
Chapter 4

Second-Order Optimization

Roger Grosse

1 Introduction

I’ve been delaying the topic of second-order optimization, because I wanted
to introduce the matrices H, G, and F in settings where their usefulness
was more readily apparent. Also, I wanted to emphasize that these matri-
ces are broadly useful in many settings other than optimization (and we’ll
continue to see examples of this throughout the course). But second-order
optimization is where these matrices, and approximations thereof, were first
pioneered in our field, and remains one of the primary use cases. So let’s
finally confront second-order optimization.

The term “second-order optimization” carries different meanings to dif-
ferent people. For example, in the field of numerical optimization, there is
a fundamental distinction between algorithms with first-order and second-
order convergence rates, i.e. whether the number of significant digits in the
answer increases linearly or quadratically with the number of iterations.
However, this distinction is not so significant in machine learning, where
our updates are stochastic, and therefore have worse asymptotics than de-
terministic optimizers anyway (see Chapter 7). Similarly, natural gradient
descent is closely related to Riemannian manifold gradient descent in the
field of Riemannian optimization; in that field, it is considered a first-order
optimization algorithm, and is explicitly contrasted with Riemannian man-
ifold generalizations of second-order optimizers such as Newton-Raphson.
For purposes of this course, second-order optimization will simply refer to
optimization algorithms that use second-order information, such as the ma-
trices H, G, and F. Hence, stochastic Gauss-Newton optimizers and natural
gradient descent will both be considered second-order optimizers.

We start by giving several different perspectives on what second-order
optimization is trying to achieve. First, we view the algorithms as iteratively
minimizing quadratic approximations to the cost function. We then view
them as preconditioners which transform the space to be better conditioned;
this can be a more productive way to think about faster and less accurate
curvature approximations. We consider invariance to reparameterizations,
one of the key properties that motivates natural gradient. Finally, we adopt
a proximal optimization perspective, where second-order information is used
to prevent the optimizer from forgetting previously learned information after
each update. All of these perspectives are useful for understanding different
aspects of the algorithms we’ll consider.

Computing exact second-order updates is impractical for all but the
smallest neural networks, because they require solving linear systems with

1

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

dimensions in the millions. Therefore, we need some way to approximate
the second-order matrices, or to approximately solve the linear system. In
the field of deep learning, we have two sets of tools available to us. The first
— which we’ve already been using in this course, and which is foundational
to scientific computing — is to use the exact second-order matrices for a
batch of data, and to compute with them using MVPs. For instance, we
can approximately solve linear systems using CG.

The second approach is to fit parametric approximations to G, most no-
tably the K-FAC approximation. The use of preconditioning

matrices, which approximate large
matrices with ones that are
efficiently invertible, is a
foundational technique in
numerical computing. However,
constructing preconditioners by
fitting statistical models is, to the
best of my knowledge, a novel
contribution by the field of deep
learning.

The field of probabilistic graphical models
has given us a powerful set of tools we can use to define probabilistic mod-
els that exploit the structure of a problem. If we impose the right kinds
of structure, we can compactly represent very high-dimensional probability
distributions, and efficiently perform operations we need for second-order
optimization, such as computing the inverse covariance.

2 What are we Trying to Achieve?

We now overview several different motivations for using second-order infor-
mation in optimization.

2.1 Minimizing Quadratic Approximations

In Chapter 1, we analyzed the dynamics of gradient descent on convex
quadratic objectives w>Aw in great detail. We saw that the maximum
step size is determined by the maximum eigenvalue of the matrix A, and
that convergence is much slower along low curvature directions. Hence,
the asymptotic convergence rate is determined by the condition number of
A, i.e. the ratio of the maximum and minimum nonzero eigenvalues. In
Chapter 2, we considered the second-order Taylor approximation of a cost
function around a point w0:

Jquad(w) = J (w0) +∇J (w0)
>(w −w0) + 1

2(w −w0)
>H(w −w0). (1)

Hence, close to the stationary point, the gradient descent dynamics are well
approximated by those of a quadratic objective. If w? is a local minimum,
then H � 0, and the quadratic approximation is convex. Hence, the asymp-
totic convergence rate is determined by the condition number of H. In the
linear autoencoder example, we saw that slow convergence of certain parts
of the model can be reflected in the eigenvalues of H even far from the
optimum.

This Taylor approximation motivates a classic optimization algorithm
called Newton-Raphson, or sometimes just Newton’s Method. This
algorithm is best motivated in the case where J is convex, and hence H � 0.
In this case, any critical point of J is also a global optimum, so therefore
our goal is to find a critical point, i.e. a point w? such that ∇J (w?) = 0.
The first-order Taylor approximation to ∇J around the current weights w0

is given by:
∇J (w) ≈ ∇J (w0) + H(w −w0). (2)

2

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

By setting this to zero and solving for w, we arrive at the approximation
to the optimality condition:

w′ = w0 −H−1∇J (w0). (3)

This process can then be repeated at the new w, and if all goes well, w will
approach w?, and the Taylor approximation to ∇J will get increasingly
accurate in the vicinity of w?.

An alternative viewpoint is that we are repeatedly minimizing second-
order Taylor approximations to J (Eqn. 1). In particular, because H � 0,
the optimum of Eqn. 1 is given by w′ = w0−H−1∇J (w0). Because Newton-
Raphson is based on a second-order Taylor approximation to the cost func-
tion, whereas gradient descent is based on a first-order Taylor approxima-
tion (i.e. it only uses the gradient), we should expect Newton-Raphson to
converge faster.

This vanilla version of Newton-Raphson is not by itself guaranteed to
converge efficiently (or at all), or even to decrease the cost function in each
iteration. The problem is that the algorithm might take a large step, thereby
moving far enough from w0 that the second-order Taylor approximation
is no longer accurate. Consider an example of this which is particularly
relevant to machine learning: the softmax-cross-entropy loss for a binary
classifier, for a positive training example, as a function of the logit z. Normally we are optimizing with

respect to the weights, not the
logits, but this problem still
occurs.

The
loss, and its first and second derivatives, are given by:

J (z) = log(1+exp(−z)) J ′(z) = −σ(−z) J ′′(z) = σ(z)σ(−z), (4)

where σ(z) = 1/(1 + exp(−z)) is the logistic function. For z � 0 (i.e. a
very incorrect prediction), the cost is very close to linear: J ′(z) ≈ −1, and
J ′′(z) ≈ exp(z). Hence, Newton-Raphson takes a very big step:

z ← z0 −
J ′(z)
J ′′(z)

≈ z0 + exp(−z).

To fix this problem, we need to somehow dampen the update by pre-
venting it from moving too far in low-curvature directions. One way to do
this is to add a proximity term to Eqn. 1 penalizing the Euclidean distance
from the previous iterate:

w(k+1) = arg min
w

Jquad(w) + η
2‖w −w(k)‖2

= arg min
w

∇J (w(k))>w + 1
2(w −w(k))>(H + ηI)(w −w(k))

= w(k) − (H + ηI)−1∇J (w(k)),

(5)

where η > 0 is the damping parameter. Hence, the damped Newton-
Raphson update is just like the vanilla Newton-Raphson update, except that
H is replaced by H+ηI. To understand the effect of this difference, observe
that H−1 and (H + ηI)−1 are both codiagonalizable with H, i.e. they share
the same eigenvectors. If the eigenvalues of H are denoted as νi, then the
corresponding eigenvalues of H−1 are given by ν−1i , and the corresponding
eigenvalues of (H + ηI)−1 are given by (νi + η)−1. For νi � η (i.e. high
curvature directions), these two values are nearly the same, i.e. both the

3

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

undamped and damped updates shrink the step by similar amounts in that
direction. For νi � η (i.e. low curvature directions), (νi + η)−1 ≈ η−1.
Therefore, while the undamped algorithm is willing to stretch the update
by an arbitrarily large factor, the damped update is willing to stretch it by
at most a factor of η−1. Both algorithms behave similarly in high curvature
directions, while the damped version makes more conservative updates in
low curvature directions.

The above discussion all assumes that J is convex. Applying the vanilla
Newton-Raphson update to non-convex objectives makes little sense, be-
cause it searches for critical points (which include saddle points), rather
than local optima. In Chapter 2, we observed that unless you get really
unlucky, gradient descent escapes saddle points. So in this sense, Newton-
Raphson behaves worse that gradient descent for non-convex problems.

In deep learning, the standard solution to this problem is to replace H
with the Gauss-Newton Hessian G = E[J>zwHzJzw] (see Chapter 2), giving
an update rule called the Gauss-Newton algorithm. Sometimes, the name

Gauss-Newton algorithm is
reserved for the case of squared
error loss, and the more general
version is referred to as the
generalized Gauss-Newton
algorithm. We’ll simply use
Gauss-Newton for the general case.

We observed in
Chapter 2 that as long as Hz is PSD (which can be guaranteed by choosing
a convex loss function), G is PSD as well. The damped matrix G + ηI,
therefore, is positive definite. Since positive definite matrices are closed
under inverses, this implies (G + ηI)−1 is also positive definite.

In general, preconditioning the gradient descent update with any posi-
tive definite matrix results in a descent direction. By this, I mean that
it has a negative dot product with the gradient, and therefore is guar-
anteed to reduce the cost for a small enough step size. To see, this, let
v = −A∇J (w(k)) for some positive definite matrix A. Assume we are
not at a critical point, so that ∇J (w(k)) 6= 0. The dot product with the
gradient is given by: This same argument applies to

natural gradient descent. Any
pullback metric, including the
Fisher information matrix, is
positive semidefinite. Hence, the
same argument shows that a
damped natural gradient update
gives a descent direction.

∇J (w(k))>v = −∇J (w(k))>A∇J (w(k)) < 0, (6)

where the inequality follows from the definition of a positive definite matrix.
Since (G + ηI)−1 is positive semidefinite, this implies the Gauss-Newton
algorithm gives a descent direction.

A major obstacle to computing the Newton-Raphson and Gauss-Newton
updates is that the formula involves the inverse of H or G. Inverting a
matrix is an O(D3) operation, where D is the dimension of that matrix. For
neural net optimization, D is the number of parameters, which is typically
in the millions or sometimes even billions, so inversion is out of the question.
Note that we don’t literally need to invert the matrix, and in fact numerical
algorithms avoid explicit matrix inversion wherever possible, for reasons of
numerical stability. However, we do need to solve a linear system (G +
ηI)v = −∇J (w(k)), which is also an O(D3) operation if one requires an
exact solution. So the point remains that exactly computing the Newton-
Raphson or Gauss-Newton update is impractical for modern networks.

Therefore, the Newton-Raphson and Gauss-Newton algorithms are best
viewed as idealized algorithms which we aim to approximate. This has,
of course, been a fundamental topic in numerical optimization for many
decades, and there are numerous approximations. One such approximation
is to approximately solve the linear system using conjugate gradient. This is
the basis of CG-Newton optimizers, and we’ll discuss this in more detail in

4

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

Section 4. Relatedly, rather than explicitly solving the quadratic, one can
use a nonlinear CG algorithm. Quasi-Newton methods are a class of
algorithms that efficiently exploit second order information using only first
derivatives; the most notable examples are BFGS and L-BFGS. These
approaches have been remarkably successful at optimizing a deterministic
objective function, and are standard off-the-shelf tools in numerical libraries
such as SciPy. These techniques are covered in standard texts such as the
excellent Nocedal and Wright (2006) and Bertsekas (2016).

2.2 Preconditioning

Rather than minimizing a quadratic approximation to J , a more modest
goal is to transform the problem so that it is well-conditioned, which for
our purposes is an informal term meaning that the differences in curvature
between different directions are not too extreme. Often, one defines

“well-conditioned” this in terms of
the condition number of G or
H. However, modern neural nets
are often overparameterized, which
implies that some of the
eigenvalues are 0. The
optimization problem is
nonconvex, so some eigenvalues
may be negative. Furthermore,
even some of the positive
eigenvalues correspond to
directions which are unimportant,
or even undesirable, to optimize in,
e.g. because they correspond to
overfitting. Intuitively speaking,
we’d like to avoid the situation
where important directions have
very low curvature, but so far we
haven’t found a reliable way to
quantify this desideratum.

In Chapter 1, we observe that gradient descent is not invariant to linear
reparameterizations of the optimization variables. In particular, consider
the reparameterization

w = T (w̃) = Rw̃ + b, (7)

where R is an invertible square matrix (not necessarily symmetric), and b
is a vector. The inverse transformation is given by:

w̃ = R−1(w − b).

Similarly to Chapter 1, we can write the cost function in terms of w̃:

J̃ (w̃) = J (T (w̃)).

By the Chain Rule, the gradient in the transformed space is given by:

∇J̃ (w̃) = R>∇J (T −1(w̃)).

So suppose we carry out gradient descent in the transformed space. I.e., we
transform our current iterate, compute the gradient descent update on J̃ ,
and transform the iterate back to the original space:

w(k+1) = T (w̃(k) − α∇J̃ (w̃(k)))

= T (w̃(k) − αR>∇J (w(k)))

= w(k) − αRR>∇J (w(k)).

(8)

Therefore, doing gradient descent in the transformed space is equivalent to
doing gradient descent in the original space, but preconditioned by RR>.

The offset term b doesn’t matter,
consistent with our observation in
Chapter 1 that gradient descent is
invariant to rigid transformations,
including translation.

The matrix RR> is called the preconditioner. Note that we never have
to construct R or compute w̃ explicitly; rather, the transformed space is
entirely implicit, and all we need algorithmically is to compute MVPs with
the preconditioner.

Conversely, preconditioning the gradient descent update by a PSD ma-
trix A is equivalent to gradient descent in a transformed space, where the
transformation matrix R is such that RR> = A. For instance, we can
use the matrix square root, defined by R = A1/2 = QD1/2Q>, where

5

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

A = QDQ> is the spectral decomposition of A. Hence, the damped Gauss-
Newton update is equivalent to doing gradient descent in a space that’s
stretched out by a factor of (G + ηI)1/2.

Consider a strictly convex problem, so that H � 0. It can be shown
that the Hessian in the transformed space is given by:

H̃ = ∇2J̃ (w̃) = R>HR. (9)

Hence, if H̃ is much better conditioned than H, we’d expect the precondi-
tioned gradient descent update to converge more efficiently than ordinary
gradient descent. As an extreme case, Newton-Raphson preconditions by
H−1, implying that R = H−1/2, and

H̃ = H−1/2HH−1/2 = I.

I.e., Newton-Raphson can be seen as preconditioning such that the curva-
ture becomes isotropic (spherical). Similarly, the damped Newton-Raphson
update gives

H̃ = (H + ηI)−1/2H(H + ηI)−1/2.

You can check that H̃ is codiagonalizable with H, and that it has eigenvalues
of approximately 1 for νi � η and approximately η−1νi for νi � η. Hence,
the damped upate converges at roughly the same rate for all curvatures
above η, and more slowly for curvatures below η.

The reason that preconditioning is useful is that often even a very crude
approximation to H−1 can substantially improve the conditioning of the
optimization problem. A classic choice from the field of optimization is to
use a diagonal approximation to H. Inversion of a diagonal matrix sim-
ply requires taking the inverses of the diagonal entries, so this is an O(D)
operation (in contrast to O(D3) for inverting H). One can often develop
much better preconditioners by exploiting the structure of an optimization
problem; the incomplete Cholesky factorization is a classic example from
the field of numerical optimization.

Previous lectures have highlighted connections between the Hessian H,
the Gauss-Newton Hessian G, the classical Gauss-Newton matrix, pullback
metrics (also denoted by G), and the Fisher information matrix F. Since
even crude approximations to H can be very useful for preconditioning, we
can design preconditioners by approximating any one of these matrices in
place of H. In Section 5, we’ll see a particularly useful class of precondi-
tioners for neural nets, based on Kronecker-factored approximations to G
or F.

So far, our discussion of preconditioners has focused on gradient descent.
However, preconditioning is a much more broadly useful tool. For instance,
we saw in Chapter 2 that we can approximately solve linear systems in-
volving H, G, etc. using MVPs and conjugate gradient (CG). Analogously
to gradient descent, the convergence of CG depends on the condition num-
ber, so preconditioning can substantially speed up convergence. Just like
preconditioned gradient descent can be formulated without ever construct-
ing R explicitly, the same is true of preconditioned CG and other similar
methods. Library routines implementing CG typically take as an optional
argument a function computing an MVP with the preconditioner.

6

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

2.3 Invariance to Reparameterization

Invariance of an optimization algorithm to transformations of the parameter
space has been a running theme so far in the course. In Chapter 1, as well
as the preceding section, we observed that gradient descent is invariant to
rigid transformations of the parameter space (i.e., rotations, reflections, and
translations), but is not invariant to more general linear transformations. In
Chapter 1, we saw that the arbitrary choice of units can have a significant
effect on the convergence of gradient descent for linear regression, and that
it’s therefore advantageous to normalize the inputs to zero mean and unit
variance. We noted that this solution works only for shallow models like
linear regression; even with normalized inputs, deep neural nets still suffer
from these optimization issues due to the problem of internal covariate shift.

When the ill-conditioning can’t be solved using explicit normalization,
we can instead design an optimizer to be invariant to certain transforma-
tions which we believe ought not influence the optimization trajectory. In
Chapter 3, we considered proximal optimization methods, and saw that
invariance could be achieved by choosing a proximity term (such as KL di-
vergence) defined in terms of the function itself rather than the parameters.
Since natural gradient is based on a second-order Taylor approximation to
proximal optimization, it inherits the invariance properties, up to the first
order. We briefly saw some mathematical tools that can be used to con-
struct various mathematical objects in a coordinate-free way. Algorithms
designed from such building blocks achieve parameterization invariance for
free.

It is also possible to show that the (undamped) Newton-Raphson and
Gauss-Newton updates are invariant to affine transformations of the pa-
rameter space. Consider an affine transformation as given by Eqn. 7.
Like in Chapter 1, we can make an inductive argument where we assume
w(k) = T (w̃(k)) and show the same for step k = 1. It can be shown using
the Chain Rule that the Hessian in the transformed space is given by:

H̃ = ∇2J̃ (w̃) = R>[∇2J (T (w))]R = R>HR.

Combined with the formula ∇J̃ (w̃) = R>∇J (T (w̃)) (Eqn. 8), this gives
us the Newton update to w̃:

w̃(k+1) = w̃(k) − αH̃−1∇J̃ (w̃)

= w̃(k) − α[R>HR]−1R>∇J (T (w̃(k)))

= w̃(k) − αR−1H−1∇J (T (w̃(k)))

= T −1(w(k) − αH−1∇J (w(k)))

= T −1(w(k+1)).

Therefore, by induction, w(k) = T (w̃(k)) for all k. I.e., Newton-Raphson
is invariant to affine reparameterizations. The exact same derivation holds
with G in place of H, so Gauss-Newton is invariant to affine reparameteri-
zations as well.

Note that invariance only holds for the undamped versions of these al-
gorithms. Damping penalizes Euclidean distance in parameter space, so

7

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

it is inherently tied to the parameterization. Because the damped algo-
rithms behave similarly to the undamped algorithms in the high curvature
directions (see previous section), the damped algorithms still achieve par-
tial invariance. Note that full invariance might not even be desirable: we
already noted in Chapter 1 that gradient descent’s emphasis on high cur-
vature directions can sometimes be a useful inductive bias. We’ll see more
examples of this later in the course.

Invariance is a useful design principle for optimization algorithms, since
we can design efficient optimizers that satisfy a more restricted set of in-
variance properties. For instance, if we are interested in compensating for
internal covariate shift, we can design an algorithm to be invariant to affine
transformations of the activations in each layer. This point will be discussed
further in Chapter 5 in the context of batch norm.

2.4 Proximal Optimization

In Chapter 3, we motivated proximal optimization, and its approximations
such as natural gradient descent, in terms of doing “gradient descent in
output space.” This provides a useful intuition for neural net training, but
there are two key differences: (1) when we train a neural net (or most other
machine learning models), we update the parameters on one batch at a time,
and (2) we would like the model to generalize to new data. If we literally
did gradient descent on the outputs, we would have to iterate through the
entire training set in order to fit it (and hence convergence could even be
slower than for SGD), and there is no guarantee we’d generalize to new
data.

Roughly speaking, we can think of second-order optimization algorithms
for neural nets as choosing updates to minimize some combination of the
following three factors:

Loss on the current batch. This term is conceptually straightforward:
we’d like to improve the predictions on the current batch.

Function space proximity (FSP). We’d like to change the network’s
predictions as little as possible, on average. This prevents the current
update from screwing up the predictions on examples we’ve visited in
the past. Because of the relationships

between the Hessian and pullback
metrics (see Chapters 2 and 3),
there isn’t always a clean
separation between the loss and
FSP terms. Some algorithms, such
as Hessian-free optimization, can
be interpreted in multiple ways
(see Section 4).

Weight space proximity (WSP). We’d like to change the weights as
little as possible. One reason to do this is to ensure that any second-
order approximations to the loss or to FSP remain accurate, as in the
damped Newton-Raphson and Gauss-Newton algorithms. Another
reason is that penalizing weight space distance seems to regularize
the algorithm to produce smoother functions, for reasons we’re just
beginning to understand. (We’ll say more about this effect in Chapter
6.)

All of these factors can be summarized into an idealized proximal optimiza-
tion algorithm which trades off all three factors. Letting B(k+1) denote the

8

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

Figure 1: Example of idealized proximal optimization applied to a toy regression problem with a batch
size of 1 (shown in red). From left to right: (1) the current model, (2) only WSP, (3) only FSP, and (4)
both proximity terms. The weight of the proximity term(s) is decreased going from green to red.

current batch, we have:

w(k+1) ← arg min
w

1

|B(k+1)|
∑

i∈B(k+1)

L(f(x(i),w), t(i)) + λFSPEx[ρ(f(x,w), f(x,w(k)))] +
λWSP

2
‖w−w(k)‖2.

(10)
This idealized update is, of course, very expensive to compute, for mul-

tiple reasons. First of all, the first term is the cost function itself, so we
shouldn’t expect the proximal objective to be much easier to minimize than
the main optimization problem. Also, the FSP term is difficult for two
reasons: (1) it is highly nonlinear, and (2) it is defined in terms of the
expectation under the data generating distribution, which we don’t have
access to.

However, many algorithms can be seen as ways of approximately mini-
mizing Eqn. 10. For instance, SGD uses a first-order Taylor approximation
to the loss term, and penalizes WSP but not FSP (see Chapter 3). If we
use a second-order Taylor approximation to the loss term, and also penalize
WSP, this gives a damped Newton algorithm where both the gradient and
the Hessian are estimated from the current batch. If we use a first-order
approximation to the loss, a second-order approximation to FSP, and also
penalize WSP, we get a damped natural gradient descent algorithm. (The
latter two claims will be justified in more detail below.)

It is interesting to optimize Eqn. 10 directly on a toy regression example
to understand the impact of both proximity terms, as illustrated in Figure 1.
The leftmost figure shows the predictions made by the current model. We
compute the update on a batch of size 1; the training example is shown in
red. The proximal objective is optimized using BFGS, and the FSP term is
approximated using the empirical distribution (i.e. the training data). If we
penalize only WSP (i.e. λFSP = 0), then the optimizer makes a global update
to the function. (Since SGD penalizes WSP but not FSP, this example gives
some intuition into the behavior of SGD.) If we penalize only FSP, it carves
a spike around the training example, keeping the rest of the predictions
more or less constant (except in the region between the two clusters, where
FSP does not matter because the data density is 0). If we penalize both
WSP and FSP, then it makes a smoother adjustment. Compared to pure
FSP, it is likely to generalize better, but it still enjoys a certain locality that
the pure WSP update does not.

9

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

3 Iteratively Minimizing the Proximal Objective

As discussed above, the idealized proximal objective (Eqn. 10) is generally
hard to minimize exactly. Before we turn to second-order approximations,
it’s first worth considering whether we can just approximately minimize it
using gradient descent. Note that we still need to make one approxima-
tion: because the FSP term is defined with respect to the data generating
distribution, we need to approximate it with the empirical distribution on
a batch of examples. So assume we have two batches B and B′ which we
use for the loss and FSP terms (these batches may be identical, but this
isn’t required). We compute our update by doing gradient descent on the
following cost function:

Q(w) =
1

|B|
∑
i∈B
L(f(x(i),w), t(i)) +

λFSP
|B′|

∑
i∈B′

ρ(f(x(i),w), f(x(i),w(k))) +
λWSP

2
‖w−w(k)‖2.

(11)
Now consider the computational cost. Just like in Chapter 2, we’ll mea-

sure the computational cost in terms of passes (either forward or backward
passes), since this usually predicts the computational cost of an algorithm
to within about a factor of 2. Computing ∇Q(w) requires computing gra-
dients of each of the three terms. This analysis can be improved

slightly. Since w = w(k) in the
first inner iteration, the extra
forward pass is redundant, so the
total number of passes required is
really 2K, not 2K + 1.

Computing the loss gradient is just ordi-
nary backprop, so it requires two passes (the forward pass and the backward
pass). Computing the FSP gradient requires three passes: a forward pass
for w(k) (which only needs to be done once for each proximal update), and
a forward and a backward pass for w. The computational cost of the WSP
gradient is negligible. Hence, the cost of computing K gradient updates is
2K passes on B and 2K + 1 passes on B′. If the batch is shared between
the loss and FSP terms (i.e. B = B′), then the forward and backward passes
can also be shared, and so the total cost is 2K + 1 passes.

Whether or not iteratively minimizing Eqn. 11 is useful depends on how
important computation time is relative to other factors. In the setting of
supervised learning, the dataset is fixed, and the main computational bot-
tleneck is the forward and backward passes through the network. In cases where disk bandwidth is a

bottleneck, it may be advantageous
to take multiple gradient steps on
the same batch of data.

Hence,
the total cost of an optimizer can be summarized in terms of the number
of passes. Gradient descent requires 2 passes per iteration (the forward and
backward passes of backprop). Therefore, in the time required to compute
K gradient descent steps on the proximal objective (i.e. 2K + 1 passes), we
could instead compute gradient descent updates on K different batches of
data. All else being equal, we’d rather compute gradient descent updates on
fresh training examples than ones we’ve recently visited, so iteratively min-
imizing the proximal objective appears to be strictly worse than ordinary
SGD.

However, iteratively minimizing Eqn. 11 can pay off in situations bot-
tlenecked by factors other than the computational cost of gradients. The
most well-known example is reinforcement learning, where interaction with
the environment can be expensive, for instance if it requires actions by a
physical robot. Hence, in RL algorithms, we are typically more concerned
with sample efficiency, i.e. the amount of interaction with the environ-
ment, rather than computational efficiency. Therefore, we may be will-
ing to spend a significant amount of computation to get a better update.

10

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

One of the state-of-the-art RL algorithms, Proximal policy optimization
(PPO) (Schulman et al., 2017), PPO was used in OpenAI’s famous

Dota2 agent, OpenAI Five.
does gradient descent on a proximal ob-

jective very similar to Eqn. 11. Computational cost is sometimes a concern
in RL, however, and there are other well-known RL algorithms which fur-
ther approximate the proximal optimization using techniques covered later
in this lecture: in particular, conjugate gradient (TRPO) (Schulman et al.,
2015) and Kronecker-factored approximations (ACKTR) (Wu et al., 2017).

4 Hessian-Free Optimization

We just saw one way to approximately solve the proximal objective, namely
to approximate the cost and proximity terms using a single batch, and
apply gradient descent. Can we do better than this by taking a second-
order approximation?

The second-order Taylor approximations to the loss and proximity terms
around w0 for a single batch are as follows: It is common to use `2

regularization. The Hessian of the
`2 term is the identity matrix, so it
has a similar effect to the WSP
term.

Jloss(w) ≈ J (w0) +∇J (w0)
>(w −w0) + 1

2(w −w0)
>H(w −w0)

= ∇J (w0)
>w + 1

2(w −w0)
>H(w −w0) + const

JFSP(w) ≈ λFSP
2

(w −w0)
>G(w −w0).

The WSP term is already quadratic, and so doesn’t require approxima-
tion. If we intend to minimize the quadratic approximation, we require the
quadratic to be convex, so that it have a minimum. Since H may be indefi-
nite, we approximate it with the Gauss-Newton Hessian G, which is always
PSD (assuming a convex loss function). Recall that the pullback metric is
equivalent to the GN Hessian when the Bregman divergence is used as the
output metric. Therefore, the FSP term is redundant, as it is approximated
using the same quadratic form as the loss term. We will drop the FSP term,
and simply trade off the loss and WSP. The quadratic objective, up to a
constant, is given by:

Qquad(w) = ∇J (w0)
>w + 1

2(w −w0)
>(G + λI)(w −w0). (12)

(Since we no longer need to distinguish λFSP from λWSP, I’ve dropped the
WSP subscript to avoid clutter.) The optimum is given by the damped
Gauss-Newton update:

w? = w − (G + λI)−1∇J (w0). (13)

Unfortunately, this update is impractical to compute exactly, as it re-
quires solving a very large linear system. However, quadratic objectives do
have one advantage over non-quadratic ones from an optimization stand-
point: we can approximately minimize them using conjugate gradient (CG)
instead of gradient descent (see Chapter 2). Recall that CG is an iterative
algorithm which requires a single MVP per step, and whose kth iterate is the
optimal point within the k-dimensional Krylov subspace, i.e. the minimum
possible cost achievable with k MVPs and linear combinations. Hence, CG
is guaranteed to optimize at least as fast as gradient descent. Theoretical

11

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

results show that CG converges substantially faster, in particular its itera-
tion complexity grows roughly as

√
κ, whereas gradient descent’s iteration

complexity grows roughly as κ, where κ is the condition number.
Hessian-free optimization (HF) (Martens, 2010) is an approach to

neural net optimization which considers one batch of data at a time, and
approximately minimizes Eqn. 12 using CG. (It gets its name because it
never explicitly represents the Hessian.) Before we turn to practical details
of the algorithm, let’s first consider the pros and cons relative to iterative
minimization of the proximal objective, and to ordinary SGD. Consider the
computational cost of HF. The first iteration requires computing ∇J (w0),
which as usual requires 2 passes. Each iteration additionally requires an
MVP with G, which also requires 2 passes to compute (see Chapter 2).
Therefore, the cost of approximately minimizing Eqn. 12 using K steps of
CG is 2K + 2 passes.

Compared to gradient descent on the proximal objective, HF has ap-
proximately the same computational cost per iteration. HF has the advan-
tage that CG minimizes the quadratic approximation faster than gradient
descent can minimize the exact proximal objective (or its quadratic ap-
proximation, for that matter). The difference can be substantial if the cost
function is ill-conditioned. On the other hand, HF has the disadvantage that
it’s minimizing the quadratic approximation rather than the exact proximal
objective. HF also has the disadvantage that

it requires implementing MVPs;
this can be a serious impediment
in frameworks such as TensorFlow,
but JAX makes this very easy.

In general, HF should be preferred due to its faster convergence,
but we need to take care to stay close enough to w0 that the quadratic
approximation remains accurate; this is achieved by adaptive damping, as
described below.

Compared to ordinary SGD, HF benefits from CG’s faster rate of con-
vergence. However, it shares the disadvantage of iterative minimization: in
the time that it takes to compute K CG steps on a given batch, SGD could
have computed updates on K + 1 different batches. Therefore, SGD has
higher data throughput, which can be a significant advantage. Which of
these two factors wins out is complicated, and we discuss this tradeoff in
more detail in Chapter 7, which covers stochastic optimization. Roughly
speaking, the more ill-conditioned the cost function is, the more beneficial
is CG’s improved convergence. On the other hand, the more stochastic
the gradient estimates are, e.g. because of label noise or the need to use
small batches for memory reasons, the more SGD benefits from higher data
throughput. When HF was invented in 2010, deep architectures tended
to have very poorly conditioned cost functions, and HF could learn much
more efficiently than SGD overall. Since then, advances in initialization and
architecture design have given us better-conditioned cost functions for the
most commonly used architectures, eroding the advantage of HF. However,
it remains possible that new applications may require substantially differ-
ent architectures for which ill-conditioning remains a big problem (see, e.g.,
Pfau et al. (2019)’s work on neural nets for quantum simulation).

4.1 Adaptive Damping

Damping (or, equivalently, WSP) plays an important role in HF, as it is
needed to ensure that the update stays close enough to w0 for the quadratic
approximation to remain accurate. This gives us a criterion for adapting

12

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

λ: it should be large enough to keep the quadratic approximation accurate,
but no larger. We can achieve this by monitoring the reduction ratio:

ρ =
J (w)− J (w′)

Qquad(w)−Qquad(w′)
, (14)

where w and w′ are the old and new iterates, J is the exact cost function
(not including the WSP term), and Qquad is the quadratic approximation
to the proximal objective (i.e. including the WSP term). The numerator
is the true reduction in the cost. The denominator is the reduction in the
quadratic objective, plus the WSP term. Consider how ρ behaves in various
situations:

• If λ is very large, then w′ is close enough to w that the first-order
approximation to J is accurate, i.e. J (w′)−J (w) ≈ ∇J (w)>(w′ −
w). The minimum of the quadratic objective is approximately w −
λ−1∇J (w), and a bit of arithmetic shows that ρ ≈ 2. In this situation,
the updates are overly conservative, so we’d certainly like to reduce
λ.

• Now suppose we’re making a larger update, but the second-order
approximation remains accurate. Then the denominator is approx-
imately J (w) − J (w′) − λ

2‖w
′ − w‖2. Hence, ρ will generally be

between 1 and 2. Since the quadratic approximation remains accu-
rate, we can probably get away with reducing λ.

• If we move far enough that even the second-order approximation is
no longer accurate, then the numerator and the denominator may be
very different. In the case where ρ > 1, the true reduction is larger
than we expected, so we can just count ourselves lucky. But if ρ < 1,
this means we got a smaller reduction than we expected, and if ρ < 0,
the update actually increased the cost. If ρ is much smaller than 1,
then we should be more conservative and increase λ.

To summarize, if ρ is close to or larger than 1, then we should decrease λ,
whereas if ρ is much smaller than 1, we should increase it. This is captured
by the Levenberg-Marquardt heuristic:

• If ρ < 1
4 , then λ← 3

2λ

• If ρ > 3
4 , then λ← 2

3λ

• Otherwise, λ is unchanged.

Of course, the particular values here can be adjusted, but these values work
pretty well as a default.

5 Kronecker-Factored Approximate Curvature

HF is an elegant optimization algorithm, but its use of MVPs to approx-
imate curvature has two fundamental limitations that aren’t easily fixed:
(1) it approximates the curvature using a single batch, and (2) each weight
update requires an expensive iterative procedure (CG). The first problem

13

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

Figure 2: Illustrations of the Kronecker product (left) and vectorization
operator (right).

means that HF (and other closely related algorithms such as TRPO) often
require large batch sizes to be effective, thereby reducing their data through-
put. The second problem means HF needs to do a lot more work for a given
batch size. This means using HF over SGD only pays off when the conver-
gence benefits of CG are substantial enough to give an orders-of-magnitude
reduction in the number of weight updates. This raises the question: can
we use second-order approximation, but keep the memory and per-iteration
compute costs to within a small multiple of SGD?

The way we’ll do this is to fit a parametric approximation to the pullback
metric G. In Chapter 3, we already saw that this can be done using the
Pullback Sampling Trick (PST). Recall that we had a procedure for sam-
pling vectors Dw called pseudo-gradients whose covariance is G. In that
lecture, we fit a diagonal approximation to G using the empirical variances
of individual pseudo-derivatives Dwj . But a diagonal approximation is very
crude, and we can do much better.

Approximating G with a diagonal matrix is equivalent to fitting the
maximum likelihood estimate of a Gaussian distribution with diagonal co-
variance, i.e. where all of the dimensions are assumed to be independent.
But the field of probabilistic graphical models has given us a powerful set of
tools for imposing more fine-grained independence assumptions on a set of
random variables, so that we can capture important correlations while keep-
ing essential computational operations (such as inversion) tractable. This
leads to an algorithm called Kronecker-Factored Approximate Cur-
vature (K-FAC) which captures more fine-grained structure of neural net
computations.

5.1 Kronecker Product

K-FAC, as suggested by the name, depends crucially on a mathematical
operation called the Kronecker product, denoted A⊗B for matrices A
and B. This is an operation which concatenates many copies of B, each one
scaled by the corresponding entry of A. I.e.,

A⊗B =


a11B a12B · · · a1nB
a21B a22B a2nB

...
. . .

...
am1B am2B · · · amnB

 (15)

The Kronecker product is illustrated in Figure 2.
The reason the Kronecker product is useful is that it allows us to describe

operations on matrices in terms of operations on vectors. Recall the Kro-

14

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

Figure 3: Proof-by-picture of the identity vec(AX) = (I ⊗ A) vec(X), a
special case of the more general identity vec(AXB) = (B> ⊗ A) vec(X)
(Eqn. 16).

necker vectorization operator, denoted vec(A), which stacks the columns of
a matrix into a vector (see Figure 2). The Kronecker product allows us to
view matrix multiplication as a matrix-vector product using the following
important identity:

vec(AXB) = (B> ⊗A) vec(X). (16)

A proof-by-picture of a special case of this identity is given in Figure 3.
We now list some useful properties of the Kronecker product, all of which

are straightforward to derive from Eqn. 16.

1. Matrix multiplication:

(A⊗B)(C⊗D) = AC⊗BD (17)

2. Matrix transpose:
(A⊗B)> = A> ⊗B> (18)

3. Matrix inversion:
(A⊗B)−1 = A−1 ⊗B−1 (19)

4. Vector outer products:

vec(uv>) = v ⊗ u, (20)

where u and v are column vectors.

5. If Q1 and Q2 are orthogonal, then so is Q1 ⊗Q2.

6. If D1 and D2 are diagonal, then so is D1 ⊗D2.

7. If A and B are symmetric, then so is A⊗B.

15

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

8. If A and B are symmetric, then the spectral decomposition of A⊗B
is given by:

A⊗B = (QA ⊗QB)(DA ⊗DB)(Q>A ⊗Q>B), (21)

where A = QADAQ>A and B = QBDBQ>B are the spectral decompo-
sitions of A and B. Observe that the first and last terms are orthog-
onal, and the middle one is diagonal, based on the properties listed
above. This implies that the eigenvalues of A⊗B consist of all prod-
ucts λiνj where λi and νj are eigenvalues of A and B, respectively.
The corresponding eigenvectors are given by ri ⊗ sj , where ri and sj
are the eigenvectors of A and B.

9. If A and B are symmetric and positive (semi)definite, then so is A⊗B.

5.2 Kronecker-Factored Approximation

To build a probabilistic model to approximate the distribution of the pseudo-
gradients Dw, we need to think about the mechanics of backpropagation.
Consider a multilayer perceptron for image classification, where each layer
` = 1, . . . , L uses the activation function φ. It’s convenient to use the ho-
mogeneous vector notation ā` = (a>` 1)> and W̄` = (W` b`). For each
layer, the forward pass computes a linear transformation followed by the
activation function:

s` = W̄`ā`−1

a` = φ`(s`)

Once we’ve computed the logits z = aL, we sample dz from a distribution
whose covariance is Gz. We then compute the activation derivatives and
weight derivatives using backprop:

Da` = W>
` Ds`+1

Ds` = Da` � φ′`(s`)
DW̄` = Ds`ā

>
`−1

All of this can be summarized in the computation graph shown in Figure 4,
where the edges denote which values are directly used to compute which
other values. (You can think of this as like the computation graph built
by an autodiff framework, except that a lot of nodes are omitted to avoid
clutter.)

The exact distribution is intractable to compute with. Note that our treatment of
modeling error as stochastic noise
is no different in principle from
any other kind of probabilistic
modeling: when we choose to treat
an effect as noise, we are not
claiming it is inherently stochastic
down to the level of physics;
rather, we are choosing not to
model the mechanism in detail.
Even if the universe were purely
Newtonian (and hence
deterministic), probabilistic
models would still be useful
descriptions at a higher level.

To make it
tractable, we need to simplify the relationships between different variables,
either by chopping off edges entirely, or by replacing them with a functional
form that’s easy to compute with (such as linear). While most of the edges
in the original graph are deterministic, we will now treat them as stochas-
tic in order to absorb the errors introduced by simplifying the form of the
dependency.

The most basic — and most commonly used — approximation is to treat
all of the layers as independent. (We’ll see later how this constraint can be
relaxed.) This means the pseudo-derivatives dwi and dwj are uncorrelated

16

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

Figure 4: Approximating the distribution of pseudo-gradients for a multilayer perceptron. (left) The true
computation graph, assuming that the output metric is the Fisher information matrix (see Chapter 3).
We are interested in the covariance of the weight pseudo-gradients (green). (right) Approximating the
activations and pre-activation pseudo-gradients for different layers as independent. This corresponds to
removing edges from the probabilistic model, rendering the weight pseudo-gradients for different layers
independent. It gives a block-diagonal approximation to the covariance, with one block per layer, and
Kronecker-factored blocks.

whenever wi and wj belong to different layers. Equivalently, G is approxi-
mated as block diagonal, with one block for each layer of the network. In
general, block diagonal approximations are useful because inversion simply
requires inverting each of the diagonal blocks. But we’re not home free yet,
because these blocks are still huge. E.g., a fully connected layer with 1000
input and 1000 output units would require 1 million weights, so each of the
diagonal blocks has dimension 1 million.

In order to achieve tractability, we need to impose more structure. Ob-
serve that the block of G corresponding to layer ` is the covariance of the
weights, flattened into a vector:

G`` = E[vec(DW`) vec(DW`)
>]

= E[vec(Ds`ā
>
`−1) vec(Ds`ā

>
`−1)

>]

= E[(ā`−1 ⊗Ds`)(ā`−1 ⊗Ds`)
>]

= E[ā`−1ā
>
`−1 ⊗Ds`Ds>`]

While this expectation doesn’t simplify any further in general, it does
simplify if we impose some additional structure on the distribution. Specif-
ically, we approximate the activations {ā`} as independent of the pre-
activation pseudo-gradients {Ds`}. Graphically, we can view this as chop-
ping off a lot of edges from the graph, as shown in Figure 4. The identity that

E[A⊗B] = E[A] ⊗ E[B] when A
and B are independent random
matrices generalizes the
well-known fact that
E[XY] = E[X]E[Y] for
independent random variables X
and Y .

If ā`−1 is
independent of Ds`, then we can push the expectation inward:

Ĝ`` = E[ā`−1ā
>
`−1]⊗ E[Ds`Ds>`]

= A`−1 ⊗ S`,

17

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

where A` and S` denote the following covariance matrices:

A` = E[ā`ā
>
`]

=

(
E[a`a

>
`] E[a`]

E[a>`] 1

)
S` = E[Ds`Ds>`]

The fact that we arrive at a Kronecker-factored approximation of each block
justifies the name of the algorithm.

How does this help us? Occasionally, we encounter layers
where M and N differ by an order
of magnitude and one of them is
very large. For instance, this
occurs in the first fully connected
layer of AlexNet. Cases like this
require further approximations,
but this is beyond the scope of this
lecture.

First of all, we have a compact way to represent

Ĝ. We only need to store the diagonal blocks, and each block is determined
by A`−1 and S`. If the layer has M input units and N output units, then
these matrices are M ×M and N × N , respectively. This is vastly more
compact than explicitly storing G``, which is an MN ×MN matrix. Note
that W` itself is an N ×M matrix, so as long as M ≈ N , our Kronecker-
factored approximation requires about twice as much storage as the network
itself.

The second way the Kronecker-factored approximation helps us is that
solving the linear system is tractable. Suppose we are interested in comput-
ing Ĝ−1v for a vector v of the same size as w. (For instance, v = ∇J (w)
when computing the natural gradient.) Let V̄` denote the entries of v for
layer `, reshaped to match W̄`, and v` = vec(v̄`). Because Ĝ is block di-
agonal, each layer can be computed independently as Ĝ−1`` v`. Applying the
properties of the Kronecker product,

Ĝ−1`` v` = (A`−1 ⊗ S`)
−1 vec(V̄`)

= (A−1`−1 ⊗ S−1`) vec(V̄`)

= vec(S−1` V̄`A
−1
`−1).

(22)

Computationally, this requires inverting an M ×M matrix and an N ×N
matrix, with cost O(M3 + N3). Then it requires matrix multiplications
with cost O(M2N+MN2). The cost of the ordinary forward and backward
passes are O(MNB), where B is the batch size. So if we squint, we can say
that the K-FAC operations have similar complexity to ordinary backprop.
(But the computational overhead is not negligible, and Section 5.5 discusses
some strategies for reducing the computational overhead.)

5.3 Damping

In the preceding section, we saw how to compute Ĝ−1v, but practical ef-
fectiveness of second-order optimizers usually requires damping, so we also
need to be able to compute (Ĝ + λI)−1v. Fortunately, there’s a neat trick
that lets us do this. If C is a symmetric matrix with spectral decomposition
QDQ>, then (C+λI)−1 = Q(D+λI)−1Q>. So applying Eqn. 21, we have:

(Ĝ`` + λI)−1 = (QA ⊗QS)(DA ⊗DS + λIM ⊗ IN)−1(Q>A ⊗Q>S),

where A`−1 = QADAQ>A, S` = QSDSQ>S , and IM denotes the M ×M
identity matrix. Since (Ĝ`` + λI)−1 is a product of three matrices, we

18

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

compute (Ĝ`` + λI)−1v` by multiplying by each of these matrices in turn:

V̄′` = Q>S V̄`QA

[V̄′′`]ij =
[V̄′`]ij

[DS]ii[DA]jj + λ
for all i, j

V̄′′′` = QSV̄′′`Q
>
A

(23)

Here, (Ĝ`` + λI)−1v` = vec(V̄′′′`).
If it’s somehow awkward or costly to compute eigendecompositions,

there’s an alternative damping approach which is only approximate, but
only requires inverses. Observe that for any scalar π, The scalar π can be chosen to

minimize the norm of the
approximation error, as described
by Martens and Grosse (2015)

(
A`−1 + π

√
λI
)
⊗

(
S` +

√
λ

π
I

)
= A`−1 ⊗ S` + π

√
λI⊗ S`

+

√
λ

π
A`−1 ⊗ I + λI⊗ I

� A`−1 ⊗ S` + λI⊗ I.

(24)

Recall that � refers to the PSD partial order over symmetric matrices, and
the inequality holds because the two terms that are dropped are both PSD.
The damped natural gradient can be computed using Eqn. 22, but with the
damped versions of A`−1 and S` substituted in. Because of the inequality
in Eqn. 24, the update that uses the factored damping is more conservative
than the update that uses exact damping (Eqn. 23), because it stretches the
update by a strictly smaller factor along each of the eigendirections. This
is an appealing property, because it means that the worst that can happen
is that we take a more cautious step than we would using the exact update.

5.4 Estimating the Covariance Matrices

We need to somehow estimate the Kronecker factors {A`} and {S`}, which
represent the covariances of the activations and pre-activation pseudo-gradients
for each layer. If Y and Z Sorry for using random letters to

denote the activations and
pre-activations, but I really didn’t
have any good options here.

denote the matrices of activations and pre-
activations for a batch of size B, then the empirical covariances for the
batch are given by 1

BY>` Y` and 1
BDZ>` DZ`. We’d like to use as much data

as possible to estimate the covariances, but we’d also like to avoid using stale
estimates if the weights have changed significantly. A good compromise is
to maintain exponential moving averages of the statistics: To understand the parameter η,

observe that the time constant for
the exponential decay is
approximately (1 − η)−1, e.g., if
η = 0.99, then we are averaging
the statistics over approximately
the last 100 batches. A good
default value is η = 0.95.

Â` ← ηÂ` +
1− η
B

Y>` Y`

Ŝ` ← ηŜ` +
1− η
B
DZ>` DZ`.

(25)

I should emphasize again that Ŝ` is the covariance of the pseudo-gradients
sampled using the PST, not the covariance of the actual gradients seen dur-
ing training. (The latter would give the empirical Fisher matrix, which is
very different from the true Fisher matrix. We’ll investigate the empirical
Fisher matrix in Chapter 5.)

19

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

5.5 Reducing the Computational Overhead

I claimed earlier that K-FAC requires only a small constant factor overhead
per iteration relative to ordinary SGD. To evaluate whether this is true,
consider the additional work required by K-FAC:

1. Updating the covariance statistics. This requires sampling the
pseudo-gradients using the PST, as well as some additional matrix
multiplications (Eqn. 25).

Sampling with the PST requires one additional backwards pass (since
the forward pass can be reused from the gradient computation). Ordi-
nary backprop requires 2 passes, so according to our crude pass-based
accounting scheme, the inclusion of the PST induces 50% overhead.
The matrix multiplications in Eqn. 25 require O(M2B) and O(N2B)
operations, compared with O(MNB) for the forward and backward
passes. So assuming M ≈ N , this also induces a constant factor
overhead.

This source of computational overhead can be mitigated by updating
the covariances periodically, or by updating them on a smaller batch
than the one used to compute the gradient. Either option induces a
tradeoff between computational and statistical efficiency, but in prac-
tice the computational overhead of this step can be made fairly small
without significantly hindering convergence.

2. Computing inverses or eigenvalues, as described in Section 5.3.
These operations are both O(M3) and O(N3), but unfortunately nei-
ther operation exploits GPU efficiency as well as matrix multipli-
cations (which otherwise dominate the computational cost). Hence,
the wall-clock overhead of this step can be substantial. Between the
two options, eigendecompositions can be several times more expensive
than inverses.

As with the covariance updates, we can mitigate the overhead by
recomputing the inverses or eigendecompositions only occasionally,
for instance once every 20 iterations. Fortunately, the covariances
seem to be reasonably stable throughout training (except at the very
beginning), so we can get away with these periodic updates without
much of a convergence hit. So the overhead from this step can also be
made small in practice.

3. Computing the natural gradient update. Finally, to compute the
approximate natural gradient using Eqn. 22, we need two more matrix
multiplications, which have complexity O(M2N) and O(N2M). If we compute the natural gradient

using eigendecompositions rather
than inverses (Eqn. 23), this
requires 4 matrix multiplications
rather than 2, so the overhead is
doubled.

For fully connected networks, this overhead is substantial if M and/or
N is much larger than B (as is usually the case). Unfortunately, we
can’t solve it with periodic computation like we did in the previous two
cases, as the natural gradient needs to be computed in every iteration.
Martens and Grosse (2015) observed that if we plug the formula for
the weight gradient into Eqn. 22 and simplify, we obtain an alternative
formula for the natural gradient whose matrix multiplications instead
require O(M2B) and O(N2B) operations, a substantial improvement.

20

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

Unfortunately, this solution breaks the abstraction barrier of the gra-
dient computation, so it can’t take advantage of autodiff functionality,
and it’s generally less flexible than the method described above.

But most of the architectures we’re interested in are not fully con-
nected. For the most commonly used architectures (conv nets, RNNs,
and transformers), the cost of forward and backward passes is sub-
stantially more expensive relative to the number of parameters, while
the overhead of the approximate natural gradient computation is still
O(M2N) and O(N2M). Therefore, the overhead of this step is not
too bad in practice, and doesn’t require any special consideration.

The upshot of all this is that the K-FAC update can be substantially more
expensive than the SGD update, but with a bit of attention to computa-
tional considerations, the overhead can be easily reduced to a small constant
factor (e.g. 1.5x) without substantially hindering convergence. My recom-
mendation is to use a profiler and set the covariance and inverse update
intervals large enough to make the overhead acceptably small, and (for
most architectures) not to worry about point (3).

One particularly problematic case is when either M or N is unusually
large for a given layer. (Only one of them can be very large, otherwise
the memory cost for the parameters would be unreasonably large.) For
instance, this occurs in the first fully connected layer of AlexNet, or in
embedding layers of RNNs and transformers. This needs to be handled on
a case-by-case basis by introducing further factorizations Ba et al. (2017),
or by reverting to a diagonal approximation to G` for that layer.

5.6 Putting This All Together

Based on the previous discussion, we can define a basic K-FAC optimizer
for fully connected networks. Each iteration requires computing the nat-
ural gradient update, and we periodically update the covariances and in-
verses/eigendecompositions. The most important hyperparameters to tune
are the learning rate α and damping parameter λ. The update intervals
can be tuned using a profiler (see Section 5.5), and other hyperparame-
ters can be set to reasonable defaults. The full algorithm is summarized in
Algorithm 1.

5.7 Extensions

All of the preceding discussion describes the “vanilla” version of K-FAC,
i.e. the features which are common to all K-FAC optimizers. It is possible
to extend the vanilla algorithm in various ways:

1. Momentum and iterate averaging. Heavy ball momentum and
iterate averaging are two extremely simple and inexpensive modifica-
tions to gradient-based updates which can often substantially speed
up convergence. These methods are deferred to Chapter 9 (because
their analysis connects naturally to subsequent topics in the course),
but are straightforward to add to K-FAC.

2. Matrix-vector products. It is possible to make use of exact cur-
vature information for the current mini-batch using MVPs. This can

21

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

Algorithm 1: The vanilla K-FAC optimizer.

Initialize w in the usual way;
Estimate the covariance statistics from a large batch of data;
Compute QA, DA, QS, DS (see Section 5.3);
while not converged do

Sample a batch of training examples;
Compute ∇J (w) on this batch using backprop;
if updating covariances this iteration then

Sample {DW̄`} using the PST;
Update the covariance statistics using Eqn. 25;

if updating eigendecompositions this iteration then
Compute QA, DA, QS, DS (see Section 5.3);

Compute the approximate natural gradient
∇̃J (w) = Ĝ−1∇J (w) using Eqn. 23;

w← w − α∇̃J (w);

help because MVPs use the exact Hessian or pullback metric (albeit
only for a single batch), whereas the Kronecker-factored approxima-
tion is only an approximation. Among the other benefits, this gives
automatic ways to choose the step size and momentum decay param-
eters in each iteration, reducing the need for hyperparameter tuning.
This is briefly explained in Section 6, but see Martens and Grosse
(2015) for details.

3. Beyond block-diagonal. The preceding discussion assumes layer-
wise independence, which gives a block-diagonal approximation to G.
We can actually do much better. The activations a` are computed di-
rectly from a`−1, but depend on activations of layers below that only
indirectly through a`−1. Similarly, the pseudo-gradients Ds` are com-
puted directly from Ds`+1, but depend on pseudo-gradients for subse-
quent layers only indirectly through Ds`+1. This sort of dependency
structure can be modeled probabilistically using a Gaussian graphi-
cal model and, somewhat surprisingly, the structure of this graphical
model leads to updates which are not much more expensive than those
of the block-diagonal approximation given above. This improved ap-
proximation seems to give faster convergence than the block-diagonal
approximation. However, it is more cumbersome to implement, and
it never seems to give spectacular practical gains, so practical K-FAC
implementations usually stick to the block-diagonal approximation.
See Martens and Grosse (2015) for details.

4. Other architectures. The preceding discussion is limited to fully
connected layers, but Kronecker-factored approximations have been
developed for convolution layers (Grosse and Martens, 2016) and re-
current architectures (Martens et al., 2018). Together, this covers the
layer types needed for most of the commonly used architectures.

5. Distributed implementation. K-FAC can make use of standard
GPU acceleration for neural nets. However, we can parallelize it fur-

22

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

ther by distributing the gradient computation across many workers,
allowing us to efficiently compute gradients on much larger batches.
This sort of parallelism is particularly well-suited to K-FAC, because
second-order optimizers can benefit more from large batches (for rea-
sons explained in Chapter 7), and because the primary computational
overhead of K-FAC (estimating the covariances and computing in-
verses or eigenvalues) can be done asynchronously from the gradient
updates. See Ba et al. (2017) for details.

5.8 Implementing the Pullback Sampling Trick

Almost the entire K-FAC algorithm can be implemented in more or less
orthodox JAX style. The one part that requires a little creativity is the
PST sampling, which is used to compute {Ds`}. The challenge is that
grad and vjp have a functional API, so they only compute gradients with
respect to the inputs to a function. They don’t give a convenient way to
compute gradients with respect to intermediate quantities (such as the pre-
activations), since this would break the abstraction barrier.

If we want to recover the activation gradients for particular layers, one
feature we’ll certainly need is the ability to refer to those layers by name. So
we’ll define a named serial class, whose API parallels that of stax.serial,
except that each layer is given a name. For instance, we would like to be
able to define an MLP autoencoder architecture as follows:

net_init, net_apply = kfac_util.named_serial(

('enc1s', Dense(1000)),

('enc1a', elementwise(nn.sigmoid)),

('enc2s', Dense(500)),

etc.

('dec3a', elementwise(nn.sigmoid)),

('out', Dense(784)),

)

Then the pre-activations for the first encoder layer would be referenced as
’enc1s’, the activations for the first encoder layer as ’enc1a’, and so on.

Since vjp uses a functional API, how do we get at gradients with respect
to intermediate values? We need to instrument the VJP computation. The
trick is to take in an additional argument consisting of dummy matrices
that get added to the values that are computed. Since we are not actually
interested in modifying the forward pass computations, we will in fact pass
in matrices of zeros. However, when we call vjp, the gradient with respect
to the dummy matrix added to s` will be exactly the pseudo-gradient Ds`.
So we basically need to modify apply fn function in named serial to take
this dummy argument. (Some irrelevant features are omitted for clarity.)

def named_serial(*layers):

...

def apply_fn(params, inputs, add_to={}):

for fun, name in zip(apply_fns, names):

inputs = fun(params[name], inputs)

23

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

if name in add_to:

inputs = inputs + add_to[name]

return inputs

...

Now we define the instrumented VJP. The following function returns a
VJP operator which takes in the output pseudo-gradients (i.e. Dz) and re-
turns the pseudogradients with respect to the activations of all layers in the
network (even though we only require a subset of them). (The arch param-
eter is a namedtuple containing functions for things like forward passes.)

def make_instrumented_vjp(arch, params, inputs):

Compute the activations on a dummy batch to determine the layer sizes.

dummy_input = np.zeros((2,) + inputs.shape[1:])

_, dummy_activations = arch.compute_activations(params, dummy_input)

Create dummy matrices of zeros the same size as the activations.

batch_size = inputs.shape[0]

add_to = {name: np.zeros((batch_size,) + dummy_activations[name].shape[1:])

for name in dummy_activations}

Compute the VJP with respect to the dummy inputs.

apply_wrap = lambda a: arch.net_apply(params, inputs, a)

primals_out, vjp_fn = vjp(apply_wrap, add_to)

return primals_out, vjp_fn

The pseudo-gradient covariances for a batch can then be computed as
follows. The parameter output model defines the output layer metric (see
the diagonal PST implementation in Chapter 3). The final argument rng

is the key for the random number generator.

def estimate_covariances(arch, output_model, w, X, rng):

logits, vjp_fn = make_instrumented_vjp(arch, arch.unflatten(w), X)

logit_pseudograds = output_model.sample_pseudograds_fn(logits, rng)

pseudograds = vjp_fn(logit_pseudograds)[0]

S = {}

batch_size = X.shape[0]

for in_name, out_name in arch.param_info:

Ds = pseudograds[out_name]

S[out_name] = Ds.T @ Ds / batch_size

return S

6 Comparing and Combining the Approximations

We’ve just considered two very different ways to approximate G and to
approximately solve linear systems G−1v. The first strategy (used in HF)
approximates G using the exact matrix for a single batch of data, and

24

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

approximately computes G−1v using MVPs. This has the advantage that
it uses the exact curvature for the batch, but the drawbacks that it only uses
a single batch and it requires many CG iterations to compute the update.
The second strategy is to fit a parametric approximation to G (such as
K-FAC). The advantages are that it aggregates curvature information over
many batches and that inversion is cheap. The disadvantages are that the
curvature is only approximate, and that the methods are much less generic
to the choice of architecture.

Since the two curvature approximations have complementary strengths
and weaknesses, it is natural to combine them. The K-FAC approximation
can be thought of as a preconditioner: it provides a cheap operation which
implicitly transforms the space to one which is better conditioned. So it
would be natural to use K-FAC as a preconditioner for HF.

A more lightweight way to combine the approximations is to use MVPs
to choose the step size for K-FAC. After computing the approximate natural
gradient r = ∇̃J (w), we can choose the step size to minimize the quadratic
approximation to the cost. Letting J̄ and H̄z denote the Jacobian and out-
put Hessian for the current batch, the second-order Taylor approximation
to the cost is given by:

Jquad(w + αr) = J (w) + α∇J (w)>r + α2r>J̄>H̄zJ̄r,

a quadratic expression in α with minimum given by: The most obvious implementation
of the step size selection involves
an MVP with G, which requires
two passes. But we can cut this
down to one pass by computing
q = J̄r and then computing
q>H̄zq.

α = − ∇J (w)>r

r>J̄>H̄zJ̄r
. (26)

This quadratic approximation is generally pretty accurate, especially if
adaptive damping is used (see Section 4.1). Therefore, this method ap-
proximately chooses a step size which minimizes the loss on the current
batch. This choice of step size is not necessarily optimal in the stochastic
setting (stochastic optimization is discussed in Chapter 7). However, it does
address an important problem with fixed step sizes (learning rates), namely
that the optimization can get unstable if the learning rate is slightly too
large. This instability is, in general, a big

problem in tuning learning rates.
The reason you might not have
encountered it is that most modern
architectures include normalization
layers, which have the side effect of
automatically controlling the step
size. See Chapter 5.

Because α is chosen to minimize the loss on the current batch, that
means it must decrease the loss on that batch, and therefore the optimiza-
tion cannot blow up.

The above trick can be generalized to give a sort of momentum effect.
In particular, Eqn. 26 can be seen as minimizing the quadratic cost over a 1-
dimensional subspace spanned by the approximate natural gradient ∇̃J (w).
We can instead minimize the cost over a 2-dimensional subspace spanned
by ∇̃J (w) as well as the previous update vector : Can you see how to determine α

and β using only two JVPs and no
backward passes?w(k+1) = w(k) + α∇̃J (w) + β(w(k) −w(k−1)). (27)

If α and β were fixed values, this equation would simply be heavy ball
momentum, and β would be the momentum decay parameter. Hence, the
MVPs give a way to automaically adapt the learning rate and momentum
decay parameters. Another interesting and surprising interpretation of this
update rule is that, in full batch mode close to the optimum, it approximates
the CG algorithm. Our discussion of adapting α and β was necessarily brief
since we haven’t yet discussed momentum, but the full details can be found
in Martens and Grosse (2015).

25

CSC2541 Winter 2021 Chapter 4: Second-Order Optimization

References

J. Ba, R. Grosse, and J. Martens. Distributed second-order optimization
using Kronecker-factored approximations. In International Conference on
Learning Representations, 2017.

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, 2016.

R. Grosse and J. Martens. A Kronecker-factored approximate Fisher matrix
for convolution layers. In International Conference on Machine Learning,
2016.

J. Martens and R. Grosse. Optimizing neural networks with Kronecker-
factored approximate curvature. In International Conference on Machine
Learning, 2015.

J. Martens, J. Ba, and M. Johnson. Kronecker-factored curvature approx-
imations for recurrent neural networks. In International Conference on
Learning Representations, 2018.

James Martens. Deep learning via Hessian-free optimization. In Interna-
tional Conference on Machine Learning, 2010.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer,
2006.

David Pfau, James S. Spencer, Alexander G. D. G. Matthews, and W. M. C.
Foulkes. Ab-initio solution of the many-electron Schrödinger equation
with deep neural networks. arXiv:1909.02487, 2019.

John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter
Abbeel. Trust region policy optimization. In International Conference on
Machine Learning, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms. arXiv:1707.06347,
2017.

Yuhuai Wu, Elman Mansimov, Roger Grosse, Shun Liao, and Jimmy
Ba. Scalable trust-region method for deep reinforcement learning us-
ing Kronecker-factored approximation. In Neural Information Processing
Systems, 2017.

26

	Introduction
	What are we Trying to Achieve?
	Minimizing Quadratic Approximations
	Preconditioning
	Invariance to Reparameterization
	Proximal Optimization

	Iteratively Minimizing the Proximal Objective
	Hessian-Free Optimization
	Adaptive Damping

	Kronecker-Factored Approximate Curvature
	Kronecker Product
	Kronecker-Factored Approximation
	Damping
	Estimating the Covariance Matrices
	Reducing the Computational Overhead
	Putting This All Together
	Extensions
	Implementing the Pullback Sampling Trick

	Comparing and Combining the Approximations

