
Chapter 3: Metrics

Roger Grosse

1 Introduction

Last week, we looked at the Hessian, which defines the second-order Taylor
approximation to the cost function in neural network training. This week,
we’ll look at a different but closely related type of second-order Taylor
approximation. Here, we’re interested in approximating some notion of
distance between two weight vectors. One way to measure distance is using
Euclidean distance in weight space (which there’s no need to approximate).
But we can define lots of other interesting distances, and taking a second-
order Taylor approximation to such a distance gives a metric.

To motivate why we are interested in metrics, consider the Rosenbrock
function (Figure 1), which has been used for decades as a toy problem in
optimization:

h(x1, x2) = (a− x1)2 + b(x2 − x21)2

This function is hard to optimize because its minimum is surrounded by a
narrow and flat valley, in which gradient descent gets stuck (Figure 1).

One interesting way of looking at the Rosenbrock function is that it’s
really the composition of two functions: a nonlinear mapping, and squared
Euclidean distance:

J (x1, x2) = L(f(x1, x2))

f(x1, x2) = (a− x1,
√
b(x2 − x21))

L(z1, z2) = z21 + z22 .

Here, we refer to (x1, x2) as the input variables, and (z1, z2) as the output
variables. The loss L is just squared Euclidean distance. It’s the nonlinear
transformation that makes the optimization difficult. Figure 1(a,b) shows
the optimization trajectory in input space and output space, respectively.
This general setup, where we are trying to minimze a composition of func-
tions, is known as composite optimization.

This setup is roughly analogous to neural net training: (x1, x2) are like
the weights of the network, and (z1, z2) are like the outputs of the network.
Typically, we assign a simple, convex loss function in output space, such as
squared error or cross-entropy. It’s the nonlinear mapping between weights
and outputs that makes the optimization difficult. The main place the
analogy breaks down is that the neural net cost function is summed over
multiple training examples, and the nonlinear mapping (from weights to
outptuts) is different each time.

The output loss (L as a function of (z1, z2)) is probably the easiest func-
tion in the world to optimize. Figure 1(c,d) shows what would happen if we

1

CSC2541 Winter 2021 Chapter 3: Metrics

(a) (b) (c) (d)

Figure 1: Gradient descent on the Rosenbrock function. (a) Gradient descent in input space bounces
across the valley and makes slow progress towards the optimum, due to ill-conditioning. (b) The corre-
sponding trajectory in output space. (c,d) The parameter space and output space trajectories for gradient
descent on the outputs.

could do gradient descent directly on the outputs (z1, z2). For this particular
function, “gradient descent on the outputs” at least makes conceptual sense
because the mapping f is invertible. The optimization trajectory darts di-
rectly for the optimum (and, in fact, would reach it exactly in 1 step if we
used a step size of 1). This is cheating, of course, but it provides us with
an idealized optimizer we can try to approximate.

Unfortunately, this notion of “gradient descent on the outputs” doesn’t
apply to lots of other situations we care about, such as neural net training.
One problem is that the neural net function is generally not invertible: there
might not be any weight vector that produces a given set of outputs on the
training set, or there might be many such weight vectors. In the latter case,
it generally won’t be easy to find such a weight vector. Even if we could, the
fact that it performs well on the training set gives us no guarantee about
its generalization performance.

However, there’s another way to define “gradient descent on the out-
puts” which does carry over to neural nets. In particular, we’ll consider
proximal optimization, where we minimize the cost function (or an approxi-
mation therof), plus a proximity term which penalizes how far we’ve moved
from the previous iterate. Proximal optimization is especially interesting
if we measure proximity in function space. Approximating function space
proximity gives rise to a useful class of matrices known as pullback metrics.

As part of this investigation, we’ll look at how to measure dissimilarity
between probability distributions. A natural dissimilarity measure between
distributions is KL divergence, and taking the second-order Taylor approx-
imation gives us the ubiquitous Fisher information matrix. When the dis-
tributions are exponential families, this gives rise to an especially beautiful
set of mathematical identities.

2 Proximal Optimization

We’ll now turn to a class of optimization algorithms known as proximal
methods. This refers to a general class of methods where in each step we
minimize a function plus a proximity term which penalizes the distance from
the current iterate. While there are some practical optimization algorithms
that explicitly use proximal updates, we’ll instead use proximal optimiza-

2

CSC2541 Winter 2021 Chapter 3: Metrics

tion as a conceptual tool for thinking about optimization algorithms. We’ll
start by defining idealized proximal updates which do something interest-
ing but are impractical to compute, and then figure out how to efficiently
approximate those updates.

Suppose we’re trying to minimize a function J (w). The idealized update
rule, known as the proximal point method, is as follows:

w(k+1) = proxJ ,λ(w(k)) = arg min
u

[
J (u) + λρ(u,w(k))

]
, (1)

where ρ is a dissimilarity function which, intuitively, measures the dis-
tance between two vectors, but doesn’t need to satisfy all the axioms of
a distance metric. Canonical examples include squared Euclidean distance
and KL divergence. The term λρ(u,w(k)) is called the proximity term,
and the operator proxf,λ is called the proximal operator. To make this
more concrete, let’s consider some specific examples.

To begin with, let’s measure dissimilarity using squared Euclidean dis-
tance:

ρ(u,v) = 1
2‖u− v‖2.

Plugging this into Eqn. 1, our proximal operator is given by:

proxJ ,λ(w(k)) = arg min
u

[
J (u) + λ

2‖u−w(k)‖2
]
. (2)

If J is differentiable and convex and λ > 0, then the proximal objective is
strongly convex, so we can find the optimum by setting the gradient to 0:

∇J (u?) + λ(u? −w(k)) = 0.

Rearranging terms, we get an interesting interpretation of the optimality
condition:

proxJ ,λ(w(k)) = u? = w(k) − λ−1∇J (u?). (3)

This resembles the gradient descent update for J , except that the gradient
is computed at the new iterate rather than the old one. This equation is
not an explicit formula for u? because u? appears on the right-hand side;
hence, it is known as the implicit gradient descent update.

Clearly it can’t be very easy to compute the implicit gradient descent
update, since setting λ = 0 drops the proximity term, so proxJ ,0 simply
minimizes J directly. Hence, exactly solving the proximal objective in
general is as hard as the original optimization problem.

We can make some approximations, however. The first such approxima-
tion is to linearize the cost. Returning for a moment to the general proximal
objective (Eqn. 1), suppose we linearize J around the current iterate w(k):

proxJ ,λ(w(k)) = arg min
u

[
J (w(k)) +∇J (w(k))>(u−w(k)) + λρ(u,w(k))

]
= arg min

u

[
∇J (w(k))>u + λρ(u,w(k))

]
Setting the gradient to 0, we get the following optimality conditions:

∇uρ(u?,w
(k)) = −λ−1∇J (w(k)).

3

CSC2541 Winter 2021 Chapter 3: Metrics

For some choices of ρ, this gives an algorithm known as mirror descent
— a term whose meaning will later become clear. For squared Euclidean
distance, ∇uρ(u,v) = u − v, so mirror descent reduces to the ordinary
gradient descent update:

u? = w(k) − λ−1∇J (w(k)).

A second approach is to take the infinitesimal limit by letting λ → ∞.
If the proximity term is weighted extremely heavily, then u? will remain
close to w(k). Hence, J will be well-approximated by the first-order Taylor
approximation, just as above. Now consider approximating ρ. First of all,
since ρ(u,v) is minimized when u = v, we have ∇uρ(u,v)

∣∣
u=v

= 0. Hence,
we approximate it with the second-order Taylor approximation,

ρ(u,w(k)) = 1
2(u−w(k))>G(u−w(k)) +O(‖u−w(k)‖3)

where G = ∇2
uρ(u,w(k))

∣∣
u=w(k) is known as the metric matrix. This

formula can also be written in terms of a class of distance metrics called
Mahalanobis distance, which you can visualize as a stretched-out version
of Euclidean distance:

ρ(u,w(k)) = 1
2‖u−w(k)‖2G +O(‖u−w(k)‖3)

‖v‖G =
√

v>Gv.

Plugging both approximations into Eqn. 1, we get:

proxJ ,λ(w(k)) = arg min
u

[
∇J (w(k))>u + λ

2 (u−w(k))>G(u−w(k))
]
,

with optimum
u? = w(k) − λ−1G−1∇J (w(k)). (4)

This optimal solution resembles the Newton update w(k)−αH−1∇J (w(k)),
except that H (the Hessian of J) is replaced by G (the Hessian of ρ). In
the case where ρ represents squared Euclidean distance, G = I, so this
solution also reduces to the ordinary gradient descent update. Since we’re considering the λ→∞

limit, this implies that implicit
gradient descent behaves like
ordinary gradient descent when
the steps are small enough.

In general,
however, we’ll see that these two approximations can yield interestingly
different algorithms.

Finally, a third approach is to take a second-order Taylor approxima-
tion to J and a second-order Taylor approximation to ρ. This might be
more accurate than the previous approximation for larger step sizes, be-
cause we’re using a second-order rather than first-order approximation to
J . The update rule, derived similarly to the ones above, is given by:

w(k+1) = w(k) − (H + λG)−1∇J (w(k)). (5)

If ρ is chosen to be squared Euclidean distance, then G = I, and this gives
a damped Newton update. Intuitively, the damping term prevents the
optimizer from taking a very large step in low curvature directions, perhaps
helping to stabilize the optimization. We won’t consider this particular
approximation any further in today’s lecture, but we’ll discuss the role of
damping in more detail next week, when we talk about second-order opti-
mization of neural nets.

4

CSC2541 Winter 2021 Chapter 3: Metrics

2.1 Trust Region Methods

Proximal methods are also closely related to another family of optimiza-
tion algorithms known as trust region methods. Here, the soft proximity
penalty is converted to a hard constraint:

arg min
u

J (u) s.t. ρ(u,w(k)) ≤ η, (6)

where η is a hyperparameter controlling how far each update is allowed
to wander from the current iterate. If J is convex, then the trust region
problem is actually equivalent to the proximal problem, in the sense that
any optimum to Eqn. 6 is also an optimum to Eqn. 1 for some value of λ,
and vice versa. The difference between these approaches is simply whether
you’d prefer to control the size of the updates directly, or control the weight
of the proximity term.

3 Fisher Information

So far, our only example of proximal updates used the Euclidean metric,
which isn’t that interesting because the results agree with the ordinary gra-
dient. Proximal updates become much more powerful if we can use a more
intrinsically meaningful dissimilarity function. In the case of probability
distributions, a natural dissimilarity function is KL divergence:

DKL(q ‖ p) = Ex∼q[log q(x)− log p(x)] (7)

KL divergence isn’t truly a distance metric, because it it asymmetric and
doesn’t satisfy the triangle inequality. Actually, KL divergence is more

closely analogous to squared
Euclidean distance than to
Euclidean distance. However,√

DKL doesn’t satisfy symmetry or
the triangle inequality either.

However, it’s very convenient as a
way of measuring how different two distributions are. For instance, it has
the information theoretic interpretation as relative entropy, i.e. the number
of bits wasted if you try to encode data from source q using a code de-
signed for another source p. It can be shown that DKL is nonnegative, and
DKL(q ‖ q) = 0 for any distribution q — basic properties we need from any
dissimilarity function. For a great tutorial introduction to

KL divergence, see
https://colah.github.io/posts/

2015-09-Visual-Information/.

Notice that Eqn. 7 doesn’t mention the parameters of the distributions.
That’s because KL divergence is an intrinsic dissimilarity function between
distributions, i.e. it doesn’t care how they’re parameterized. But if we’re
trying to learn a distribution, we’ll typically restrict ourselves to some para-
metric family {pθ} (such as Gaussians), parameterized by θ.

Recall that when we derived approximations to the proximal operators,
we sometimes needed the Hessian of the dissimilarity function. For ρ =
DKL, this is given by the Fisher information matrix, denoted Fθ. (The
subscript indicates the parameterization, but we’ll drop it when it’s obvious
from context.) Exercise: derive these expressions

for Fθ.∇2
uDKL(pu ‖ pθ)

∣∣
u=θ

= Fθ

= Covx∼pθ(∇θ log pθ(x))

= Ex∼pθ

[
(∇θ log pθ(x))(∇θ log pθ(x))>

] (8)

The second and third lines give explicit formulas for Fθ in terms of the log-
likelihood gradients ∇θ log pθ(x), which are called the Fisher scores. The

5

https://colah.github.io/posts/2015-09-Visual-Information/
https://colah.github.io/posts/2015-09-Visual-Information/

CSC2541 Winter 2021 Chapter 3: Metrics

third equality follows from the general identity (which applies to any ran-
dom vector v):

Cov(v) = E[vv>]− E[v]E[v]>,

combined with the observation that The fact that
Ex∼pθ [∇θ log pθ(x)] = 0 can be
proved using integration by parts.
But the intuition is that the true
parameters θ maximize the
expected log-likelihood for data
drawn from pθ, so the
log-likelihood gradient should be 0
in expectation.

Ex∼pθ [∇θ log pθ(x)] = 0.

The explicit formulas for Fθ may be more familiar from a statistics class
than the interpretation as the Hessian of DKL. But I’d argue that the
Hessian of DKL is really the right way to think about Fθ, i.e. it defines a
local distance metric in the space of distributions.

So the exact proximal update is as follows:

proxJ ,λ(θ) = arg min
u

[J (u) + λDKL(pu ‖ pθ)] . (9)

Let’s take the infinitesimal limit, i.e. λ → ∞, given by Eqn. 4. This gives
the following update:

θ(k+1) = θ − αF−1θ ∇J (θ)

= θ − α∇̃J (θ),
(10)

where α = λ−1 and the vector ∇̃J (θ) = F−1θ ∇J (θ) is the natural gra-
dient. This update rule is known as natural gradient descent. The
term natural comes from the fact that the update is independent of how
the distribution is parameterized, up to the first order. More on this in
Section 6.

4 Exponential Families

The above discussion applies to any parametric family of distributions. The discussion of exponential
families can be skipped without
too much loss of continuity. But
it’s so beautiful that I just had to
include it.

But
we get some very interesting interpretations of natural gradient when we spe-
cialize to particular classes of distributions known as exponential families.
In general, an exponential family is a family of probability distributions that
has the following form:

pη(x) =
h(x)

Z(η)
exp

(
η>t(x)

)
, (11)

where η are the natural parameters of the distribution, and t is a vector
of sufficient statistics. (We’ll see where this term comes from when we
discuss maximum likelihood.) The factor 1/Z(η) is known as the normal-
izing constant because its role is to ensure that the PDF integrates to 1,
and Z(η) is the partition function, defined as

Z(η) =

∫
h(x) exp

(
η>t(x)

)
dx or

Z(η) =
∑
x

h(x) exp
(
η>t(x)

)
,

(12)

depending if the distribution is continuous or discrete.

6

CSC2541 Winter 2021 Chapter 3: Metrics

The moments of an exponential family distribution are the expected
sufficient statistics:

ξ = Ex∼pη [t(x)].

Under some regularity conditions, it can be shown that there is a one-to-
one mapping between the moments and the natural parameters. Hence, ξ
can be seen as an alternative parameterization of the exponential family, in
which case we write pξ.

Now let’s see some concrete examples of exponential families.

1. The Bernoulli distribution, where x ∈ {0, 1}, and Pr(x = 1) = θ. This
can be seen as an exponential family with ξ(x) = x and h(x) = 1. The
moment is E[ξ(x)] = θ. It can be shown that the natural parameters
satisfy:

η = log
θ

1− θ
θ = σ(η) =

1

1 + exp(−η)
.

Hence, the natural parameter represents the logit, which gives the log
odds ratio between the two outcomes. The moment is obtained from
the natural parameters using the logistic function σ, a standard
neural network activation function. It’s common to use the logistic
activation function for the output layer in binary classification (either
with neural nets or logistic regression), so the output pre-activations
can be seen as the natural parameters, and the output activations as
the moments.

2. The categorical distribution, where x is a one-hot vector, i.e. a
binary vector with exactly one entry being 1, and the vector θ rep-
resents the probabilities of each outcome. This is a generalization of
the Bernoulli distribution to more than 2 possible outcomes. It can
be seen as an exponential family with t(x) = x and h(x) = 1. The
moments are E[t(x)] = θ. The natural parameters can be defined as:

ηi = log θi θi = [σ(η)]i =
exp(ηi)∑
j exp(ηj)

.

The function σ is the softmax function, the standard activation
function for output layers of a classification network. This shows that
the natural parameters η, called the logits, can be seen as the log
odds ratios of the outcomes.

This representation is good enough for many purposes. However, it’s
not a minimal exponential family, since the sufficient statistics are
linearly dependent (the entries always sum to 1). This can be fixed
by truncating the final coordinate of the one-hot vector, so that the
Kth class is arbitrarily assigned to 0. The formulas are a bit more
cumbersome, but basically similar to the ones given above.

3. Now consider a Gaussian distribution with fixed covariance Σ, param-
eterized by the mean vector µ:

pµ(x) =
1

(2π)D/2|Σ|1/2
exp

(
−1

2(x− µ)>Σ−1(x− µ)
)

=
1

(2π)D/2|Σ|1/2
exp

(
−1

2x>Σ−1x + µ>Σ−1x− 1
2µ
>Σ−1µ

)

7

CSC2541 Winter 2021 Chapter 3: Metrics

This is an exponential family distribution with sufficient statistics
t(x) = x, natural parameters h = Σ−1µ (also called the poten-
tial vector), and moments ξ = E[t(x)] = µ. Hence, in this instance,
the natural parameters and sufficient statistics are equivalent, up to
a linear transformation. You can check that: This parameterization might seem

a little weird, which just shows
that the natural parameters aren’t
always the most “natural” way to
parameterize a distribution.

h(x) = exp(−1
2x>Σ−1x)

Z(h) = (2π)D/2|Σ|1/2 exp(−1
2h>Σh)

4. Now make the Gaussian zero-mean, but parameterize it by the covari-
ance matrix Σ. This is an exponential family with sufficient statistics
t(x) = −1

2 vec(xx>), natural parameters η = vec(Σ−1), and moments
ξ = E[t(x)] = −1

2 vec(Σ). Our formulation of Gaussians here
is not a minimal exponential
family. To make it minimal, we
should instead extract the upper
triangular entries of Λ and xx>.

The notation vec denotes the Kronecker
vectorization operator which stacks the columns of a matrix into a
vector. The matrix Λ = Σ−1 is called the precision matrix; it is
a positive definite matrix which, intuitively, is large in the directions
where the distribution is the most constrained (i.e. most “precise”).

5. Finally, let’s put this together by considering a general Gaussian dis-
tribution parameterized by both µ and Σ. To make the exponential
family interpretation more obvious, we can rewrite the Gaussian PDF
in another form called information form:

ph,Λ(x) =
|Λ|1/2

(2π)D/2
exp

(
−1

2x>Λx + h>x− 1
2h>Λ−1h

)
.

The sufficient statistics, natural parameters, and moments are given
by:

t(x) =

(
x

−1
2 vec(xx>)

)
η =

(
h

vec(Λ)

)
ξ =

(
µ

−1
2 vec(Σ + µµ>)

)
Hence, the natural parameters are exactly the information form pa-
rameters, reshaped into a vector, and the moments are (proportional
to) the first and second moments of the distribution. The moments
aren’t quite the same as the standard parameterization in terms of
µ and Σ (which is known as covariance form), but each is easily
obtainable from the other.

Covariance form and information form are two fundamental param-
eterizations of the Gaussian distribution. Converting between them
requires a matrix inversion (to compute Λ from Σ or vice versa),
which is an O(D3) operation. For many applications, this inversion is
feasible but expensive, hence we’d like to do it as rarely as possible.
Hence, algorithms based on manipulating Gaussian distributions are
carefully designed to carry out some steps in information form and
some steps in covariance form in order to minimize the number of in-
versions. This is crucial in, e.g., Kalman filtering and Gaussian belief
propagation.

The innocuous-looking partition function Z(η) is the source of many
elegant identities involving exponential families.

8

CSC2541 Winter 2021 Chapter 3: Metrics

1. First of all, we get a nice formula for the moments:

ξ = ∇ logZ(η). (13)

This is nice because we have convenient automatic differentiation
tools, but not convenient tools for computing expectations. This iden-
tity means we can obtain the moments simply by writing a function
that computes logZ(η), and then calling grad on it.

2. The formula for the log-likelihood is:

`(η) =
N∑
i=1

log pη(x)

=
N∑
i=1

[
η>t(x(i))− logZ(η)

]
,

(14)

and its gradient is

∇η log pη(x) = t(x)− ξ (from Eqn. 13)

∇`(η) = ξ̂ − ξ

ξ̂ =
1

N

N∑
i=1

t(x(i)),

(15)

where ξ̂ is called the empirical moments. Setting the gradient to
0, we find that the likelihood is maximized when ξ = ξ̂. You can check that this formula is

consistent with the well-known
maximum likelihood estimates for
Bernoulli, categorical, and
Gaussian distributions.

This implies
that, to compute the maximum likelihood parameters, we only need
to store ξ̂, and can otherwise forget the data; this is why t is called the
sufficient statistic. Since maximum likelihood involves matching the
model moments to the empirical moments, this is known as moment
matching.

3. We just saw that ∇η log pη(x) = t(x)−ξ (see Eqn. 15). Plugging this
into Eqn. 8, we get a convenient formula for the Fisher information
matrix:

Fη = Covx∼pη(t(x)) (16)

4. The KL divergence is given by:

DKL(pη1
‖ pη2

) = Ex∼pη1
[log pη1

(x)− log pη2
(x)]

= Ex∼pη1
[η>1 t(x)− η>2 t(x)]− logZ(η1) + logZ(η2).

Taking the Hessian with respect to η2, all of the linear and constant
terms drop out, and we’re left with just ∇2 logZ(η2). But the Hessian
of KL divergence is Fη (Eqn. 8). So this gives us a neat identity

Fη = ∇2 logZ(η). (17)

Just like Eqn. 13 gave us a convenient way to compute ξ in an autodiff
framework, Eqn. 17 gives us a convenient way to compute F: just take
the function that computes logZ(η) and call grad on it twice. (Or, if
you don’t want to construct the full matrix, you can compute MVPs
with F by computing Hessian-vector products with logZ.)

9

CSC2541 Winter 2021 Chapter 3: Metrics

5. As a consequence of Eqn. 17, the Hessian of the negative log-likelihood
is also Fη:

∇2
η log pη(x) = ∇2

η[η
>t(x(i))]︸ ︷︷ ︸
=0

−∇2
η logZ(η)

= −Fη.

(18)

This implies that the natural gradient descent update for maximum
likelihood estimation in exponential families is the same as the Newton-
Raphson update (up to a scale factor).

6. We saw that ξ = ∇ logZ(η) and Fη = ∇2 logZ(η). But since the
Hessian is just the gradient of the gradient, this implies:

Fη = ∇ξ(η) = Jξ,η, (19)

where Jξ,η denotes the Jacobian of the mapping from natural param-
eters to moments. Another way to write this is:

dξ = Fηdη,

where dξ and dη denote infinitesimal perturbations to the moments
and natural parameters, respectively. Note that the Jacobian of the
inverse mapping is just Jη,ξ = F−1η . This is a surprisingly useful
identity, and shows that the Fisher information matrix fundamentally
relates the two coordinate systems.

We’ve just seen a number of beautiful identities relating two coordinate
systems for exponential families — natural parameters and moments — and
they all somehow pass through logZ. This is no accident: the relationship
between natural parameters and moments is a special case of Legendre
duality, and there’s a beautiful field called information geometry which
explores these sorts of ideas. Amari and Nagaoka (2000) is the classic text
on this topic, and Amari (2016) is more up-to-date though less polished.

4.1 Proximal Operators in Exponential Families

When we compute the proximal operator for an exponential family using
KL divergence as the dissimilarity function, something neat happens. First,
suppose we take the first-order approximation to the cost function, but keep
the proximal term exact. In this section, we’ll use Jη and

Jξ to denote the cost function,
viewed as a function of η or ξ.

Then we’re minimizing:

∇Jη(η(k))>u + λDKL(pη(k) ‖ pu).

Computing the gradient with respect to u and setting it to 0, we find that:

ξ(k+1) = ξ(k) − λ−1∇Jη(η(k)). (20)

In other words, the moments are updated opposite the gradient computed
for the natural parameters!

Similarly, suppose we use the opposite direction of KL divergence for
the proximity term. Here, it’s more convenient to use the moments param-
eterization, so let J̃ denote the cost function parameterized in terms of the
moments. Then we’re minimizing:

∇Jξ(ξ(k))>u + λDKL(pu ‖ pξ(k)).

10

CSC2541 Winter 2021 Chapter 3: Metrics

Computing the gradient with respect to u and setting it to 0, we find that:

η(k+1) = η(k) − λ−1∇Jξ(ξ(k)). (21)

So we update the natural parameters opposite the gradient computed for
the moments! These two update rules, where you compute the gradient in
one coordinate system and then apply it in the other coordinate system, are
known as mirror descent.

Now we show that the natural gradient update is equivalent to mirror
descent. By the Chain Rule for derivatives, we have: You can also see that natural

gradient descent is equivalent to
mirror descent by taking the limit
of Eqns. 20 and 21 as λ→∞.

∇ηJη(η) = ∇ηJξ(ξ(η))

= J>ξ,η∇ξJξ(ξ(η))

= Fη∇ξJξ(ξ(η)) (Eqn. 19)

Multiplying both sides by F−1η , we get a surprising formula for the natural
gradient:

∇̃ηJη(η) = F−1η ∇ηJη(η) = ∇ξJξ(ξ(η)). (22)

Similarly, it can be shown that

∇̃ξJξ(ξ) = ∇ηJη(η(ξ)). (23)

So the natural gradient with respect to the natural parameters is the ordi-
nary Euclidean gradient with respect to the moments, and vice versa!

Why is this connection useful? For one thing, it’s often the easiest way
to derive the natural gradient update in practice. E.g., suppose you want to
compute the natural gradient update for a multivariate Gaussian distribu-
tion with unknown mean and covariance. If you’re feeling masochistic, you
could do this by representing the Gaussian as a minimal exponential fam-
ily (i.e. taking the upper triangular entries of Σ, etc.) and then somehow
deriving an expression for F. Sound fun? Or you can solve it more simply
by applying Eqns. 22 or 23.

4.2 Maximum Likelihood and Fisher Efficiency

Now we’ll consider a case where natural gradient descent — and, equiva-
lently, mirror descent — clearly does the right thing: maximum likelihood
in exponential families. Here, we’re trying to maximize the log-likelihood
(Eqn. 14), for which the optimal solution is given by moment matching,
ξ = ξ̂ (Eqn. 15). This can clearly be done by sweeping once over the train-
ing set to compute ξ̂. But what if we do natural gradient descent instead?

We’ll consider the online learning setting, where we iterate once through
the training set, updating on one training example at a time. The log-
likelihood gradient for a single example is given by (see Eqn. 15):

∇η log pη(x) = t(x)− ξ

By plugging this into Eqns. 20 and 23, we see that the mirror descent update,
and the natural gradient update for ξ, are both given by:

ξ(k+1) = ξ(k) − αk(ξ(k) − t(x(k+1))). (24)

11

CSC2541 Winter 2021 Chapter 3: Metrics

I write αk rather than α so that we can choose a learning rate schedule,
i.e. a different learning rate for each time step. An interesting choice of
schedule is αk = 1/k. You can show by induction that this update computes
a running average of the empirical moments:

ξ(k) =
1

k

k∑
i=1

t(x(i)). (25)

In other words, the kth iterate is exactly the batch maximum likelihood
estimate of the parameters from the first k examples! As a special case,
once the entire dataset is processed, we have the exact maximum likelihood
estimate ξ(N) = ξ̂.

This is interesting because the batch maximum likelihood estimate is a
trick which only applies to exponential families, while mirror descent and
natural gradient descent are generic algorithms that can be applied to lots
more cost functions. The property that the online algorithms come close
to the information theoretic optimum is known as Fisher efficiency, and
Amari (1998) showed that natural gradient descent is Fisher efficient in a
wider variety of situations than just maximum likelihood. In Chapter 7,
we’ll derive a result closely related to Amari’s analysis of natural gradient
descent.

The mirror descent and natural gradient updates for maximum likeli-
hood have the property that each update results in a statistically optimal
inference from the information seen so far. Algorithms which incremen-
tally update a probabilistic model as new information arrives are known
as filtering algorithms. Natural gradient descent can be interpreted as a
filtering algorithm in a wider variety of situations, although typically the
correspondence is only approximate (Ollivier, 2018).

5 Approximating Function Space Proximity

We’ve just seen two examples of dissimilarity functions: squared Euclidean
distance, and KL divergence. Between these, only squared Euclidean dis-
tance is directly applicable to neural nets. (KL divergence is for probability
distributions, and a neural net isn’t a probability distribution.) But Eu-
clidean distance in weight space is unappealing, because it depends on an
arbitrary parameterization of the network (see Section 6) and because it
neglects the fact that some directions in weight space can have a much
larger effect than others on the network’s predictions. When dealing with
probability distributions, a convenient property of KL divergence is that it
is natural : it depends only on the distributions themselves, not how they’re
parameterized. Can we define natural dissimilarity functions for neural
nets?

The mathematical operation we’ll use to do this is called pullback.
The general idea is simple: if we have a differentiable map z = f(x) and a
function g(z1, . . . , zK) To clarify the notation: f∗ is an

operator. When we write f∗g(· · ·),
this means we first evaluate f∗g
(which gives us a function), and
then we evaluate this function on
the arguments in parentheses.

defined on the output space, then the pullback of g
over f, denoted f∗g, is defined as follows:

f∗g(x1, . . . ,xK) = g(f(x1), . . . , f(xK)). (26)

12

CSC2541 Winter 2021 Chapter 3: Metrics

(a) (b) (c)

Figure 2: Approximate proximal optimization applied to the Rosenbrock function. (a)
The exact pullback metric (green) and its second-order approximation (blue), shown in
terms of distance from the initialization. (b,c) The natural gradient (or Gauss-Newton)
trajectory (blue), compared against the exact proximal point trajectory (green), which is
equivalent to gradient descent on the outputs.

Before we turn to neural nets, consider the Rosenbrock function example
from Section 1. We saw that gradient descent on the inputs has trouble
with ill-conditioned curvature caused by the nonlinear mapping. Gradient
descent on output space converges immediately (Figure 1), but this solution
doesn’t generalize to neural nets because it relies on the mapping having
a tractable inverse. The trick is: instead of doing output space gradient
descent, we can instead do gradient descent on the inputs using an output
space dissimilarity function. This works almost as well, and we’ll see that it
has a direct analogue for neural nets. Specifically, let ρeuc(z, z

′) = 1
2‖z−z′‖2,

and consider its pullback to input space:

f∗ρeuc(x,x
′) = 1

2‖f(x)− f(x′)‖2.

The resulting dissimilarity function in shown in Figure 2(a). Observe that
the proximal point algorithm with this dissimilarity function is equivalent
to implicit gradient descent The proximal point algorithm and

implicit gradient descent are
explained in Section 2.

on the outputs. Therefore, by approximating
the proximal point update, hopefully we can achieve similar behavior to
output space gradient descent.

We can approximate the pullback of an output space dissimilarity func-
tion by taking a second-order Taylor approximation around the current
inputs x0. To derive the second-order Taylor approximation, we need the
constant term, the gradient, and the Hessian. The constant term is just

f∗ρ(x0,x0) = ρ(f(x0), f(x0)) = 0.

Using the Chain Rule, the gradient is:

∇xf
∗ρ(x,x0)

∣∣
x=x0

= J>zx∇zρ(z, z0)
∣∣
z=z0︸ ︷︷ ︸

=0

= 0

Finally, we derive the Hessian using the same decomposition we used in
Chapter 2 to get the Gauss-Newton approximation. The difference is that

13

CSC2541 Winter 2021 Chapter 3: Metrics

this time the formula is exact because the second term is 0:

∇2
xf
∗ρ(x,x0)

∣∣
x=x0

= J>zx

[
∇2

zρ(z, z0)
∣∣
z=z′

]
Jzx +

∑
a

∂ρ

∂za
∇2

x[f(x)]a︸ ︷︷ ︸
=0

= J>zxGzJzx,

. (27)

where Gz = ∇2
zρ(z, z0)|z=z0 is the output space metric matrix. In the first

line, the reason the second term drops out is that it contains the output
space partial derivatives ∂ρ/∂ya, which are 0. Hence, our second-order
Taylor approximation to the pullback f∗ρ(x,x0) is the Mahalanobis metric:

f∗ρ(x,x0) ≈ 1
2‖x− x0‖2Gx

= 1
2(x− x0)

>Gx(x− x0),

where Gx = J>zxGzJzx. In general, we’ll drop the subscripts on Gx when
it’s clear from context which metric matrix we’re referring to.

For our Rosenbrock example, we chose squared Euclidean distance on
output space. Hence, Gz = I, and Gx = J>zxJzx turns out to equal the
Gauss-Newton matrix (see Chapter 2). The connection with the

Gauss-Newton Hessian is discussed
further in Section 5.1.

The natural gradient updates, there-
fore, are equivalent to the Gauss-Newton updates up to a scale factor:

x(k+1) = x(k) − αG−1x ∇J (x(k)). (28)

The natural gradient (or Gauss-Newton) trajectory is shown in Figure 2(b,c).
While it doesn’t exactly match the output space gradient descent trajectory,
it has a qualitatively similar behavior, and in particular doesn’t get stuck
bouncing across the valley the way gradient descent does (Figure 1(a,b)).

Now let’s generalize this to neural nets (and function approximation
more generally). Here, we’ll measure the dissimilarity between two weight
vectors by how different the networks’ outputs are in expectation. Often it’s
possible to choose a meaningful dissimilarity function ρ on output space,
such as squared Euclidean distance:

ρ(z, z′) = 1
2‖z− z′‖2.

The distance between weight vectors, then, can be measured in terms of the
average dissimilarity between the outputs, taken with respect to the data
distrubution. This is referred to informally as function space distance.
Letting fx(w) = f(w,x), we define: In weight space, ρpull is only a

semimetric, not a metric, because
it may be 0 for distinct weight
vectors. This distinction won’t
concern us.

ρpull(w,w
′) = Ex[f∗xρ(w,w′)] = Ex[ρ(f(w,x), f(w′,x))].

or its finite sample version:

ρpull(w,w
′) =

1

N

N∑
i=1

[ρ(f(w,x(i)), f(w′,x(i)))].

This notion of function space distance is illustrated in Figure 3.
Now consider the second-order Taylor approximation to ρpull:

∇2
wρpull(w,w

′)
∣∣
w=w′

= Ex

[
∇2

wρ(f(w,x), f(w′,x))
]

= Ex[J>zwGzJzw].
(29)

14

CSC2541 Winter 2021 Chapter 3: Metrics

Figure 3: Illustration of function space distance. If we have a 1-D regression
problem with 4 training examples, the function space distance between two
functions is approximated as the mean of the squared distances between the
predictions on these 4 training inputs.

(The derivation follows Eqn. 27). As before, Gz = ∇2
zρ(z, z′) is the metric

matrix for output space.
We denote the weight space metric matrix as G = ∇2

wρpull(w,w
′)
∣∣
w=w′

(or Gw when we want to distinguish it from other metric matrices) because
the letter g is traditionally used to denote metrics in Riemannian geometry.

For those who are familiar with
Riemannian geometry, notice an
alternative way to construct Gw:
we could have instead defined a
Riemannian metric on output
space and pulled it back to weight
space over f . This gives another
way to understand the term
pullback metric.

I’ll refer to it as the pullback metric, because it’s constructed using the
pullback operation. (This isn’t a standard term, but no standard term has
yet been adopted.) The choice of the letter G collides with our notation
for the Gauss-Newton Hessian (see Chapter 2), but that’s OK because we’ll
now see that the two matrices are equivalent in a lot of important situations.

5.1 Connection to the Gauss-Newton Hessian

In our Rosenbrock example, we saw that the pullback metric for Euclidean
distance agrees with the classical Gauss-Newton matrix (see Eqn. 28). This
is a special case of a more general relationship. Given a strictly convex func-
tion φ, the Bregman divergence between two points z and z′ is defined
as:

Dφ(z, z′) = φ(z)− φ(z′)−∇φ(z′)>(z− z′).

We can understand this geometrically as follows (see Figure 4). Because φ
is convex, the first-order Taylor approximation to φ at z′ is a lower bound
on φ. The further a point is from z′, the less accurate the lower bound will
be. The Bregman divergence Dφ(z, z′) is simply the gap between φ(z) and
the lower bound.

Like KL divergence, Bregman divergences don’t satisfy the requirements
to be a distance metric, in particular symmetry and the triangle inequality.
However, like KL divergence, they have some convenient properties: for
instance they are nonnegative, convex, zero only when z = z′. Notable
examples include squared Euclidean distance (generated by φ(z) = 1

2‖z‖
2)

and KL divergence in an exponential family (generated by φ(η) = logZ(η)).
Observe that the Hessian of the Bregman divergence is simply the Hes-

sian of φ:
∇2

zDφ(z, z′)|z=z′ = ∇2φ(z′). (30)

Recall that the Gauss-Newton Hessian (see Chapter 2) was defined as G =

15

CSC2541 Winter 2021 Chapter 3: Metrics

Figure 4: Illustration of Bregman divergence. The Bregman divergence
Dφ(·, y′) is the gap between the convex function φ and its first-order Taylor
approximation around y′.

Ex[J>zwHzJzw], while the pullback metric is defined as Gw = Ex[J>zwGzJzw].
If the loss function is convex (e.g. squared error, cross-entropy), we can use
its generated Bregman divergence as the output dissimilarity function. In
this case, we get Gz = Hz, and the metric matrix Gw equals the Gauss-
Newton Hessian. This equivalence justifies our choice of the letter G to
denote both matrices.

5.2 Computing with Pullback Metrics: The Pullback Sam-
pling Trick

One way to compute with pullback metrics is to use implicit matrix-vector
products, just like we did throughout Chapter 2. For some problems, this
is indeed the best way to do it. This can be done using a minor variant of
our Gauss-Newton HVP from Chapter 2:

def pullback_mvp(f, rho, w, v):

z0, R_z = jvp(f, (w,), (v,))

rho_z0 = lambda z: rho(z, z0)

R_gz = hvp(rho_z0, z0, R_z)

_, f_vjp = vjp(f, w)

return f_vjp(R_gz)[0]

But the MVP approach has the disadvantage that it approximates the
metric with a batch of data. Hence, if one wants to compute the matrix-
vector product on the full dataset, one needs to do forward passes over the
whole dataset. This can be expensive. We now consider an alternative ap-
proach, whereby we fit a parametric approximation to the pullback metric,
such as a diagonal matrix. This way, we have a compact form for the metric,
and don’t need to refer to the individual training examples. Furthermore,
certain parametric approximations support efficient inverses, an operation
which can be very expensive when approximated using MVPs and conjugate
gradient.

We can fit such a parametric approximation using the Pullback Sam-
pling Trick (PST). (This is not a standard term, but no standard term

16

CSC2541 Winter 2021 Chapter 3: Metrics

has been adopted.) Consider that if a random vector x has expectation 0
and covariance Σ, then for a (fixed) matrix A of appropriate dimensions,
the random vector Ax has expectation 0 and covariance AΣA>. Therefore,
the following procedure samples a zero-mean vector Dw whose covariance
is G:

1. Sample an input x and compute the outputs z by doing a forward
pass through the network.

2. Sample a vector Dz (in output space) whose covariance is Gz.

3. Pull it back to weight space by computing Dw = J>zwDz (i.e. back-
prop).

So now we have zero-mean random vectors Dw whose covariance is G. We’ll
refer to Dw as the pseudogradient because the procedure for computing
it closely resembles that of gradient computation. (Again, this is not a
standard term, but no standard term has been adopted.)

We’d now like to compactly approximate G = Cov(Dw). The most
straightforward approximation is to take the diagonal entries, i.e. the em-
pirical variances of the individual entries of Dw. If we fit our approximation
Ĝ from a finite set of samples, then it will be a diagonal matrix whose di-
agonal entries are:

Ĝii =
1

S

S∑
s=1

Dw2
i . (31)

This corresponds to the maximum likelihood estimate of an axis-aligned
Gaussian distribution.

How can we implement this in JAX? First of all, the API needs some
way for the user to specify the output metric Gz. The user does this by
providing a function that samples output space vectors whose mean is 0
and whose covariance is Gz. For example, for Euclidean distance in output
space, we have Gz = I, so we can simply sample i.i.d. standard normal
random variables:

def euclidean_metric_sample(z, rng):

return random.normal(rng, shape=z.shape)

In order for our code to exploit our GPU capacity, we’d like to run the
above procedure for a batch of examples. Steps 1 and 2 above can be done
in batch mode in the usual way. However, in Step 3, we need to separately
compute the VJP for each training example, so that we can sum up the
squares of each entry. JAX’s vmap function is very useful in this context: it
lets us write code that computes something for a single training example,
and it automatically figures out how to compute it in a vectorized way for
an entire batch. So what we need to do is write a function that computes
the VJP (Step 3) for a single training example, and then call vmap on it.
Then we can sum the squared gradients in the obvious way.

def diag_pst_estimate(net_fn, w, x, output_sample_fn, rng):

Sample the output pseudogradient

z = net_fn(w, x)

Dz = output_sample_fn(z, rng)

17

CSC2541 Winter 2021 Chapter 3: Metrics

Function that pulls back the output pseudogradient for one example

def pullback(xi, Dzi):

Append a dummy dimension for batch size of 1

xi_, Dzi_ = xi[np.newaxis, ...], Dzi[np.newaxis, ...]

Compute the weight pseudogradient for this "batch"

net_fn_wrap = lambda w: net_fn(w, xi_)

_, net_vjp = vjp(net_fn_wrap, w)

return net_vjp(Dzi_)[0]

Dw = pullback(x[0,:], Dz[0,:])

Compute the matrix of pseudogradients for individual examples, and sum the squares

pullback_vec = vmap(pullback, in_axes=(0,0), out_axes=0)

Dw_samples = pullback_vec(x, Dz)

return np.mean(Dw_samples**2, axis=0)

Unfortunately, there’s a big problem with this implementation: it’s ex-
tremely memory-inefficient, because it explicitly constructs the matrix of all
the individual pseudogradients. For large modern networks, it’s impractical
to store more than a handful of gradient vectors in memory. We could call
the above code on a very small batch, but then we only get a small number
of samples relative to the work that we do. I’m not aware of any generic
trick for computing the diagonal PST estimate for arbitrary architectures
which is both vectorized and memory efficient. It is possible to implement
efficient PST samplers for particular layer types, and the excellent PyTorch
package backpack does exactly this. (An equivalent package for JAX has
yet to be written.) In Chapter 4, we’ll see an efficient implementation of
another version of the PST which uses a much more accurate approximation
than the diagonal one.

The PST estimate can be averaged over multiple batches in order to
obtain a more accurate approximation to G. Alternatively, we might want
to maintain an online estimate Ĝ during training, in which case we might
instead update our estimate using an exponential moving average with
parameter η: One way to think about the

parameter η is that the timescale
of the moving average is 1/η.
Hence, η = 0.01 corresponds to
averaging over roughly the past
100 iterations.

Ĝ
(k+1)
ii ← (1− η)Ĝ

(k)
ii + η[Dw(k)

i]2. (32)

5.3 The Fisher Information Matrix for Neural Networks

Many of our neural networks output the natural parameters of an expo-
nential family distribution over the targets, which we’ll denote as r(· |x).
For instance, classification is typically done using cross-entropy loss under a
Bernoulli or categorical distribution. Least squares regression problems can
be viewed as maximizing likelihood under a Gaussian observation model. If
the outputs represent a probability distribution, it might make more sense
to use KL divergence, rather than squared Euclidean distance, as the output
dissimilarity function. As we saw in Section 3, Taylor approximating KL
divergence gives rise to the Fisher-Rao metric, represented by the Fisher
information matrix.

18

CSC2541 Winter 2021 Chapter 3: Metrics

We can derive the pullback metric for Fisher information, just as we
would for any other output space metric. However, we can simplify the
formula a little bit. Here, I write Ex∼pdata [·] to

emphasize that x is sampled from
the data distribution. While this
was also the case for all the other
metrics we’ve considered, I write it
explicitly here in order to contrast
it with the sampling procedure for
t, which is sampled from the
network’s predictions.

In this derivation, we’ll use the shorthand that Dv =
∇v log r(t |x) denotes the log-likelihood gradient with respect to a variable
v.

Fw = Ex∼pdata

[
J>zwFzJzw

]
(Eqn. 29)

= Ex∼pdata

[
J>zwEt∼r(· |x)[DzDz>]Jzw

]
(Eqn. 8)

= Ex∼pdata
t∼r(· |x)

[
J>zwDzDz>Jzw

]
= Ex∼pdata

t∼r(· |x)
[DwDw>] (Chain Rule)

So Fw is simply the uncentered covariance Notice that this formula for Fw

mirrors the PST procedure,
justifying our use of the Dw
notation.

of the log-likelihood gradients,
which resembles one of our formulas for the Fisher information matrix over
probability distributions (Eqn. 8). Hence, we normally just refer to F as the
Fisher information matrix for the network, rather than interpreting it as
a pullback metric. However, it’s important to remember that the original
definition of the Fisher information matrix (for probability distributions)
doesn’t directly apply to neural nets, and we must instead construct Fw as
a pullback metric.

To apply our PST sampling function to the Fisher information matrix,
we simply need to provide a routine that samples vectors with mean 0 and
covariance Fz. We can do this by sampling the targets from the model’s
output distribution and computing the output space gradient (see Eqn. 8).
Here is an implementation of the most common use cases: Bernoulli and
categorical distributions.

def bernoulli_fisher_metric_sample(logits, rng):

y = nn.sigmoid(logits)

t = random.bernoulli(rng, y)

return y - t

def categorical_fisher_metric_sample(logits, rng):

y = nn.softmax(logits)

t_idxs = random.categorical(rng, logits)

t = nn.one_hot(t_idxs, logits.shape[-1])

return y - t

Note that the Fisher information matrix shouldn’t automatically be pre-
ferred over pullbacks of other output space metrics such as Euclidean dis-
tance. For classification problems, one can make arguments in favor of
Euclidean distance on the logits. There have not yet been any direct com-
parisons of the two metrics. Since changing from one to the other requires
only a few lines of code, it can be worth trying both for any particular
problem.

When using Fisher information, there’s an important gotcha: Fw is the
gradient covariance when the targets are sampled from the model’s predic-
tions. In particular, it is not the same as the covariance of the training
gradients! That matrix is known as the empirical Fisher matrix, and

19

CSC2541 Winter 2021 Chapter 3: Metrics

is used in some optimization algorithms such as Adagrad, RMSprop, and
Adam:

Femp = E(x,t)∼pdata [∇Jx,t(w)∇Jx,t(w)>] (33)

The empirical Fisher matrix Femp can behave very differently from the true
Fisher. In particular, unlike the true Fisher, Femp cannot be interpreted as
an approximation to the Hessian. Yet, many papers simply substitute Femp

for F without noting the distinction. See Kunstner et al. (2019) for more
in-depth discussion of this point.

For completeness, we also introduce the gradient covariance matrix,
which will become important in Chapter 7, when we discuss stochastic op-
timization:

C = Cov(x,t)∼pdata(∇Jx,t(w)). (34)

The matrices Femp and C are closely related, but not identical because the
training gradients are not zero mean (except at a stationary point). We
derive the relationship between these matrices using the identity E[vv>] =
Cov(v) + E[v]E[v]>:

Femp = C +∇J (w)∇J (w)>, (35)

where the gradient in the second term denotes the full-batch gradient.
Figure 5 summarizes the matrices we’ve introduced so far. To avoid

information overload, Femp and C are still grayed out, since we’ll cover
them in more detail in later lectures.

6 Invariance

Various fields have bookkeeping devices which prevent us from performing
nonsensical operations. In the sciences, we assign units to all our quantities
so that we don’t accidentally add feet and miles. Similarly, most program-
ming languages have some sort of type system which determines what sorts
of operations we can perform on what sorts of data. Hence, if we want
to add an int and a float, we need to first cast the int into a float, rather
than simply interpreting its bit representation as an integer. In many cases,
these bookkeeping devices can provide significant hints about how to solve a
problem. E.g., physicists can often correctly guess a formula just by making
sure the units match, and users of a programming language with a sophis-
ticated type system (e.g. Haskell) will attest that getting one’s program to
compile often clears up a lot of conceptual misunderstandings.

Gradient descent is making the mathematical equivalent of a type error.
Natural gradient is what you get when you correctly typecast the Euclidean
gradient.

To see why this is, let’s talk about invariances. Suppose we are fitting
a linear regression model

y = w1x1 + w2x2 + b,

where x1 is an input feature representing time, measured in minutes, x2 is
an input feature representing length in feet, and y is the output representing
money, measured in dollars. We can determine the dimensions of the weights
to make everything consistent:

20

CSC2541 Winter 2021 Chapter 3: Metrics

Figure 5: A summary of the relationships between the matrices used in this course. New
items are in blue, and items yet to be covered are grayed out.

21

CSC2541 Winter 2021 Chapter 3: Metrics

For the derivatives dh/dwi, the weight appears in the denominator, so the
units must be min/$ and ft/$, respectively. Now let’s attempt to attach
dimensions to the gradient descent update:

So the two occurrences of the global learning rate require two different
units. There’s no unit we can assign it to make everything dimensionally
consistent!

How does the dimensional inconsistency affect optimization? Suppose
we change the format of the data so that the first input is represented in
seconds, i.e. x̃1 = 60x1. It’s pretty easy to modify our regression weights to
fit the new dataset; we simply take w̃1 = w1/60. This new model will make
exactly the same predictions, since w̃1x̃1 + w2x2 + b = w1x1 + w2x2 + b.
Clearly, the regression problem is essentially the same whether the inputs
are in seconds or minutes, so one would hope an algorithm would behave
equally well in either representation. Unfortunately, this is not true for
gradient descent. Suppose we see a training example for which ∂h

∂w1
= 2, so

that gradient descent with a learning rate of 0.01 gives w1 ← w1−0.02. Look
what happens when we do gradient descent in both coordinate systems:

So as a result of changing from minutes to seconds, the effective learning
rate got 3600 times larger!

The property which failed to hold just now is known as invariance. Sometimes this property is referred
to as covariance. Here, the idea
is that if you stretch out the
coordinate system, the update
should stretch in the same way.

We
had two equivalent ways of representing the problem – seconds or minutes
– and we’d like our algorithm to behave the same regardless of the fairly
arbitrary choice of representation. In particular, the sequence of iterates

22

CSC2541 Winter 2021 Chapter 3: Metrics

should be functionally equivalent, i.e. make the same predictions given the
same data.

Mathematicians confront this sort of problem quite regularly: they’d
like to be sure that some property of a mathematical object doesn’t depend
on how that object is represented. They general strategy they adopt is to
define more abstract notions such as vector spaces or manifolds without any
privileged coordinate system. If one can build something out of these more
abstract objects, then one achieves invariance for free.

6.1 Of Music and Manifolds

Natural gradient comes from the field of differential geometry. The study
of differential geometry applied to manifolds (spaces) of probability distri-
butions is known as information geometry, and the classic reference text is
Amari and Nagaoka (2000)’s book Methods of Information Geometry. Ol-
livier (2015) gives a nice discussion of practical neural net training based
on differential geometry. Proper coverage of differential geometry is well
beyond the scope of this course, but here is just a short teaser.

Here are some of the basic mathematical objects we make use of:

Manifolds are spaces which can be given local coordinate systems, the
way a section of the Earth’s surface can be represented with a map.
A sphere is, in fact, a good example of a manifold. But unlike the
sphere, not all manifolds are embedded in some higher dimensional
Euclidean space; for instance, the most important examples of mani-
folds in information geometry are families of probability distributions.
The study of manifolds without reference to an embedding space is
known as Riemannian geometry.

Tangent vectors represent instantaneous velocities of particles moving
along the manifold. The space of tangent vectors at a given point on
the manifold (called the tangent space) is a vector space, so we can
do things like take linear combinations of tangent vectors.

Cotangent vectors are linear functions on the tangent space. E.g., the
coefficient in the first-order Taylor approximation (the thing we nor-
mally call the “gradient”) is really a cotangent vector. Like vectors,
covectors can be represented in a coordinate system as a list of num-
bers. The difference is how those numbers change as we change the
coordinate system.

Riemannian metrics are inner products on the tangent space. The inner
product of a vector with itself defines the “squared length” of that
vector.

23

CSC2541 Winter 2021 Chapter 3: Metrics

Since we generally identify vectors and covectors in Euclidean spaces,
it may seem surprising that we need to distinguish them. But they are
in fact distinct, and one important difference between them is the set of
operations we’re allowed to perform on them. Suppose we have a map f
from a manifold M to another manifold N . Suppose we have a point x on
M. We can push it forward to N by computing its image, i.e. f?x = f(x).
On the other hand, if we have a function g on N , we can pull it back to
M by defining a function (f?g)(x) = g(f(x)). Observe that we can’t do
this the other way around. I.e., there’s no way to pull back points, since if f
isn’t invertible, there may be no unique point x ∈M which maps to a given
y ∈ N . For the same reason, there’s no way to push forward functions.

Whether objects can be pushed forward or pulled back is a fundamental
distinction. Here are some things that can be pushed forward:

• points

• tangent vectors

• probability distributions

And some things that can be pulled back:

• functions

• covector fields

• Riemannian metrics

Many of our operations on neural nets can be described in the language
of differential geometry. When we do backprop, we first compute the loss
derivatives on the output space; this is really a covector called the differ-
ential. It’s a covector because it’s a linear function that tells us, for a
given change to the outputs, approximately how much will the loss change?
Backprop then pulls this differential back to parameter space. We now
have a covector on parameter space which tells us, for a given change to
the parameters, approximately how much the loss will change. Here it is
visually:

24

CSC2541 Winter 2021 Chapter 3: Metrics

But there’s a problem. In order to update the parameters, we need a
rate of change, and rates of change are represented by vectors. There’s no
fully general way to convert a covector into a vector. But we can do such
a conversion if we’re fortunate enough to have a Riemannian metric on pa-
rameter space. This is because a Riemannian metric defines an isomorphism
between covectors and vectors, called the musical isomorphism because
it’s often notated using sharps and flats.

To see how the musical isomorphism works, forget manifolds for a mo-
ment, and just think about vector spaces. Suppose we have a vector space V
with an inner product 〈·, ·〉. If we’re given a vector v, consider the function
v[(u) = 〈v, u〉. (The superscript is the musical flat, which gives the musical
isomorphism its name.) This function v[is a linear function of u, which is
the same thing as a covector. This mapping from vectors to covectors is
linear:

(αv1 + βv2)
[= 〈αv1 + βv2, ·〉 = α 〈v1, ·〉+ β 〈v2, ·〉 = αv[1 + βv[2.

You can also show this mapping is invertible, i.e., if you’re given a covector
ω – remember, this is just a linear function on the vector space V – you can
find a unique vector (denoted, naturally, ω]) such that ω(u) =

〈
ω], u

〉
for all

u. Hence, this]/[mapping is an isomorphism – the musical isomorphsim.
Now back to manifolds. Remember that we have a covector (the differ-

ential) and we need a vector. A Riemannian metric is just an inner product
on the tangent space for every point on a manifold. Hence, we can use it
to convert between vectors and covectors using the musical isomorphism.
When we use the Riemannian metric to convert the differential into a vec-
tor, we get the gradient, i.e. the direction of fastest increase in the cost
function with respect to that metric.

How do we get a metric on parameter space? One option would be
the Euclidean metric, i.e. the ordinary Euclidean inner product. Applying
this metric would result in the ordinary Euclidean gradient descent update.
But this metric wouldn’t be natural, I guess a musical note is natural if

it’s not sharp or flat?
because it’s defined in terms of an

arbitrary coordinate system. If we reparameterized our neural net to use
tanh activation functions instead of logistic, we’d get a different metric.

Here’s how we can construct a natural metric. In many applications of
neural nets, the outputs of the network represent probability distributions.
Luckily, there’s a natural metric for manifolds of probability distributions:
the Fisher metric. (Recall that the Fisher metric is the second-order Taylor
approximation to KL divergence, which is intrinsic to the distributions and
not defined in terms of parameters.) To get a metric on parameter space,

25

CSC2541 Winter 2021 Chapter 3: Metrics

we just pull back the Fisher metric from output space to parameter space.
How do we pull back a metric? There’s quite an elegant definition: first
note that we can push vectors forward from parameter space to output
space by computing the change to z that results from a small change to θ.
To evaluate the pullback metric on two parameter space vectors, we simply
push those vectors forward to output space and then evaluate the output
space metric.

Putting this all together: backpropagation takes the differential on out-
put space and pulls it back to parameter space. We define a natural Rieman-
nian metric on output space (such as the Fisher metric) and pull it back to
parameter space. We use the musical isomorphism for this metric to convert
the differential into a vector, which we call the natural gradient. All of these
operations are intrinsic to the manifolds, so the resulting update direction
is mathematically guaranteed to be dimensionally correct, and invariant to
smooth reparameterization (though the iterates of a discretized algorithm,
which takes discrete steps in these update directions, won’t enjoy quite as
many invariances).

References

Shun-ichi Amari. Natural gradient works efficiently in learning. Neural
Computation, 10:251–276, 1998.

Shun-ichi Amari. Information Geometry and its Applications. Springer,
2016.

Shun-ichi Amari and Hiroshi Nagaoka. Methods of Information Geometry.
AMS and Oxford University Press, 2000.

Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limitations of the
empirical Fisher approximation for natural gradient descent. In Neural
Information Processing Systems, 2019.

Yann Ollivier. Riemannian metrics for neural networks I: feedforward net-
works. Information and Inference, 4(2):108–153, 2015.

Yann Ollivier. Online natural gradient as a Kalman filter. Electronic Journal
of Statistics, 12:2930–2961, 2018.

26

	Introduction
	Proximal Optimization
	Trust Region Methods

	Fisher Information
	Exponential Families
	Proximal Operators in Exponential Families
	Maximum Likelihood and Fisher Efficiency

	Approximating Function Space Proximity
	Connection to the Gauss-Newton Hessian
	Computing with Pullback Metrics: The Pullback Sampling Trick
	The Fisher Information Matrix for Neural Networks

	Invariance
	Of Music and Manifolds

