
Chapter 2: Taylor Approximations

Roger Grosse

1 Introduction

One of the most powerful tools for understanding a nonlinear system is to
linearize that system around some point of interest (such as a stationary
point). For one thing, it’s hard to exactly analyze the dynamics of most
nonlinear systems. But if we take a first-order Taylor approximation to the
dynamics, then we get a linear system, which can be analyzed exactly. Think
back to classical mechanics: if you take a first-order Taylor approximation
to the potential energy of a system around a stable equilibrium point, you
arrive at a system known as a simple harmonic oscillator — one of the
easiest physical systems to analyze.

This lecture is all about various kinds of Taylor approximations for neu-
ral networks. We’ll start with first-order Taylor approximations. This in-
cludes the example that most readers are already familiar with: the gradient
of a cost function, which can be computed with backpropagation, also known
as reverse mode automatic differentiation. A possibly less familiar example
is directional derivatives, which let us approximate how a network’s out-
puts will change if the weights or the activations are perturbed by a small
amount. Directional derivatives can be efficiently computed with forward
mode automatic differentiation. Both the gradient and directional deriva-
tives can be viewed in terms of computing with the network’s Jacobian, a
perspective that lets us use automatic differentiation as a foundation for
second-order Taylor approximations.

Naturally, once we’re done with first-order Taylor approximations, we’ll
turn our attention to second-order Taylor approximations. There are differ-
ent quantities we may want to approximate, and they give us different but
related matrices.

The most well-known second-order Taylor approximation is the Hessian,
or the second derivatives of the cost function with respect to the weights of
the network. By taking the second-order Taylor approximation to the cost
function around its optimum, we arrive at a convex quadratic objective,
thus reducing the system to the one we analyzed in Lecture 1. This gives a
convenient way to understand the behavior of gradient descent.

It’s common to approximate neural net Hessians by linearizing the net-
work. This results in an approximate Hessian matrix called the Gauss-
Newton Hessian. While this matrix is most known for its role in second-
order optimization, we’ll start with a different use case: influence functions,
which tell us how our model’s outputs would change if we slightly perturbed
the training data.

The other thing we’d like to approximate is the amount by which a
network’s outputs change if the weights are adjusted slightly. Taking the

1

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

second-order Taylor approximation gives a class of matrices I’ll term pull-
back metrics, the most famous of which is the Fisher information matrix.
Pullback metrics and Fisher information will be covered in Lecture 3.

The reason the ideas of this lecture are not part of the basic neural net
pedagogy is likely that the main deep learning software frameworks don’t
make it very convenient to use these tools. While TensorFlow and PyTorch
support automatic gradient computation as one of their main features, di-
rectional derivatives and second derivatives are much more cumbersome.
Therefore, for this lecture, and throughout the course, we’ll be using JAX,
an elegant autodiff framework which supports all of this lecture’s mathe-
matical tools in only a few lines of code, with the efficiency we’d expect of a
modern deep learning framework. JAX might just take over in a few years
time, so you should get a head start and learn it now!

2 Preliminaries

For most of this course, we’ll assume a supervised learning setting, although
most of the ideas apply just as well to other settings, such as generative
modeling or reinforcement learning. Assume the inputs x and labels t
are jointly drawn from the data generating distribution, i.e. (x, t) ∼
pdata. We are given a finite training set {(x(i), t(i))}Ni=1. There is a loss
function L(y, t) which determines how unhappy we are when we predict y
and the true label is t. We make predictions using a network architecture
parameterized by w which computes a function f(w,x). We are interested
in learning w which achieve small risk, or generalization loss,

R(w) = E(x,t)∼pdata [L(f(w,x), t)]. (1)

We do this by minimizing a cost function corresponding to the empirical
risk over the training set:

J (w) =
1

N

N∑
i=1

J (i)(w)

=
1

N

N∑
i=1

Jx(i),t(i)(w)

=
1

N

N∑
i=1

L(f(w,x(i)), t(i)).

(2)

Here, J (i)(w) is a shorthand for the loss on the ith training example, and
Jx,t(w) is a shorthand for the loss on input x and label t. The average
over training examples can also be interpreted as the expectation under the
empirical distribution, which puts a point mass of 1/N on each training
example.

A symmetric matrix A is positive definite if v>Av > 0 for all v 6= 0,
and it is positive semidefinite (PSD) if v>Av ≥ 0 for all v. It can be
shown that A is positive definite iff all of its eigenvalues are positive, and
PSD iff all of its eigenvalues are nonnegative. We use the following partial
order over symmetric matrices: A � B if v>Av > v>Bv for any v 6= 0,
or equivalently, if A − B is positive definite. The relations �, ≺, etc. are
defined analogously.

2

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

3 First-Order Taylor Approximations

Let y = f(w) be a In deep learning, we deal with
non-differentiable functions all the
time, such as the ubiquitous ReLU
activation function. As long as
we’re not at a non-differentiable
point, Taylor’s Theorem holds.
Even if we’re at the
non-differentiable point, we can
usually just ignore the problem
and compute derivatives anyway.
The Taylor approximation won’t
be accurate, but often that doesn’t
matter.

vector-valued function of a vector w which is differen-
tiable at a point w0. (The case where f is scalar-valued or w is a scalar can
be handled with a 1-dimensional vector.) Taylor’s Theorem implies that
f can be approximated around w0 as follows:

f(w) = f(w0) + Jyw(w −w0) + o(‖w −w0‖), (3)

where Jyw is the Jacobian matrix (or just Jacobian) whose entries are
the partial derivatives:

[Jyw]ij =
∂yi
∂wj

. (4)

and the little-o notation implies that the remainder goes to 0 faster than
‖w−w0‖ as w→ w0. This approximation is called the first-order Taylor
approximation, or linearization, of f . The general first-order Taylor
approximation is a bit abstract, so let’s start with some special cases.

3.1 The Gradient Vector

The most well-known example of a first-order Taylor approximation, and
one which we take for granted in deep learning, is the gradient ∇J (w) of
a cost function J :

[∇J (w0)]j =
∂J
∂wj

∣∣∣
w=w0

(5)

This is just the special case of Eqn. 3 where f is scalar-valued: Mathematically, ∇J (w0) should
be a row vector (i.e. 1×N
matrix), but in machine learning
we usually treat it as a column
vector. That’s the convention we’ll
adopt in this course.

J (w) = J (w0) +∇J (w0)>(w −w0) + o(‖w −w0‖). (6)

By linearity of derivatives, the full-batch gradient decomposes as an av-
erage of the gradients for individual training examples:

∇J (w) =
1

N

N∑
i=1

∇J (i)(w). (7)

The gradient is used in nearly every optimization algorithm for neural net-
works, most simply gradient descent:

w(k+1) ← w(k) − α∇J (w(k)). (8)

In practice, computing gradients on the entire dataset is prohibitive, so
instead we use stochastic gradient descent, where the gradients are es-
timated from smaller batches of data.

As the reader is probably aware, the gradient can be computed using
backpropagation, or reverse mode autodiff. See the CSC413 course
notes for a detailed explanation of backprop and how it’s implemented in
autodiff software frameworks. In JAX, gradients are computed using the
grad function. Actually, grad is just a thin wrapper around a more general
function, vjp (short for vector-Jacobian product) whose job it is to
compute J>v, where J is the Jacobian of a function f at a point x, and v is
a vector. Specifically, make vjp takes in a function and its arguments, and

3

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

returns a function that takes a vector v and computes J>v. Observe that
the Jacobian of a scalar-valued function J at w is simply ∇J (w)>, i.e. the
gradient viewed as a row vector. Hence, computing ∇J (w) is equivalent to
computing J>e, where e is a 1-dimensional vector whose single entry is 1.
This can be implemented as follows: This code is simplified in that it

doesn’t support the full range of
use cases (multiple arguments,
vector-valued outputs, etc.), but
otherwise it’s pretty faithful to the
true implementation.

def my_grad(f):

def grad_f(w):

ans, f_vjp = vjp(f, w)

return f_vjp(1.)[0]

return grad_f

3.2 Directional Derivatives

Suppose we make a small perturbation to the weights, w = w0 + ∆w.
This will cause a small perturbation to the outputs, y = y0 + ∆y, where
according to Eqn. 3,

∆y = R∆wf(w) + o(‖∆w‖), (9)

where

R∆wf(w) = lim
h→0

f(w + ∆w)− f(w)

h
= Jyw∆w

is the directional derivative of f in the direction ∆w. This is sometimes
also referred to as the Gateaux derivative, or R-operator (R-op). Visu-
ally, if f represents a curve or surface in Rn, then the directional derivatives
represent tangent vectors to the curve or surface.

JAX provides the jacfwd function for computing directional derivatives.
Behind the scenes, directional derivatives are computed using a procedure
closely analogous to backprop (reverse mode autodiff), known as forward
mode autodiff. Since forward mode works forward

through the computation graph, it
is also more memory efficient than
reverse mode. In the most
straightforward implementation of
reverse mode, we need to store the
value for every node in the graph.
For forward mode, we are free to
forget a node once the values and
derivatives for its children have
been computed.

This procedure is actually a bit simpler than reverse mode
autodiff, because it works forwards through the computation graph rather
than backwards.

From this description, it would seem like an implementation of forward
mode is analogous to one of reverse mode: it would require a simple traversal
of the graph, combined with Jacobian-vector products (JVPs) for each
of the elementary operations. Indeed, it can be implemented this way.
But amazingly, if one has already implemented reverse mode autodiff, it is
possible to implement forward mode in perhaps the most elegant 3 lines of
code I’ve ever seen:

def my_jvp(f, w, R_w):

ans, f_vjp = vjp(f, w)

_, f_vjp_vjp = vjp(f_vjp, np.zeros_like(ans))

return f_vjp_vjp((R_w,))[0]

Let’s unpack this. This clever implementation of
forward mode is due to Jamie
Townsend. https://github.com/

HIPS/autograd/pull/175#

issuecomment-306524258

As discussed above, vjp is the reverse mode autodiff
function which grad wraps around, and it returns a function that takes in a
vector v and computes J>v. This is a linear function (in v), so its Jacobian
is J>. Hence, calling reverse mode autodiff on it is equivalent to multiplying
by (J>)> = J. This is what the second line does: it produces a function
that takes in a vector v and computes Jv. The third line calls this function
on R w, thereby computing the directional derivative. Beautiful!

4

https://github.com/HIPS/autograd/pull/175#issuecomment-306524258
https://github.com/HIPS/autograd/pull/175#issuecomment-306524258
https://github.com/HIPS/autograd/pull/175#issuecomment-306524258

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

3.3 Computing with the Jacobian

I thought maybe JAX was short
for “Jacobians”, but the creators
tell me this isn’t the case.

The Jacobian of a function (such as a neural network) is a very useful
conceptual tool, since it unifies many of the operations we commonly want
to compute for a neural network. As we saw, both gradients and directional
derivatives can be viewed as multiplying by the Jacobian or its transpose.

JAX provides the jacfwd and jacrev routines for computing the full
Jacobian matrix, if you really want to. Note, however, that the Jacobian
can be a very large matrix: it is M×N , where M and N are the output and
input dimensions, respectively. But suppose the domain of f is the weights
of a classification neural network and the output is the vector of logits for a
training example. Then N is the number of parameters (in the millions for
a modern ImageNet classifier), and M is the number of categories (1000 for
ImageNet). Hence, the Jacobian has billions of entries, so it’s prohibitive
to compute and to store.

Fortunately, there’s rarely a reason to compute Jyw explicitly. Instead,
we find some way to write our algorithm in terms of products of Jyw or
J>yw with vectors. Multiplying Jyw by a vector (called a Jacobian-vector
product, or JVP) is done with forward mode autodiff, and multiplying
J>yw by a vector (called a vector-Jacobian product, or VJP) is done
with reverse mode autodiff. This is an instance of a more general algorith-
mic pattern called implicit matrix-vector products, and we’ll see more
examples of this later in the lecture. Both JVPs and VJPs are linear time
operations, in that the number of computations is a small multiple of the
cost of evaluating f(w). The fact that VJPs and JVPs are

both linear time is kind of an
amazing fact, and leads to lots of
useful algorithms.

Therefore, as long as we can phrase an iterative
update rule in terms of VJPs and JVPs, its running time will be on the
same order as backprop.

4 The Hessian Matrix

To understand the behavior of gradient-based optimization algorithms within
a “small” region of weight space We’ll come back later to the

question of just how “small” this
region needs to be.

, it’s natural to take a second-order Taylor
approximation to the cost function. To do this, we require the Hessian
matrix at w, denoted as H, whose entries are the second derivatives of the
cost function:

H = ∇2J (w0)

=
1

N

N∑
i=1

∇2J (i)(w0)

Hij =
∂2J
∂wiwj

∣∣∣
w=w0

Note that H is symmetric because the mixed partial derivatives are equal,
i.e. ∂2J

∂wi∂wj
= ∂2J

∂wj∂wi
for each (i, j). Assuming J is twice differentiable, this

gives a second-order Taylor approximation to the cost function around a
point w0:

J (w) = J (w0)+∇J (w0)>(w−w0)+ 1
2(w−w0)>H(w−w0)+o(‖w−w0‖2).

(10)

5

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

The Hessian matrix measures the curvature of J at a point w. The quantity v>Hv
v>v

, called the
Rayleigh quotient, measures
how fast the function curves up or
down if you move along the
direction v.

If

v>Hv > 0 for some direction v, that means the function curves upwards
if you move along the direction v. Likewise, if v>Hv < 0, it curves down-
wards. If v>Hv = 0, then the second-order curvature is 0, and the behavior
will depend on the higher-order derivatives. Let’s see what the Hessian tells
us about a function.

An important class of functions in optimization is convex functions,
which are (roughly speaking) “bowl-shaped”. Mathematically, a function
J is convex if and only if the line segment connecting any two points on its
graph lies entirely above the graph:

J (λw1+(1−λ)w0) ≤ λJ (w1)+(1−λ)J (w0) for any w0,w1, and 0 ≤ λ ≤ 1.
(11)

If the Hessian exists, then there’s another equivalent characterization of con-
vex functions: the Hessian is always PSD. See Section 2 for definitions of

positive semidefinite (PSD) and
related terms.

(If H is always positive definite,
then J is strictly convex.) This characterization essentially says that a
function is convex iff it curves upwards in every direction.

Convex functions are very convenient to minimize, because there are
no spurious local optima, i.e. all local optima are also global optima.
Unfortunately, most cost functions for training neural nets are non-convex.

Most neural net training is
inevitably non-convex because the
networks satisfy certain
symmetries which, in combination
with Eqn. 11, would imply that a
certain trivial solution is optimal.
For more details, see the
“Optimization” section of the
CSC413 lecture notes.

For non-convex cost functions, there are many different kinds of stationary
points, i.e. points w? such that ∇J (w?) = 0. The eigenvalues of H can
help us categorize the stationary points:

• If H is positive definite (or equivalently, all of its eigenvalues are pos-
itive), then w? is a local optimum. (Intuitively, the function curves
upwards, so walking in any direction will take you uphill.)

• If H is negative definite (or equivalently, has all negative eigenvalues),
then w? is a local maximum. (This is unusual in neural net training.)

• If H has some positive and some negative eigenvalues, then w? is a
saddle point, where some directions curve upwards and other direc-
tions curve downwards. (Saddle points are much more common.)

• If H is positive semidefinite, but some of the eigenvalues are 0, then
we can’t say whether it’s a local optimum. Consider, e.g., the univariate

function f(w) = −w4 at w = 0.
The shape of the function

depends on the higher order derivatives.

4.1 Gradient Descent Dynamics

The convenient thing about second order Taylor approximations is that we
can analyze optimization dynamics in closed form. While gradient descent
on general functions is a complicated nonlinear system, once we take the
second-order Taylor approximation around a stationary point w?, we’ve re-
duced the problem to the same quadratic system we analyzed in last week’s
lecture. For simplicity, in this section we’ll assume none of the eigenval-
ues of H are exactly 0. Recall that the gradient descent iterates for the
approximate objective (Eqn. 10) are given by: See Lecture 1 for the derivation.

w(k) = w? + (I− αH)k(w(0) −w?).

6

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

If we rotate to a coordinate system Since H is a symmetric matrix, the
spectral decomposition from last
lecture applies.

whose axes are the eigenvectors of H,
then each coordinate evolves according to

w̃
(k)
i = w̃i? + (1− αh̃i)k(w̃(0)

i − w̃i?),

where h̃i is the corresponding eigenvector. Recall that if 0 < αh̃i < 2, then
coordinate i converges exponentially, whereas if αh̃i < 0 or αh̃i > 2, then
that coordinate diverges exponentially.

Recall that we are taking the Taylor approximation around a stationary
point. First consider the case where this stationary point is a local opti-
mum, and H is (strictly) positive definite. In this case, the approximate
objective is a convex quadratic, just like we analyzed last week. As long as
the learning rate is chosen such that α < h̃−1

max, each coordinate converges
exponentially, and directions of high curvature converge faster than direc-
tions of low curvature. Eventually, the loss will be dominated by the low
curvature directions, and based on our analysis last week, the asymptotic
convergence rate is determined by the condition number κ = h̃max/h̃min.
Because w approaches w?, the Taylor approximation remains accurate.

Notice I am not saying that the slow convergence along low curvature
directions is bad. For any particular model, those directions might not be
very important to optimize in, or they might even be harmful because they
correspond to overfitting. (See, e.g., the discussion of whitening in Lecture
1.) Right now our focus is descriptive rather than prescriptive: we’re trying
to understand what is happening during training, and we’ll figure out later
what (if anything) to do about it.

If the stationary point w? isn’t a local optimum, then it’s probably a
saddle point. Still assuming for simplicity that none of the eigenvalues of H
are exactly 0, the only difference from the case of local optima is that now
some of the eigenvalues are negative. In these coordinates, 1− αh̃i > 1, so

as long as w̃
(0)
i 6= w̃i, these coordinates move exponentially away from w?.

Of course, they don’t move away forever; the weights will move far enough
from the saddle point that the Taylor approximation is no longer accurate,
and chances are, J will start curving upwards again. Gradient descent is
said to have escaped the saddle point. In dynamical systems terminology,
the difference between the behavior in these two cases is that local optima
are stable stationary points and saddle points are unstable stationary
points.

The one case where w might fail to escape a saddle point is if it happens

that w̃
(0)
i = w̃i for some coordinate i. (As a special case, this happens if

w = w?, i.e. we start out on the saddle point.) In this case, w̃i never
changes, so the optimizer is stuck. Intuitively, it might seem unlikely to

have w̃
(0)
i = w̃i exactly, One way to get stuck at a saddle

point is with a poor initialization,
e.g. if all the weights are initialized
to 0.

and even if it does happen, one can probably escape
in practice by slightly perturbing the updates. (I.e. the perturbation creates
a small gap between w̃i and w̃i?, which then grows exponentially.) It’s a
bit delicate to actually prove this, but under some reasonable assumptions,
this intuition does turn out to be mathematically correct. Gradient descent
generally escapes saddle points efficiently, so we don’t normally worry about
them when training neural nets.

What does the eigenspectrum of H look like in practice? Accurately estimating the
eigenspectrum of H for a large
modern neural net is a hard
problem, perhaps even harder than
training the network; see Adams
et al. (2018); Ghorbani et al.
(2019)

Much of the
time, it will have many 0 eigenvalues, because the network is overparame-

7

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

terized, and therefore some directions in weight space won’t affect the loss.
(More on this in a later lecture.) At initialization, H will generally have
some positive and some negative eigenvalues of various magnitudes. How-
ever, the large negative eigenvalues are quickly eliminated because the op-
timizer tends to descend quickly in those directions. So in general, what we
see during training is: some large positive eigenvalues, some small positive
eigenvalues, some small (in magnitude) negative eigenvalues, and a great
many 0 eigenvalues.

4.2 Computing with the Hessian

Analogously to the Jacobian, JAX provides the hessian function for com-
puting the full Hessian, but you generally won’t want to use this. The Hes-
sian is a large matrix: its dimension is the number of parameters, which is
typically in the millions. Therefore, it’s impractical to compute and store it
explicitly. Instead, we need to work with it indirectly using implicit matrix-
vector products, analogously to how we handled Jyw and J>yw. There’s a
very elegant trick that lets us do this using automatic differentiation.

We can think of H as the Jacobian of the gradient. I.e., if we define the
vector-valued function g(w) = ∇J (w), then H is the Jacobian of g. This
can be translated directly into JAX code, by doing forward mode autodiff
(using jvp) on the gradient. The following function computes the Hessian-
vector product with a vector v: This code is taken from the JAX

Autodiff Cookbook:
https://jax.readthedocs.io/en/

latest/notebooks/autodiff_

cookbook.html

def hvp(J, w, v):

return jvp(grad(J), (w,), (v,))[1]

Notice that we’re doing forward mode autodiff on a computation graph
that is the result of reverse mode autodiff; hence, this is a strategy known
as forward-over-reverse. There are various other ways to

compute Hessian-vector products
with autodiff, all of which are also
linear time.

Since both forms of autodiff are linear time
operations, Hessian-vector products are linear time as well.

4.3 Example: Weak Symmetry Breaking in Regularized Lin-
ear Autoencoders

From the preceding discussion, it might sound like the Taylor approximation
to the cost function is only accurate once the weights are very close to
a local optimum, i.e. the optimization is nearly done. On the contrary,
the above analysis can often give us a lot of insight into the optimization
dynamics throughout training. One reason for this is that neural nets can
often learn interesting functions without the weights moving very far; hence,
the Taylor approximation is accurate. We’ll come back to this point in a
later lecture. But right now, we’ll look at an interesting example that is
decidedly nonlinear, but where the Hessian nevertheless provides a lot of
insight into the dynamics. This example is based on Bao et al. (2020).

A surprisingly fruitful source of insight into neural network dynamics
is linear networks, i.e. networks whose activation function is the identity
function. Such networks generally aren’t practically useful because they
can only represent linear functions, the same as 1-layer networks. Linear networks can only represent

linear functions, because each layer
computes a linear function, and
the composition of linear functions
is linear.

However,
they share many of the training phenomena with nonlinear networks, and

8

https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

therefore are an important tool for understanding neural net phenomena for
which plain linear regression isn’t an adequate model.

Assume we have a data matrix X which is already centered to be zero-
mean. Let S2 = diag(σ2

1, . . . , σ
2
K) contain the top K eigenvalues of the

empirical covariance matrix Σ = 1
NX>X (ordered from largest to small-

est), and the columns of U Remember, the columns of U are
orthogonal, due to the Spectral
Theorem.

contain the corresponding eigenvectors, i.e. the
principal components. For simplicity, we assume the σi are all distinct (this
is necessary to obtain a unique solution).

Recall that an autoencoder is a neural net architecture with two compo-
nents: an encoder which maps an input x to a (typically low-dimensional)
code vector z = fenc(x), and a decoder which maps the latents to a recon-
struction x̂ = fdec(z). It is trained with a cost function that encourages x̂
to be close to x, such as ‖x̂− x‖2. A linear autoencoder uses a linear func-
tion for the encoder: fenc(x) = W1x and a linear function for the decoder:
fdec(z) = W2z. Putting this together, x̂ = W2W1x, and the squared error
cost function is:

1

2N

N∑
i=1

‖W2W1x
(i) − x(i)‖2.

It’s well-known that training linear autoencoders is equivalent to principal
component analysis (PCA). See the CSC413 lecture notes for a

detailed derivation of this.
More precisely, the optimal solutions corre-

spond to any pair of matrices W1 and W2 which project onto the principal
subspace. One such solution is W1 = U> and W2 = U. However, the
individual principal components aren’t recoverable: there exists a symme-
try whereby we can map TA(W1,W2) = (AW1,W2A

−1) for any invertible
matrix A, obtaining an equivalent model (in terms of the reconstruction).
This transformation can be seen as transforming the latent space, i.e. if
z = W1x, then TA(z) = Az. Since invertible linear transformations in-
clude things like rotations and permutations, this shows that the individual
principal components aren’t recoverable.

In order to break the symmetry, we’ll add a somewhat unusual regular-
izer, non-uniform `2. Consider the following objective, Here, ‖ · ‖F denotes the

Frobenius norm,

‖B‖F =
√

tr B>B =
√∑

i,j B
2
ij .

Note also that
‖Λ1/2W1‖2F = tr W>

1 ΛW1, which
may be more familiar to some
readers. Hence,
‖Λ1/2W‖2F =

∑
i,j λiw

2
ij .

which penalizes
the squared norms of the entries of W1 and W2, except that it penalizes
some rows and columns more heavily than others:

1

2N

N∑
i=1

‖W2W1x
(i) − x(i)‖2 + 1

2‖Λ
1/2W1‖2F + 1

2‖W2Λ
1/2‖2F ,

where Λ is a diagonal matrix with increasing diagonal entries (λ1, . . . , λK).
For simplicity, we assume λk < σ2

k (this is necessary for all rows and columns
of the optimal solution to be nonzero). It can be shown that under this
assumption, the global optimum of this objective consists of the individual
principal components, sorted in descending order:

W?
1 = P(I−ΛS−2)1/2U>

W?
2 = U(I−ΛS−2)1/2P,

(12)

where P is a diagonal matrix whose diagonal entries are ±1; its presence in
these formulas indicates that there remains a reflection symmetry for each
of the principal components. Apart from this symmetry, the solution is

9

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

unique: the rows of W1 and the columns of W2 each contain the principal
components, ordered from largest to smallest, and rescaled by a factor less
than 1.

We don’t need to concern ourselves with the derivation of this result (the
details are a little hairy), but here’s some intuition. In the absence of the
regularizer, the optimal solution is to project the data onto the principal
subspace, which can be achieved with W1 = U> and W2 = U (see the
CSC413 readings on autoencoders). When we regularize the norms of the
entries of W1 and W2, the optimal solution will be a compromise between
reconstruction error and the norms, so we’d expect to shrink W1 and W2;
this is achieved by the (I−ΛS−2)1/2 factor. Observe from this formula that
rows or columns with heavier regularization are shrunk more than those with
lighter regularization, and hence will reconstruct their respective projections
less accurately. Therefore, to minimize reconstruction error, we’d like to
allocate the more heavily regularized dimensions to the directions in input
space with lower variance. The way to do this is to sort the principal
components in decreasing order, which is exactly what Eqn. 12 does.

All of this setup is captured by the following code:

Generate a random data matrix.

onp.random.seed(0)

N, D, K = 1000, 20, 10

VARIANCES = np.linspace(1, 0, D)

X = onp.random.normal(0, np.sqrt(VARIANCES), size=(N, D))

W1_init = onp.random.normal(0, 0.1, size=(K, D))

W2_init = onp.random.normal(0, 0.1, size=(D, K))

Convenience functions for converting between matrices and flat

parameter vectors.

w_flat_init, unflatten = ravel_pytree((W1_init, W2_init))

def flatten(tree):

return ravel_pytree(tree)[0]

Compute the principal components.

Sigma = X.T @ X / N

d, Q = np.linalg.eigh(Sigma)

s_sq = d[::-1][:K]

U = Q[:, ::-1][:, :K]

Set the l2 penalties consistent with the constraint.

lambdas = np.linspace(0, .5 * s_sq[-1], K)

Objective function.

def fobj(w_flat):

W1, W2 = unflatten(w_flat)

reconst = W2 @ W1 @ X.T

return .5 * np.sum((reconst - X.T)**2) / N + \

.5 * np.sum(lambdas.reshape((-1, 1)) * W1**2) + \

.5 * np.sum(lambdas.reshape((1, -1)) * W2**2)

grad_fobj = grad(fobj)

10

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

(a) (a)

Figure 1: Convergence of the linear autoencoder in terms of the cost function (top) and the angle between
each weight column/vector and the matching principal component (bottom). The dashed line indicates
the optimal cost. Principal components are color-coded from red (largest) to green (smallest). (left) 1000
iterations, (right) 100,000 iterations.

Optimal weights.

W1_opt = np.sqrt(1 - lambdas/s_sq).reshape((-1, 1)) * U.T

W2_opt = np.sqrt(1 - lambdas/s_sq).reshape((1, -1)) * U

w_flat_opt = flatten((W1_opt, W2_opt))

Now for the interesting part: what happens when we try to optimize
this objective? The results are shown in Figure 1. We can see that it very
quickly achieves close to the minimum possible cost. However, it takes a
very long time to learn the individual principal components. What’s going
on?

The problem is that the cost function is more sensitive to some directions
than to others. We can understand this by measuring the curvature in
various directions at the optimum. The curvature in a direction v 6= 0 can
be measured using the Rayleigh quotient:

v>Hv

v>v
,

which can be computed with the following code:

def rayleigh_quotient(J, w, v):

Hv = hvp(J, w, v)

return (Hv @ v) / (v @ v)

Recall that higher curvature directions train quickly, and low curvature
directions train slowly. In general, there are a great many directions we can
look at (weight space is high-dimensional), but in this case, the symmetries
of the problem naturally suggest some directions.

11

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

First consider the transformation group given by rescaling Tγ(W1,W2) =
(γW1, γW2) for a parameter γ > 0. By computing v = RTγ(W1,W2), The R notation is introduced in

Section 3.2.
the

tangent vector to this transformation group at γ = 1, we can measure
the effect of slightly increasing the scale of the weights. Note that this
transformation will change the reconstructions, so we’d expect it to make
a significant contribution to the objective, i.e. v should be a high curva-
ture direction. Observe that the tangent vector is just the Jacobian of the
transformation, so we can compute it with forward mode autodiff, using the
following code: You might have noticed that the

tangent vector is just (W1,W2),
so strictly speaking this code is
unnecessary. But it shows how this
idea can be generalized.

def rescale(w_flat, gamma):

W1, W2 = unflatten(w_flat)

return flatten((gamma*W1, gamma*W2))

_, v_scale = jvp(lambda g: rescale(w_flat_opt, g), (1,), (1,))

print(rayleigh_quotient(fobj, w_flat_opt, v_scale))

This produces the output 1.3586808.
The original objective had a rotational ambiguity, and the new objective

takes a long time to learn the correct rotation. Therefore, we might con-
jecture that the cost function has low curvature in directions correspond-
ing to rotations of the latent space. In particular, consider the mapping
Tθ(W1,W2) = (QθW1,W2Q

>
θ), where Qθ represents a Givens rotation

of the first two rows of W1 (or columns of W2) by angle θ:

Qθ =

cos θ − sin θ
sin θ cos θ

1
. . .

1

Similarly to the scaling transformation, we can write a few lines of JAX code
that compute the tangent vector to this rotation group and then compute
the curvature in that direction:

def block_diag(A, B):

return np.vstack([np.hstack([A, np.zeros((A.shape[0], B.shape[1]))]),

np.hstack([np.zeros((B.shape[0], A.shape[1])), B])])

def rotate(w_flat, theta):

W1, W2 = unflatten(w_flat)

rot = np.array([[np.cos(theta), -np.sin(theta)],

[np.sin(theta), np.cos(theta)]])

Q_theta = block_diag(rot, np.eye(K-2))

return flatten((Q_theta @ W1, W2 @ Q_theta.T))

_, v_rot = jvp(lambda th: rotate(w_flat_opt, th), (0,), (1,))

print(rayleigh_quotient(fobj, w_flat_opt, v_rot))

12

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

Figure 2: Figure from Bao et al. (2020) showing the loss landscape of the
linear autoencoder with non-uniform `2 regularization. The radial direction
corresponds to rescaling, and the angle corresponds to rotation (see main
body for details). The narrow valley corresponds to ill-conditioning of the
optimization landscape. (Note: this is a small example chosen to understate
the effect for purposes of illustration.)

This produces the output 0.00041926137.
So we can see that the curvature in the rotation direction is nearly 4

orders of magnitude smaller than the curvature in the scaling direction. This
creates ill-conditioning, and the training is much slower along the rotation
directions. This is an instance of weak symmetry breaking, whereby
the constraint added to break a symmetry has only a weak effect on the
optimization, and therefore it takes a long time for gradient descent to
break the symmetry.

Figure 2 illustrates a subspace of the optimization landscape for K = 2
which includes both scaling and rotation. Specifically, it uses the transfor-
mation:

W1 = γQθ(I−ΛS−2)1/2U>

W2 = W>
1 .

Qθ =

(
cos θ − sin θ
sin θ cos θ

)
.

The xy-coordinate is given by (γ cos θ, α sin θ). Note that this space in-
cludes the global optimum (Eqn. 12). Note also that the transformation is
isometric, i.e. it faithfully represents distances. There is a high curvature
in the radial direction, corresponding to rescaling, while there is very small
curvature in the rotation direction. In general, ill-conditioned curvature
manifests as narrow valleys like this one, although typically it is hard to
visualize due to the high dimensionality of the optimization problem.

To sum up: gradient descent takes a really long time to learn the correct
rotation of the principal components, and this is reflected in the curvature
around the optimum (as measured by Rayleigh quotients of the Hessian).
How typical is this of neural net optimization more generally? On one

13

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

hand, it’s a toy example without direct practical value — computing the
principal components of small datasets is a trivial operation. There are other
regularizers and iterative algorithms which make the linear autoencoder
converge much faster (see Bao et al. (2020)).

On the other hand, it’s one of the few model systems we have to un-
derstand representation learning, i.e. the situation where we don’t just care
about making good predictions, but also desire some property of the latent
representation. When we train an object recognizer on ImageNet, often we
don’t just want to minimize the classification loss, but we also want to learn
a generally useful representation that can be transferred to other tasks.
The latter problem is much harder to quantify than the former. It’s been
observed that classification conv nets need to be trained with much higher
learning rates at the start of training than are needed to achieve good train-
ing accuracy, a phenomenon which is still poorly understood. I wouldn’t be
terribly surprised if the eventual explanation has something to do with low
curvature in the directions relevant to learning good representations, just
like in this toy example.

4.4 The Gauss-Newton Hessian

We rarely work with the true Hessian of neural networks, even through
implicit matrix-vector products. One reason is that many of our architec-
tures are not twice differentiable, e.g. because we use the ReLU activation
function. If we ask JAX for the second derivative of ReLU, it will return
the answer 0 without complaining, but this obviously isn’t “correct”, and
might not be a good local approximation to the cost. Another problem is
that H might have negative eigenvalues away from the optimum, and there
are a lot of use cases that require a positive semidefinite matrix (such as
approximate inversion using conjugate gradients; see below).

Recall that the cost for one training example is the composition of the
network function with a loss function (defined on the outputs, typically
simple and convex): Jx,t(w) = L(f(w,x), t). Note that there are often
multiple ways we can define the network function and loss function. For
instance, in classification, we could choose z = f(w,x) to be the logits and
L(z, t) to be softmax-cross-entropy loss, or we could define y = f(w,x)
to be the probabilities and L(y, t) to be cross-entropy. This distinction
turns out to be significant, and throughout this course we will generally use
z = f(w,x) as the logits and L(z, t) as softmax-cross-entropy loss.

The Hessian can be decomposed as follows: Unfortunately, terminology in ML
papers is inconsistent. Sometimes
G is just called the Hessian. And
sometimes the term Gauss-Newton
matrix is used to refer to
E[J>

zwJzw], i.e. the output space
Hessian is dropped. This
terminology comes from the
classical Gauss-Newton
optimization algorithm, which
assumed squared error loss (hence
the output Hessian was the
identity matrix).

∇2Jx,t(w) = J>zwHzJzw +
∑
a

∂L
∂ya
∇2

w[f(x,w)]a. (13)

where Hz = ∇2
zL(z, t) is the output Hessian. The first term involves first

derivatives of the network and second derivatives of the loss function; the
second term involves second derivatives of the network and first derivatives
of the cost function. If we simply drop the second term, we get the Gauss-
Newton Hessian, typically denoted as G:

G = J>zwHzJzw. (14)

14

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

Figure 3: Illustration of the Gauss-Newton approximation to the Hessian.

One way to understand the Gauss-Newton Hessian is that we linearize
JAX provides a function called
linearize which constructs this
linearized approximation, although
it’s also straightforward to do
directly from JVPs.

the network around the current weights, i.e. apply the first-order Taylor
approximation:

flin(w′,x) = f(w,x) + Jzw(w′ −w).

Then G is the Hessian of the cost function for the linearized model, i.e. Jlin,x,t(w
′) =∑N

i=1 L(flin(w′,x), t). This is illustrated in Figure 3. Linearizing the net-
work sounds like a pretty näıve thing to do, but we’ll see later in the course
that it’s a surprisingly powerful trick for understanding certain phenomena.

Another justification for this linearization is that because the second
term includes the first derivatives of the loss, it vanishes whenever the loss
is minimized individually for each training example. E.g., in the case of lin-
ear regression, this happens if every training example is fit perfectly. Note
that this requirement is stronger than simply assuming w is at the opti-
mum; we’re requiring that the loss on each individual training example be
minimized with respect to its outputs. Hence, for networks whose capacity
is too small to fit the training set, the Gauss-Newton approximation will be
inexact, even at the global optimum. Technically ReLU isn’t even once

differentiable. But in machine
learning, we’re generally perfectly
happy to compute first derivatives
of ReLU. Second derivatives of
ReLU are nonsensical, though.

Unlike H, G requires only first derivatives of the network function, so
we’re free to apply it to ReLU networks. Also, as long as the loss function
is convex (as a function of the outputs), G is guaranteed to be positive
semidefinite.

15

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

Just like with H, it’s impractical to represent G explicitly, so we typi-
cally work with matrix-vector products. Exercise: prove that if a

symmetric matrix A is positive
semidefinite, then BAB> is
symmetric and positive
semidefinite, for any matrix B (of
appropriate dimensions).

Multiplying by G involves 3 steps:

multiplying by Jzw, multiplying by Hz, and multiplying by J>zw. This can
be achieved in a few lines of code:

def gnhvp(f, L, w, v):

z, R_z = jvp(f, (w,), (v,))

R_gz = hvp(L, z, R_z)

_, f_vjp = vjp(f, w)

return f_vjp(R_gz)[0]

Just as with all of our other implicit matrix-vector products, If you check carefully, this code
isn’t as efficient as it could be,
because it computes the forward
pass through the network twice.
Can you find a way to eliminate
this redundant forward pass?

the time cost
of this is linear in the cost of a forward pass.

As it turns out, there’s a second option for efficiently computing with
G, one which wasn’t available to us for H: the Pullback Sampling Trick.
We’ll get to this next week when we talk about pullback metrics, since the
trick is more natural to describe in that context.

5 Approximately Solving Linear Systems

We’ve been working with matrices that are too large to represent explicitly,
and so far we’ve been working with them entirely through implicit matrix-
vector products (MVPs). This might seem a bit limiting, but there’s ac-
tually an astonishing amount you can do with just matrix-vector products.
Having a large matrix you can only access through MVPs is a frequent occur-
rence in scientific computing, and researchers have come up with ingenious
algorithms based on MVPs. One such algorithm is conjugate gradient
(CG), an algorithm for approximately solving a linear system involving a
positive definite matrix.

More specifically, suppose we have a positive definite matrix A, and
we’d like to approximately solve Ax = b. This can be formulated as the
optimum of the following optimization problem: Note that this objective only has a

unique minimum if it is strictly
convex, hence the requirement that
A be positive definite.

J (x) = 1
2x>Ax− b>x. (15)

The CG algorithm itself is rather hairy, but fortunately we don’t need to get
into the weeds in order to reason about it. The main concept to understand
is the Krylov subspace Kk(A, r) for a vector r, defined as:

Kk(A, r) = span{r,Ar, . . . ,Ak−1r}. (16)

To make sense of this subspace, observe that if x ∈ Kk(A, r), then Ax ∈
Kk+1(A, r). Hence, Kk(A, r) is the set of vectors obtainable, starting from
r, through linear combinations and at most k − 1 multiplications by A.

Similarly, observe that if x ∈ Kk(A,b), then ∇J (x) ∈ Kk+1(A,b).
So consider an iterative optimization algorithm where x(0) = 0 and each
iterate x(k) is somehow computed as a linear combination of all the past
iterates and gradients (i.e. x(k) =

∑k
`=1 α`x

(k−`) + β`∇J (x(k−`))). Note
that this formulation includes gradient descent, as well as various commonly
used extensions (which we’ll cover later in the course) such as heavy ball
momentum, Nesterov Accelerated Gradient, and iterate averaging. A simple
inductive argument shows that x(k) ∈ Kk(A,b) for all k.

16

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

CG is an algorithm for minimizing Eqn. 15 with the rather magical prop-
erty that the kth iteration exactly minimizes J within the Krylov subspace
Kk(A,b):

x(k) = arg min
x∈Kk(A,b)

J (x). (17)

Moreover, it does this using a single MVP by A per iteration (as well as
linear combinations, which are cheap), and stores only a small constant
number of vectors in memory which are the same dimension as x. Since the
kth iterate is computed using k MVPs, and any iterate computed using k
MVPs must lie within Kk(A,b), this implies that CG minimizes the cost
as fast as is possible for a given number of MVPs! That is to say, CG can’t be beat

without exploiting some other
source of information not
obtainable from MVPs or
gradients.

It’s pretty surprising
that this minimization can be done with low computational overhead, and
also without storing the previous iterates and/or gradients in memory. The
reasons this all works are beyond the scope of this class, but see Shewchuk
(1994) for a readable tutorial.

The best way to run CG is to call a library routine. One gotcha is
to make sure the routine is linear CG, as opposed to nonlinear CG, a set
of CG-like algorithms used to minimize non-quadratic functions. Hence,
if using SciPy, the right routine is scipy.sparse.linalg.cg, rather than
scipy.optimize.minimize(method=’CG’). The following code is a conve-
nient wrapper around the SciPy routine:

def approx_solve(A_mvp, b, niter):

dim = b.size

A_linop = scipy.sparse.linalg.LinearOperator((dim,dim), matvec=A_mvp)

res = scipy.sparse.linalg.cg(A_linop, b, maxiter=niter)

return res[0]

Another gotcha is that CG can be numerically sensitive, so it’s a good
idea to do the computations in float64, at least for debugging purposes.
(By default, JAX and other deep learning frameworks use float32 for com-
putational and memory efficiency.) To tell JAX to enable float64, we need
to add the following to our preamble (before calling any JAX functions):

from jax.config import config

config.update('jax_enable_x64', True)

Once this is done, you can pass in float64 as the dtype when creating an
array, just like in NumPy. The following convenience function also converts
a whole data structure to float64:

def make_float64(params):

return tree_map(lambda x: x.astype(np.float64), params)

5.1 Example: Sensitivity to Dataset Perturbations

A neat application of the techniques we’ve just developed is to understand-
ing how the optimal solution to an optimization problem changes if we
slightly perturb various aspects of the problem such as the data or hyper-
parameters. E.g., if a neural network is fooled by an adversarial input, we
might want to figure out which of the inputs are responsible for that pre-
diction. One way to do this is to measure the effect of small changes to a

17

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

dataset, such as perturbing a label or an input location, or changing the
weighting of the training examples. The influence function measures how
a model’s predictions change as a function of some aspect of the training
data, we can use the techniques of this lecture to compute linearized ap-
proximations to it, in order to avoid re-training our model many times from
scratch. The most well-known instance of this in the field of deep learning
concerns influence functions, which estimate how a network’s predictions
will change if a training example (or group of training examples) is removed.
Influence functions were developed in statistics decades ago and introduced
to our field by Koh and Liang (2017), who used them to explain a model’s
predictions, diagnose adversarial examples, detect mislabeled training ex-
amples, and carry out data poisoning attacks.

Assume we’ve found the minimum w? = arg minw J (w;θ) to an uncon-
strained optimization problem The constrained case can be

handled using similar ideas.
whose cost function is parameterized by a

vector θ (for instance, weights on the training examples or a set of hyper-
parameters). We’re interested in how the optimal solution depends on θ, so
we define w? = r(θ) to emphasize the functional dependency. The function
r(θ) is called the response function, or rational reaction function,
and the Implicit Function Theorem (IFT) guarantees its existence un-
der certain conditions that we won’t worry about for now. For simplicity,
assume J is twice differentiable and H is strictly positive definite at w?.

We are interested in computing the Jacobian Jw?θ of the response func-
tion r(θ), which is known as the response Jacobian, or reaction Jaco-
bian. We’ll become very good friends with the response Jacobian at the
end of the course, when we cover bilevel optimization. Once we get there,
we’ll see how to derive Jw?θ, but for now please take my word for it that
the formula is:

Jw?θ = −
[
∇2

wJ (w;θ)
]−1∇2

wθJ (w;θ). (18)

Hopefully the 1-D example illustrated in Figure 4 will convince you
that this formula is at least plausible. The figure shows J (w;λ) = g(w) +
λw, evaluated at λ = 0 (blue) and λ = 3 (orange). Here, ∇2

wλJ (w;λ) =
∂2J /∂w∂λ = 1. The curvature ∇2

wJ (w;λ) = ∂2J /∂w2 is positive at both
local minima. Increasing λ shifts the local minima to the left, indicating
that Eqn. 18 has the correct sign. The flatter minimum is shifted more
than the sharper one, consistent with the dependence on the inverse of the
curvature.

Now let’s apply everything we’ve learned so far in this lecture to im-
plementing matrix-vector products with Jw?θ (Eqn. 18). We’ll consider the
dependency of the optimal weights on the training labels (although the same
techniques apply to other kinds of dataset perturbations as well). Hence,
the hyperparameter θ is simply t, the vector of training labels. So here is
our parameterized cost:

def parameterized_cost(w, t):

return L(f_net(w, x), t)

The mixed second derivative ∇2
wtJ (w; t) is something we haven’t seen

before, but computationally it’s pretty innocuous: we can compute MVPs
analogously to the Hessian. We use the forward-over-reverse strategy (see

18

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

Figure 4: Illustration of the formula for the response Jacobian (Eqn. 18).
Shows J (w;λ) = g(w) + λw for λ = 0 (blue) and λ = 3 (orange). See main
body for description.

Section 4.2), computing the directional derivative of ∇wJ (w; t) with re-
spect to t:

def mixed_second_mvp(w, t, R_t):

grad_cost = grad(parameterized_cost, 0) # gradient w.r.t. w

grad_cost_t = lambda t: grad_cost(w, t)

return jvp(grad_cost_t, (t,), (R_t,))[1] # forward-over-reverse

The term
[
∇2

wJ (w;θ)
]−1

is the inverse of H, evaluated at w?(θ). Be-
cause of the inverse, we need to be able to solve a linear system involving
H. Note that, in order to apply CG, the matrix must be positive definite.
The Hessian H isn’t positive definite in general, but we are at least guaran-
teed that it is positive semidefinite at a (local) minimum, and we can add
a small multiple of I to make it positive definite. If we haven’t actually
reached a (local) minimum, we might prefer to substitute the GN Hessian
G to ensure the linear system we’re solving is positive definite. So here is
how we approximately solve the linear system: Koh and Liang (2017) actually

solved the linear system using
another method called stochastic
Neumann iterations, rather than
conjugate gradient. We’ll see why
this is a good idea in Chapter 7.

def dampen(mvp, lam):

def new_mvp(x):

return mvp(x) + lam*x

return new_mvp

def approx_solve_H(w, Rg_w, lam, niter):

mvp = lambda v: gnhvp(lambda w: f_net(w, x), lambda y: L(y, t), w, v)

mvp_damp = dampen(mvp, lam)

return approx_solve(mvp_damp, Rg_w, niter)

According to Eqn. 18, to compute an MVP with Jw?θ, we just do these
two operations in sequence:

def response_jacobian_vector_product(w, t, R_t, lam, niter):

Rg_w = mixed_second_mvp(w, t, R_t)

return approx_solve_H(w, -Rg_w, lam, niter)

19

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

(a) (b) (c)

Figure 5: Illustration of influence functions for a 1-D regression dataset. (a) the initial fit to the data. (b,
c) Linearized effect of perturbations to two data points, moving the green × to the red ×. The linearized
predictions are shown for varying numbers of CG iterations, from 0 (equivalent to the original fit) to 50.

This MVP tells us how the optimal weights will change in response to a
small perturbation to t. To understand what effect this has on the network’s
predictions, we simply compute the directional derivative of the network’s
predictions in this direction, using the now-familiar JVP:

R_w = response_jacobian_vector_product(w_opt, t, R_t, LAM, niter)

R_y = jvp(lambda w: f_net(w, x_in), (w_opt,), (R_w,))[1]

All of this is shown in Figure 5. Here, we fit a small tanh MLP to
a 1-D regression dataset, where the data points belong to two clusters,
plus another outlier point in the middle. We use our code to compute the
sensitivity of the predictions to the labels of two of the data points. I.e.,
we compute the linearized response to the perturbation shown by moving
the green × to the red ×. When we perturb a training example within
one of the clusters, it has only a slight effect on the predictions within the
clusters, since it’s competing with a lot of other training examples. It does
affect the predictions quite a bit in between the clusters, indicating that the
predictions in those regions are unreliable. When we perturb the outlier
training example, we see that it has an outsized influence on the predictions
in the intermediate region.

6 Tidying Up the Alphabet Soup

By taking Taylor approximations, we’ve arrived at several matrices which
are useful for analyzing neural nets. We’re going to see quite a few more in
the upcoming lectures, so all the matrices are conveniently summarized in
Figure 6. The ones we haven’t gotten to yet are grayed out.

References

Ryan P. Adams, Jeffrey Pennington, Matthew J. Johnson, Jamie Smith,
Yaniv Ovadia, Brian Patton, and James Saunderson. Estimating the
spectral density of large implicit matrices. arXiv:1802.03451, 2018.

Xuchan Bao, James Lucas, Sushant Sachdeva, and Roger Grosse. Regu-
larized linear autoencoders recover the principal components, eventually.
arXiv:2007.06731, 2020.

20

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

Figure 6: A summary of the relationships between the matrices used in this course. Items
yet to be covered are grayed out.

21

CSC2541 Winter 2021 Chapter 2: Taylor Approximations

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into
neural net optimization via Hessian eigenvalue density. In International
Conference on Machine Learning, 2019.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via
influence functions. In International Conference on Machine Learning,
2017.

Jonathan Richard Shewchuk. An introduction to the conjugate gradient
method without the agonizing pain, 1994.

22

	Introduction
	Preliminaries
	First-Order Taylor Approximations
	The Gradient Vector
	Directional Derivatives
	Computing with the Jacobian

	The Hessian Matrix
	Gradient Descent Dynamics
	Computing with the Hessian
	Example: Weak Symmetry Breaking in Regularized Linear Autoencoders
	The Gauss-Newton Hessian

	Approximately Solving Linear Systems
	Example: Sensitivity to Dataset Perturbations

	Tidying Up the Alphabet Soup

