̃`ã`−1 + b̃` = W`a`−1 + b`, (8)

and this is achieved by:

W̃` = W`Σ
1/2 b̃` = b` + W`m. (9)

In the preconditioned space, m = 0, so under the Conditioning Hypothesis,
we’d expect this preconditioning to eliminate the outlier eigenvalues.

The transformation we just defined is a linear reparameterization, so it
can be analyzed using the analysis of Chapter 4. Defining w` = (vec(w`)

> b>` )>,
the above transformation can be written as w̃` = R−1w`, and the update
rule is equivalent to pre-multiplying the gradient by RR>. The formulas
are:

R−1 =

(
Σ1/2 ⊗ I 0
m> ⊗ I 1

)
[RR>]−1 =

(
(Σ + mm>)⊗ I m⊗ I

m> ⊗ I 1

)
(10)

Recall that [RR>]−1 is intended to approximate the Hessian. By inspecting
the right-hand formula, we see that this matrix is almost diagonal, except
that it has additional terms to capture the off-centering. For this reason,
preconditioners of this form are known as quasi-diagonal preconditioners
(Ollivier, 2015).

It’s interesting to contrast this with diagonal preconditioners such as the
adaptive gradient methods. If the activations are centered (m = 0), then
the preconditioner in Eqn. 10 is diagonal. Hence, a diagonal preconditioner
is able to compensate for the effect of different activations having different
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Figure 3: Illustration of the desired affine invariance property. (top) A
layer of an ordinary MLP. (bottom) The same architecture, but where
invertible affine transformations Ψ and Ω are applied to the activations and
preactivations. Trainable parameters are shown in red. The parameters W̃
and b̃ can be chosen such that Net 2 computes the same function as Net
1, in which case Net 2 is simply a reparameterization of Net 1. After an
SGD update, the two networks will compute different functions, while after
an (undamped) K-FAC update, they will continue to compute the same
function. This is what is meant by invariance to affine reparameterization.

scales. However, the effect of off-centering can’t be captured by a diago-
nal matrix. (For example, suppose Σ = I and m is a vector all of whose
entries are 0.1. In this case, we still get outlier eigenvalues of 0.1M , but
this is hardly reflected in the diagonal entries, which all have the value 1.1.)
To compensate for off-centering, we need (at least) the quasi-diagonal ap-
proximation. Fortunately, quasi-diagonal preconditioners aren’t much more
expensive than diagonal ones (since they can be computed with Eqn. 9).
This is an important insight about neural net training, and hardly anyone
knows about it today!

3.2 Invariance

An alternative way to arrive at quasi-diagonal preconditioners is by reason-
ing about invariance. Recall that natural gradient descent was motivated by
invariance to smooth reparameterizations: if we reparameterize the weights
of our network using a smooth transformation, then the natural gradient
updates in both parameterizations will be equivalent, up to the first order,
in terms of the predictions made by the network.

Computing the exact natural gradient is generally impractical. It’s also
pretty extravagant to ask for invariance to arbitrary smooth reparameteriza-
tions, since most of these are nonsensical. Fundamentally, a fully connected
layer of a neural net computes an affine mapping between two affine spaces.
To parameterize an affine mapping, it suffices to specify affine bases for
each of the two spaces. There are, of course, other ways to parameterize
the mapping; for instance, we can randomly permute all of the entries of its
matrix representation. But such parameterizations are unnatural. By limit-
ing ourselves to the natural reparameterizations, we can achieve invariance
much more efficiently than by computing the exact natural gradient.

Figure 3 illustrates the sort of affine reparameterizations we’re talking
about. In each layer, the activations are passed through an affine trans-
formation (which can be seen as an affine change-of-basis), which for the
purposes of this analysis is assumed to be fixed. The FC layer computations
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are applied to get the transformed pre-activations. Then we apply another
affine transformation, which we also assume to be fixed. We’d like to make
this entire computation equivalent to that of the original network, and this
can be achieved with a particular setting of the transformed parameters.

With a bit of drudgery, it can be shown that (undamped) K-FAC is
invariant to this sort of affine reparameterization. Interestingly, unlike the
generic result for natural gradient descent, this invariance property holds ex-
actly. This property was shown using elementary linear algebra by Martens
and Grosse (2015), and later Luk and Grosse (2018) showed how to construct
K-FAC out of coordinate-free mathematical objects so that the invariance
property follows automatically.

Now suppose we further limit the set of allowable transformations to
coordinatewise affine transformations of the activations and pre-activations.
I.e., we can apply arbitrary affine transformations to individual units in-
dependently. By designing an algorithm to be invariant to this class of
transformations, we arrive at a quasi-diagonal preconditioner analogous
to Eqn. 10. Such a quasi-diagonal preconditioner was derived by Ollivier
(2015).

4 Batch Normalization

The above discussion of the ill-conditioning effects of ICS and their solution
using preconditioning sets the stage for our discussion of batch normaliza-
tion (BN) (Ioffe and Szegedy, 2015). This is an operation which linearly
transforms the columns of a matrix (typically representing the activations
A` or pre-activations S` for a batch) to have zero mean and unit variance.
The operation is defined as follows: In practice, the BN operation

includes learnable parameters for
the output mean and variance for
each column. This is done in order
that BN maintain the expressive
power of the original network. For
simplicity, we assume these are
fixed at mean 0 and standard
deviation 1. I believe this doesn’t
significantly impact any of the
analyses here.

X̃ = BN(X) = (X− 1µ(X)>)� 1σ(X)>, (11)

where µ and σ are functions which compute the columnwise mean and
standard deviation, respectively, and � denotes elementwise division. Note
that the mean and variance statistics are estimated from the current batch,
i.e. we’re not keeping moving averages. Typically, the BN operation is
applied to the pre-activations in each layer, although it is possible to apply
it to the activations instead.

What distinguishes BN from the preconditioning approach described
above is that BN is treated as a layer in the network. In this sense, BN is to be

contrasted with the
preconditioning approach.
Preconditioning keeps the
network’s forward and backprop
computations the same, and can
be thought of as a linear
transformation of the completed
gradient.

Hence, it’s included
in the computation graph, and we include its VJP when doing backprop.
BN should be thought of as a modification to the network architecture,
rather than as an optimization algorithm. Figure 4 shows the computation
graph for BN, which operates on batches rather than individual examples.
It’s convenient to divide this graph into two distinct paths, a direct path
and a statistics path, so that the contribution of each path to the backprop
computation can be analyzed separately. The direct path can be thought of
as the backprop computation when the statistics are assumed to be fixed.
It’s not hard to show that this consists of a simple rescaling: The bar denotes backpropagated

derivatives. See the Backprop
lecture notes for CSC413.

X = X̃� 1σ(X)> (12)
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Figure 4: Computation graph for the batch normalization operation. The
direct path is shown in blue, and the statistics path in red.

The statistics path accounts for the fact that changing X changes the statis-
tics, and the formulas are more cumbersome. We’ll see that both paths play
important roles in the optimization effects of BN.

4.1 Motivations

BN was indeed motivated partly as a way to combat the ill-conditioning
effects of ICS. However, it was designed to provide additional benefits at
the same time, including:

• preventing dead or saturated units

• maintaining stability at higher learning rates

• a regularization effect resulting from the normalizer being stochastic,
depending on which other training examples are selected for the batch

All of these effects can be reasoned through from first principles, and I’ll
discuss them each briefly. The BN paper didn’t attempt to disentangle
which of these factors are important for performance, but you can probably
imagine how you would design experiments to test them. In addition to
the intended effects of BN, there is also a very important phenomenon not
addressed by the original paper, namely an implicit learning rate decay.
This is discussed in Section 4.3.

The first effect — preventing dead or saturated units — is straightfor-
ward. If the inputs to the ReLU activation function are always 0, then that
unit is dead: its value is always zero, so it has no effect on the network’s
computations. Furthermore, the incoming weights receive a gradient signal
of 0, so there is nothing encouraging the unit to come back to life. Despite the zero gradient, it is

possible for the unit to come back
to life if updates to other parts of
the network cause the preceding
layer’s activations to change in a
way such that the unit’s inputs
become positive again.

However,
if the pre-activations are forced by BN to be 0 in expectation, then they
will be positive some of the time, and the unit won’t be dead. Analogous
arguments apply to other activation functions.

Stochastic regularization will be discussed in Chapter 8.

4.2 A Wrinkle in the ICS Story

The analysis of Section 3 identified a problem in need of a solution: uncen-
tered activations create some outlier eigenvalues in the Hessian or Fisher
information matrix, each one of the form m⊗ v for some vector v. In Sec-
tion 3.1, we saw that these outlier eigenvalues could be removed, without
changing the expressive power of the model, by transforming the activations
to have mean zero. Since BN explicitly transforms the activations to have

12
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mean zero (within a batch), Again, we are ignoring the mean
and gain parameters of BN for
simplicity.

this suggests a natural hypothesis for how BN
improves optimization:

ICS Removal Hypothesis. BN improves optimization by cen-
tering and/or normalizing the previous layer’s activations.

Note that the ICS Removal Hypothesis is logically independent of the ICS
Conditioning Hypothesis. It could be that BN removes the outlier eigenval-
ues by some means other than centering the previous layer’s activations, or
conversely it could be that centering the previous layer’s activations helps
optimization for some reason other than eliminating the outlier eigenvalues.

The ICS Removal Hypothesis seems pretty reasonable in light of the
above discussion, but it’s contradicted by two pieces of evidence. First of
all, observe that we have a choice of whether to apply BN before or after
the activation function. BN centers the activations only if it’s applied after
the activation function, so the ICS Removal Hypothesis implies this is what
ought to be done. In fact, ReLU always outputs a positive activation, so
the activations are guaranteed to be uncentered if BN is applied before
the activation. But in practice, it’s more common to apply it before the
activation function, and indeed the inventors tried both methods and found
that applying it before the activation function generally worked better. This
is hard to square with the ICS Removal Hypothesis.

Another piece of evidence comes from a neat experiment by Santurkar
et al. (2018). Essentially, it is a sort of “knockout” experiment where we
knock out the ICS removal effect of BN and see what is the effect on op-
timization. If the ICS Removal Hypothesis is correct, we’d expect the re-
sulting performance to degrade to the level without BN. The following is a
simplification of their manipulation, but I think it captures the main idea.
Basically, for each batch, we transform the activations in a given layer `
using a random affine transformation, so that the first- and second-order
statistics are changed, but information is otherwise preserved: Here, i indexes the training

example within the batch, and j
indexes the hidden unit. The layer
index ` is omitted for clarity.

For j = 1, . . . , D

mj ∼ pm
γj ∼ pγ

For i = 1, . . . , B

For j = 1, . . . , D

â
(i)
j = γja

(i)
j +mj

The distrubtions pm and ps can be chosen such that the distributions of
means and variances resemble those seen during non-BN training. Perform-
ing this random transformation after a BN layer can re-introduce the ICS
that was removed by BN, and therefore (seemingly) re-introduce the out-
lier eigenvalues that BN removed. The main observation of Santurkar et al.
(2018) was that this transformation has almost no effect on the optimization
performance, suggesting that ICS removal is not the real mechanism.

So do we need to throw out the whole ICS story? Not so fast. The key
here is to notice what happens when BN is applied in the next layer, before
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the activation function. In other words, we’re interested in the following
sequence of computations: Here we’re assuming a fully

connected layer, but similar
arguments apply to other layer
types. Note that there is no bias
term in the linear part because BN
undoes the effect of the bias
anyway.

R` = A`−1W
>
`

S` = BN(R`)

A` = φ`(S`)

Let’s absorb this all into a single function f`:

A` = f`(A`−1,W`) = φ`(BN(A`−1W
>
` ))

The important thing to observe is that this function is invariant to shifting
and rescaling of the activations: Note that this invariance result

only applies to scalar
multiplication by s, rather than to
unitwise rescaling.

f`(A`−1,W`) = f`(sA`−1 + 1m>,W`) for any s, m

If the network’s function is invariant to rescaling and shifting a`−1, then so
is the cost function J (W`), and therefore also its Hessian, Fisher matrix,
etc. The explanation given here is

inspired by a conversation with
Sergey Ioffe and Ian Goodfellow. I
haven’t been able to find a
published paper that discusses it.
Rigorously testing this explanation
could make a good class project.

Hence, the conditioning of the cost function is independent of the cen-
tering and scaling of a`−1. We’d expect the outlier eigenvalues to disappear,
just like with a quasi-diagonal preconditioner. So the ICS Conditioning Hy-
pothesis is still looking pretty solid, except that the ill-conditioning is fixed
by applying BN to the next layer, not the previous one.

An alternative way to view the same phenomenon is in terms of the me-
chanics of the backprop computations. For clarity, let’s focus on the batch
centering (BC) operator, which centers but doesn’t rescale the activations:

S = BC(R) = R− 1µ(R)>. (13)

The backprop computations for this operator can be decomposed into a
direct path and a statistics path (see Figure 4): Interestingly, backpropping

through the BC operator has the
effect of centering the gradients.

R = S︸︷︷︸
direct path

− 1µ(S)>︸ ︷︷ ︸
statistics path

. (14)

Let A denote the previous layer’s activations, and decompose it into the
centered activations Ã and mean m as follows:

A = Ã + 1m>.

The batch gradient is computed as follows: In the second-to-last step,

1>Ã = 0 because Ã is centered.
Similarly, (S− 1µ(S)>)>1 = 0
because S− 1µ(S)> is centered.

W = R
>

A

=
(
S− 1µ(S̃)>

)(
Ã + 1m>

)
=
[
S
>

Ã− µ(S)1>Ã︸ ︷︷ ︸
=0

+ (S− 1µ(S)>)>1m>︸ ︷︷ ︸
=0

]
= S

>
Ã

But this last formula is essentially the weight gradient computed using the
centered activations! Hence, off-centering has no impact on the dynamics,

14



CSC2541 Winter 2021 Chapter 5: Adam, Normalization, WD

and we’d expect the outlier eigenvalues to disappear. Note that this happens
regardless of whether or not we use BN (or some other method) to center
the previous layer’s activations!

It’s interesting that the statistics path plays such an important role in
making the gradients more well-behaved. What’s going on? Recall that the
outlier eigenvectors are of the form v ⊗m. It can be shown that adjusting
the weights in this direction causes the next layer’s pre-activations to be
changed by approximately a multiple of 1v>. In other words, the pre-
activations of every example are transformed additively in exactly the same
way. This isn’t a very useful change, because it doesn’t help distinguish
the training examples from each other. When BN is applied, this change
is undone by BN’s centering operation, which cancels out any change to
the mean pre-activations. I.e., BN filters out changes to the weights which
don’t help distinguish the training examples, allowing the network to focus
on updating the weights in directions which are more meaningful.

4.3 Implicit Learning Rate Decay

Improving the conditioning of the cost function isn’t the whole story for
how BN improves optimization. This section is loosely based on

van Laarhoven (2017); Hoffer et al.
(2017); Zhang et al. (2019); Li and
Arora (2020); Roburin et al.
(2020).

There is a very important side effect of BN
(and other normalization schemes, such as weight norm and layer norm),
namely that it causes an implicit learning rate decay effect.

A classical result will help us out here. A function g is said to be
homogeneous of degree k if

g(γx) = γkg(x) (15)

for any x. If this holds for k = 0, it is said to be scale-invariant. In the
case that g is scalar-valued, Euler’s homogeneous function theorem
tells us that

x>∇g(x) = kg(x). (16)

In particular, if g is scale-invariant, then x ⊥ ∇g(x). The symbol ⊥ denotes
orthogonality.

A corollary of this
result is that the gradient ∇g is homogeneous of degree k − 1, i.e.

∇g(γx) = γk−1∇g(x). (17)

Now observe that the BN operation is invariant to rescaling the incoming
weights to a given unit. Mathematically, Here, we continue to assume BN is

applied before the activation
function. The function f` denotes
the layer’s computations, as in
Section 4.2.

f`(A,W) = f`(A,ΓW) for any diagonal matrix Γ � 0.

This implies the layer’s computations are scale invariant when viewed as a
function of wj , the vector of incoming weights to unit j. Consider J (wj),
the cost viewed as a function of wj . This is the composition of f` with the
rest of the network’s computations and the loss function. Hence, J (wj) is
also scale invariant. Consequently, by Eqn. 17, the gradient is homogeneous
of degree -1:

∇J (γwj) = γ−1∇J (wj). (18)

Since the network’s function and the cost are scale invariant, the scale of
wj doesn’t matter, hence we can understand the dynamics by canonicalizing
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Figure 5: Illustration of batch normalization’s implicit learning rate decay
effect. The gradient ∇J (wj) is tangent to the sphere centered at the origin,
and its norm scales inversely to ‖wj‖. Because the gradients are tangent to
the sphere, the norm of the weights grows over time.

wj to a unit vector ŵj = wj/‖wj‖. Observe that the change to ŵj resulting
from an SGD upate can be approximated as:

ŵ
(k+1)
j =

w
(k)
j − α∇J (w

(k)
j )

‖w(k)
j − α∇J (w

(k)
j )‖

≈
w

(k)
j − α∇J (w

(k)
j )

‖w(k)
j ‖

= ŵ
(k)
j − α‖w

(k)
j ‖

−1∇J (w
(k)
j )

=

effective LR︷ ︸︸ ︷
ŵ

(k)
j − α ‖w

(k)
j ‖−2∇J (ŵ

(k)
j )︸ ︷︷ ︸

effective gradient

This equation can be interpreted in two ways. First, the vector ‖w(k)
j ‖−2∇J (ŵ

(k)
j )

can be considered the effective gradient, since it’s the vector that would
be plugged into an imaginary SGD update to ŵj . Alternatively, α̂ =

α‖w(k)
j ‖−2 can be considered the effective learning rate. The above

derivation shows that the effective gradient and the effective learning rate
are each homogeneous of degree -2, meaning that scaling the weights by γ
results in the size of the update being scaled by γ−2. This effect is illustrated
in Figure 5.

The next thing to notice is that the norm ‖wj‖ increases monotonically.
Ask yourself: is it the direct path
or the statistics path which is
responsible for the implicit
learning rate effect?

This can be understood geometrically as follows (see also Figure 5): plugging
in k = 0 to Eqn. 16, we find that wj ⊥ ∇J (wj) for all wj . By the
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Figure 6: (left) Growth of the norm ‖w(k)
j ‖ for various explicit learning rates α, assuming

‖w(0)
j ‖ = 1 and ‖∇J (ŵ

(k)
j )‖ = 1 for all k. (right) The corresponding effective learning

rate schedules. Note the logarithmic scales on both axes.

Pythagorean Theorem, the norm of the weights increases according to:

‖w(k+1)
j ‖2 = ‖w(k)

j + α∇J (w
(k)
j )‖2

= ‖w(k)
j ‖

2 + α2‖∇J (w
(k)
j )‖2

= ‖w(k)
j ‖

2 +
α2‖∇J (ŵ

(k)
j )‖2

‖w(k)
j ‖2

(19)

The exact pattern of growth depends on ∇J (ŵ
(k)
j ), which is hard to charac-

terize in general. However, to gain intuition, we can suppose ‖∇J (ŵ
(k)
j )‖ is

a constant. In this case, it can be shown that the norm grows approximately
as:

‖w(k)
j ‖

2 ∝
√

1 + k/k0 for some k0.

This translates into a schedule for the effective learning rate α̂:

α̂k =
α̂0√

1 + k/k0

.

Interestingly, this happens to be a learning rate schedule that’s popular
in stochastic optimization. For instance, it is exactly a learning rate de-
cay schedule of this form that differentiates Adagrad from RMSprop (see
Section 2).

The explicit learning rate hyperparameter gives us surprisingly little

control over the learning dynamics. Bengio (2012) said,“The [learning
rate] is often the single most
important hyperparameter and one
should always make sure that it
has been tuned (up to
approximately a factor of 2). . . If
there is only time to optimize one
hyper-parameter and one uses
stochastic gradient descent, then
this is the hyper-parameter that is
worth tuning.” In practice, the
learning rate isn’t quite so
important today, and I think the
implicit decay effect is a big part
of why not.

For instance, Figure 6 shows how ‖w(k)
j ‖

and α̂k evolve over time for different choices of the explicit learning rate α,

assuming ‖w(0)
j ‖ = 1 and ‖∇J (ŵ

(k)
j )‖ = 1 for all k. For larger α, the weight

norms increase more rapidly, counteracting the larger explicit learning rate.
In fact, regardless of the value of α, all the effective learning rates asymptote
to the same trend. The explicit learning rate hyperparameter only matters
for a transient phase at the start of training!

Can we counteract this effect and achieve a constant effective learning
rate? The answer is yes, but Li and Arora (2020) show that this requires
an exponentially increasing learning rate schedule! Alternatively, we’ll see
in Section 5.1 that the weight decay hyperparameter, surprisingly, acts as
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another knob we can use to tune the effective learning rate schedule. In
principle, a third option would be to explicitly rescale each wj to be unit
norm after every iteration; this doesn’t change the function computed by
the network, but it ensures that the effective learning rate matches the
explicit learning rate. I expect that if this became standard practice, it
would eliminate a lot of tricky experimental confounds. However, it is not
common to do this, and matching state-of-the-art performance using such
a scheme would require re-tuning a lot of other hyperparameters, possibly
including explicit learning rate schedules.

Note that the implicit decay effect is not exactly equivalent to anO(1/
√
k)

learning rate decay schedule, for several reasons. First of all, the above

analysis assumes ‖∇J (ŵ
(k)
j )‖ is constant, but in fact we would expect it

to change over time. Secondly, different weights may have different gra-
dient magnitudes, and therefore different effective learning rates. Finally,
and perhaps most importantly, normalization usually isn’t applied to all
layers of a network (e.g. it’s rarely applied to the network outputs). The fact that the effective learning

rate decay doesn’t apply to the
output layer might help explain
why neural net training often
behaves linearly outside the very
early phase of training. The
linearity of training will be the
focus of Chapter 6.

This
means the implicit decay effect applies only to the layers that feed into a
normalization operation, and in particular it doesn’t apply to the output
layer.

Note also that the implicit decay effect is algorithm-specific. The above
discussion all assumes SGD. A similar analysis for Adam also gives an effec-
tive learning rate schedule of O(1/

√
k). However, second-order optimization

methods, including approximate second-order methods like K-FAC, are im-
mune to the implicit decay effect. This follows because the network’s func-
tion is invariant to rescaling the weights, so rescaling the weights can be
viewed as an affine reparameterization of the network. The second-order
methods are invariant to affine reparameterizations, so in particular they’re
invariant to rescaling the weights. The fact that different optimizers have
different implicit decay schedules presents a problem when it comes to fairly
comparing different neural net optimization algorithms.

4.4 Other Normalizers

The above discussion all focuses on batch normalization for concreteness.
However, there are other normalization schemes to choose from, most no-
tably weight normalization and layer normalization. In addition, there are
dozens of variants of BN itself. In this section, the layer indices

are suppressed for clarity.Weight normalization (Salimans and Kingma, 2016), as the name
suggests, normalizes the weights. In particular, it uses a representation for
each weight vector wj (the vector of incoming weights to a unit) which
decouples the norm and the direction:

wj = WN(vj ; gj) =
gj
‖vj‖

vj , (20)

where gj is a nonnegative scalar (the gain parameter) and vj is a vector.
The weights wj then play their usual role in the network’s computations.
As with BN, WN is treated as a layer in the computation graph, and is
backpropagated through in the usual way.

Layer normalization (Ba et al., 2016), as you’d expect, normalizes
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the activations within each layer:

â = LN(a; b,g)

=
g

σ
� (a− µ1) + b

µ =
1

D

D∑
j=1

aj

σ2 =
1

D

D∑
j=1

(aj − µ)2

(21)

where g and b are gain and bias vectors. As with BN and WN, LN is treated
as a layer in the computation graph, and is backpropagated through. Like
BN, it can be applied before or after the nonlinear activation function, but
is typically applied before.

These alternative normalizers were motivated partly by efficiency con-
siderations or easier applicability to certain architectures such as RNNs.
However, we can reason about their effects on the training dynamics, just
like we did for BN.

Stochastic regularization. BN achieves a stochastic regularization effect
as the result of each training example being normalized using slightly
different mean and variance statistics, depending what else is in the
batch. The WN and LN operations are independent of the rest of the
batch, so they don’t have this stochastic regularization effect.

Improved conditioning. We saw above that BN removes the outlier eigen-
values caused by uncentered activations, either by explicitly centering
the activations, or by centering the backpropagated gradients (see
Section 4.2). WN only includes rescaling, not centering, so it doesn’t
achieve this effect. Salimans and Kingma (2016) therefore recommend
combining WN with the operation we refer to as batch centering (see
Section 4.2) in order to improve the conditioning.

LN includes a centering step, but you can check that this step doesn’t
eliminate the outlier eigenvalues caused by ICS. Whether or not the
centering step still has the effect of attenuating the outlier eigenvalues
is an interesting question, and I’m not aware that it’s been studied.

Implicit learning rate decay. Both WN and LN are scale invariant just
like BN, so the argument from Section 4.3 holds without modification.

The implicit decay effect also
applies to some normalizers that
predated BN, such as the local
contrast normalization layers used
in the original AlexNet
(Krizhevsky et al., 2012).

Note that in the case of LN, scale invariance holds only at the level of
the entire weight matrix, rather than the vector of incoming weights
to a unit.

5 Weight Decay

Some standard tricks of neural net training are not what they appear.
Weight decay refers to an update rule which rescales the weights of a
network by a positive value less than 1:

w(k+1) ← (1− αλ)w(k). (22)
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Here, w is a vector representing all of the network weights, α is the learning
rate, and λ ≥ 0 is a hyperparameter determining the strength of the regu-
larization. In practice, it’s common to have

different WD strengths for
different layers, but we assume a
shared WD strength for simplicity.

In order for this update to make sense, we require that αλ < 1.
When the learning algorithm is (stochastic) gradient descent, weight

decay has a standard interpretation as Tikhonov regularization. Specif-
ically, observe that Eqn. 22 can be seen as the gradient descent update
for an L2 regularization term, λ

2‖w‖
2, which encourages solutions which

are closer to the origin. This technique has been used by statisticians for
decades, and its effect in regression models is well-understood. It is very
common to use weight decay when training neural nets, and until recently
it was believed that its benefits had to do with Tikhonov regularization.

But when it comes to neural nets, several findings cast doubt on this
interpretation:

Effect on deep linear networks. For linear models, L2 regularization has
the effect of discouraging individual coefficients from being very large,
while allowing moderately large coefficients. Deep linear networks can
represent the same class of functions, but the effect of L2 regularization
is very different. As an intuition pump, consider a deep linear network
with K layers and 1 unit per layer. The function computed by the net-
work is y = βx, where β = w1 · · ·wK . You can check that for a given
value of β, the regularizer is minimized when w1 = · · · = wK = β1/K

up to a sign flip, and it takes the value ‖w‖2 = L|β|2/K . Hence, L2

regularization behaves like L2/K regularization, which (for K > 2) has
a sparsifying effect: it very much prefers that the weights be exactly
zero, but away from zero it has little preference. For deep linear networks with

width greater than 1, the same
argument implies that L2

regularization penalizes the
Schatten quasi-norm ‖Jzx‖2/K2/K ,
where Jzx is the input-output
Jacobian, ‖A‖p = (

∑
i σ

p
i )1/p, and

{σi} are the singular values of A.

This analysis only applies exactly to linear networks, but it seems
likely that its effects on networks with ReLU activations are somewhat
similar. Hence, we wouldn’t expect L2 regularization of deep neural
networks to behave like L2 regularization of linear models.

Interaction with normalization. WD is commonly used for networks
with normalization layers such as BN, LN, etc. The regularization
interpretation of WD makes little sense in these cases, because the
network’s function is invariant to rescaling the weights. I.e., sup-
pose we rescale the weights by a small constant factor. This wouldn’t
change the function the network computes, but we can make ‖w‖2
arbitrarily small in this way. Hence, L2 regularization doesn’t impose
any meaningful constraint on the network’s capacity.

AdamW. The WD update (Eqn. 22) only corresponds to an L2 penalty
in the context of gradient descent. If one believes the regularization
story, the most natural way to generalize WD to other optimization
algorithms (e.g. Adam) would be to add an L2 regularizer to the cost
function, and include its gradient as part of the algorithm’s usual gra-
dient calculation. The resulting algorithm is generally not equivalent
to Eqn. 22.

However, it’s been observed that it can work significantly better to
apply Eqn. 22 directly, rather than adding an L2 regularizer, in algo-
rithms other than gradient descent. E.g., this is the basis of the widely
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used AdamW algorithm (Loshchilov and Hutter, 2019), and similar
observations were made for K-FAC (Zhang et al., 2019). The AdamW
paper didn’t offer an explanation for the improvement, but offered a
very thorough set of experiments which (in my opinion) demonstrated
convincingly that the effect was real.

Weight decay confused my students and me for a while, because we had
a hard time coming up with a hypothesis that captured its full range of
effects on different architectures and training algorithms. We eventually
figured out the source of our confusion: depending on the architecture and
training algorithm, WD was improving the generalization performance for
at least three completely different reasons! In some cases, it acted as a
regularizer in the usual sense. In other cases, it influenced the dynamics
of training. This is an instance of a common

occurrence in science: the hardest
part of understanding a
phenomenon can be deciding
which situations belong together as
instances of the same phenomenon!

Once we realized different situations resulted from different
mechanisms, we were able to pin down what was actually happening. Our
findings are described in Zhang et al. (2019), and we also summarize the
conclusions below.

5.1 Mechanism 1: Effective Learning Rates

The first WD mechanism, originally pointed out by van Laarhoven (2017),
has nothing to do with constraining the model’s capacity. Rather, this
mechanism has to do with the influence on the effective learning rate sched-
ule.

Suppose we are using SGD to optimize a network with BN (or some other
scale-invariant architecture). As before, we’ll make the simplifying assump-

tion that ‖∇J (ŵ
(k)
j )‖ = 1 for all k. Since weight decay involves rescaling

the weights by 1 − αλ in each iteration, we can modify our recurrence for
‖w(k)‖ (Eqn. 19) as follows:

‖w(k+1)
j ‖2 = (1− αλ)2‖w(k)

j ‖
2 +

α2‖∇J (ŵ
(k)
j )‖2

‖w(k)
j ‖2

. (23)

Setting both sides equal, we see that this recurrence has a fixed point of
approximately

‖w(∞)
j ‖2 ≈

√
α

2λ
, (24)

resulting in an effective learning rate of

α̂∞ =
α

‖w(∞)
j ‖2

≈
√

2αλ. (25)

Note that without WD, i.e. λ = 0, this gives α̂ = 0, consistent with the
power law decay of the effective learning rate. So WD essentially gives us
an implicit decay schedule which levels off to a particular value rather than
continuing to decay arbitarily. A larger value of λ leads to a higher effective
learning rate.

Note that this explanation doesn’t fully explain why WD helps general-
ization performance, since the learning rate can have multiple effects. On
one hand, increasing α̂ can have optimization benefits by improving the rate
of convergence in low-curvature directions. On the other hand, learning rate
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Figure 7: Effective learning rate schedule when weight decay is applied, as-

suming for simplicity that ‖∇J (ŵ
(k)
j )‖ = 1 for all k. Note that α̂ converges

to α̂∞ (Eqn. 25) regardless of α.

decay schedules can be important in stochastic optimization (see Chapter
7). Learning rates can also influence generalization, insofar as gradient noise
can act as a regularizer (see Chapter 8). (So ironically, WD might be acting
as a regularizer, just not in the way we expected!) Optimal learning rate
decay schedules can vary significantly from one task and architecture to
another, so it requires more work to pin down exactly what WD is doing in
any particular case, even if we only consider those cases where Mechanism
1 applies.

5.2 Mechanism 2: Damping Strength

Suppose we still use an architecture with BN (or some other homogeneous
normalizer) but now use the K-FAC optimizer instead of SGD. We already
observed that the implicit learning rate decay effect doesn’t apply to K-FAC,
because K-FAC is invariant to affine reparameterizations such as rescaling
the weights in a BN network. Therefore, Mechanism 1 can’t explain the
effectiveness of WD in training with K-FAC.

There is, however, a related explanation. The K-FAC algorithm is discussed
in detail in Chapter 4.

Recall that the K-FAC ap-
proximation for the metric matrix G`` for layer ` is defined as:

Ĝ`` = A`−1 ⊗ S`,

where A`−1 = E[ā`−1ā
>
`−1] and S` = E[Ds`Ds>` ]. Recall also that for stabil-

ity, when computing the natural gradient, we add a damping term to Ĝ``

before inversion: In Chapter 4, we used λ to denote
the damping parameter. Here we
use η to avoid collision with the
WD parameter λ.

∇̃J (w`) = (Ĝ`` + ηI)−1∇J (w`). (26)

Now, think about what happens to G`` when the weights w` are rescaled by
a factor γ. The previous layer’s activations, and hence A`−1, are unchanged.
However, the next layer’s pre-activations s` scale proportionally to w`, and
hence (following the reasoning of Section 4.3) the pseudogradient Dw` scales
as γ−1, and the second factor S` scales as γ−2. Hence, G`` scales as γ−2.
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Without WD regularization, the norm of the weights increases over the
course of training, according to the argument from Section 4.3. As the
weights get larger, G`` gets smaller, and the damping term ηI comes to
dominate the preconditioner. I.e., due to the growing weight norm, K-
FAC behaves increasingly like a first-order optimizer. WD keeps the weight
norm from growing too large, thereby allowing K-FAC to retain more of its
second-order behavior.

5.3 Mechanism 3: Jacobian Norm Regularization

The first two mechanisms both involved the effects of WD on the training
dynamics, rather than what we traditionally think of as regularization. Does
it ever acts as a traditional regularizer? The answer is yes, but in a pretty
surprising way.

If we apply WD when using an optimizer that preconditions the gradient
by a matrix C−1, then we can reformulate the update as the preconditioned
update on a modified cost function: It only makes sense to talk about

the C-norm for architectures
which are not invariant to
rescaling. In a scaling-invariant
architecture, one could make the
C-norm arbitrarily small by
rescaling the weights, so the
regularizer doesn’t constrain the
model’s capacity. Hence, in this
section we assume there is no BN.

w(k+1) ← (1− αλ)w(k) − αC−1∇J (w(k))

= w(k) − αC−1(λCw(k) +∇J (w(k)))

= w(k) − αC−1∇[J (w(k)) + λ
2‖w

(k)‖2C],

(27)

where ‖ · ‖C denotes the C-norm

‖v‖C =
√

v>Cv.

As a sanity check, SGD corresponds to the choice C = I, and therefore the
C-norm is simply the standard L2 norm that WD is known to regularize.

For other optimizers, it’s not always easy to assign the C-norm an intu-
itive interpretation. However, when Gauss-Newton optimization is applied
to a multilayer perceptron with ReLU activations and no BN, it can be
shown that the norm regularized by WD is proportional to the Frobenius
norm of the input-output Jacobian Jzx, i.e. the Jacobian of the network’s
outputs with respect to its inputs. If the activations are linear rather

than ReLU, then the K-FAC
Gauss-Newton norm is also
proportional to the Jacobian norm.

A smaller Jacobian norm corresponds
to a smoother (more slowly varying) function. Interestingly, this is a way
of constraining the model’s capacity in function space, as opposed to the
weight space regularization typically associated with WD.

The equivalence with Jacobian norm regularization only holds exactly
in a fairly restricted case. However, it appears empirically that K-FAC
combined with WD leads to smaller input-output Jacobian norms for a
wider variety of architectures in practice. The details can be found in Zhang
et al. (2019).

6 Discussion

The topics of this lecture (especially BN) have been the source of much
hand-wringing about how we don’t understand neural nets. But, much like
a Scooby Doo episode, once you pull the cloth off the supposedly paranormal
phenomenon, it is almost always revealed to have a mundane explanation.
Deep learning is not deeply mysterious.
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Unfortunately, our field doesn’t do a very good job of conveying to prac-
titioners what we understand. In writing this lecture, it was hard for me
to find papers or tutorials that explained the ideas clearly. Part of the
problem is likely a publication bias: unfortunately, it’s easier to get papers
accepted if they use fancy and difficult techniques from math and physics.
Conversely, the better a job one does of explaining a phenomenon, the less
impressive the contribution appears. Many of the ideas presented in this
lecture rely only on basic arithmetic, and would likely be hard to publish in
one of the major conferences. And once the papers are published, they tend
not to be very discoverable by practitioners (witness, e.g., the rather low
citation counts for many papers cited in this chapter which contain ideas a
lot of deep learning practitioners would benefit from knowing).

Here’s another downer: seemingly fundamental differences between al-
gorithms often turn out to be reducible to mundane issues such as hyperpa-
rameter tuning. E.g., in our field, there is widely believe to be a generaliza-
tion gap between SGD and Adam, supposedly resulting from the tendency
of adaptive gradient methods to coverge to “sharp” rather than “flat” min-
ima. The idea of sharp and flat minima

will be discussed in Chapter 8.
When we tried to chase down this effect in a few cases where we’d

observed it, it went away once we carefully tuned learning rate schedules
for both algorithms. Choi et al. (2019) performed a thorough, systematic
comparison of SGD, RMSprop, and Adam, and found that they behave in
the ways we’d intuitively expect, but only if one does a particularly careful
hyperparameter sweep for each method.

Even though the algorithmic techniques in this chapter are not deeply
mysterious in the ways that are often claimed, they do present a lot of
practical difficulties when it comes to engineering and understanding a par-
ticular deep learning system. The reason is that many standard neural net
components (such as the ones discussed in this chapter) introduce confounds
whereby one change to the model influences seemingly unrelated aspects of
the training dynamics. For instance,

• For Adam, RMSprop, etc., larger batch sizes result in more gradient
noise, and hence smaller steps.

• With BN, the batch size affects the amount of stochastic regulariza-
tion.

• With homogeneous normalizers such as BN, WN, and LN, the norm
of the weights affects the effective learning rate.

• Different optimizers (SGD, Adam, K-FAC, etc.) have different effec-
tive learning rate schedules when combined with homogeneous nor-
malizers.

• For many architectures, weight decay fundamentally affects the train-
ing dynamics, so it can’t be tuned independently of the optimizer (as
we might expect for a regularization hyperparameter).

Effects such as these result in a lot of counterintuitive behaviors and make
it hard to properly tune hyperparameters. I hope that, as more researchers
understand the effects described in this chapter, the field will converge to a
set of best practices that reduce the number of gotchas when tuning a deep
learning system.
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