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Should full-batch gradient descent decrease training loss monotonically?

Source: http://pages.cs.wisc.edu/~spehlmann/cs760/_site//project/2017/05/04/intro.html



Stability of Gradient Descent on Quadratics
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Objective:  


Coordinates evolve independently along eigenvectors of .


GD Update:  


Optimum:  


Dynamics:   

Stability Criterion (assuming ):  

f(x) =
1
2

xTAx + bTx + c

A

xt+1 = xt − η(axt + b)

x* = − b/a

xt = (1 − ηa)t(x0 − x*) + x*

a ≥ 0 a ≤ 2/η



Local Quadratic Approximation to NNs
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If we used GD on this approximation, coordinates evolve 
independently along eigenvectors of .


GD diverges along eigenvectors with negative curvature.


GD diverges along eigenvectors with curvature 

ℒ(x) ≈
1
2

(x − x0)TH(x − x0) + J(x − x0) + ℒ(x0)

H

h > 2/η



The Edge of Stability
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“Sharpness”: , the maximum eigenvalue of 


Sharpness increases to , then hovers above .


If we drop the learning rate, the sharpness will adjust itself!

hmax H

2/η 2/η



The Edge of Stability

6

“Edge of Stability”: the regime under which the sharpness hovers 
near 2/η



A Closer Look
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Compute leading eigenvector of  at some point of training, call it 


We can project the weights along  to visualize the iterates 

H q1

q1

Source: https://www.cs.toronto.edu/~rgrosse/courses/csc2541_2021/readings/L01_intro.pdf



A Closer Look
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Correspondingly, weights iterate increasingly along q1

Upon crossing the Edge of Stability, the loss begins to spike



A Closer Look
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Later, things continue to descend again — non-monotonically



Stable  may be suboptimalη
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Larger  trains faster despite prolonged Edge of Stability phase.


Avoiding the Edge of Stability requires “unreasonably” small 

η

η



Gradient Flow
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Gradient Flow (GF) is when 


When not in the Edge of Stability, GD tracks GF (but not for all networks)


In these plots, 

η → 0

time = η × iteration



Prior Work, and relation to SGD
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Wu et al. 2018 “How sgd selects the global minima in over-
parameterized learning: A dynamical stability perspective”


Sharpness at end of training is 


Jastrzebski et al. 2020 “The break-even point on optimization 
trajectories of deep neural networks.”


Smaller step size, or larger batch size, leads SGD to end up in 
regions of larger sharpness


GD is a special case of SGD, but for SGD there may not be such 
a “tight”  bound that the sharpness follows

≈ 2/η

2/η



Basic Experimental Setup
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Fully-connected network, 2 hidden layers w/ width 200, tanh 
activations


Full-batch gradient descent on 5K-subset of CIFAR-10


Mean-Squared Error (MSE), and Cross-Entropy Loss


This is the setup used for most figures in the main paper (shown 
in previous slides)



Architectural Choices
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5K subset of CIFAR-10


e.g Convolution with Max-pool



Architectural Choices
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Fully-Connected Convolutional  
(Max-pool)

Convolutional 
(Average-pool)

tanh

ReLU

ELU

softplus NA NA

hardtanh NA NA

✓ ✓ ✓
✓ ✓ ✓

✓ ✓✓
✓
✓



Standard Architectures
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Full CIFAR-10 dataset, with some approximation (ghost batching, 
statistics over 10% of dataset at a time)


VGG-11 (with / without Batch Norm), ResNet-32 (shown below) 



Additional Architectures: Transformer
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Transformer trained on WikiText-2 language modelling


Gradient Flow is never tracked closely



Network Width
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“Wide networks of any depth evolve as linear models under 
gradient descent” [Lee et al. 2020]


 changes a vanishingly small amount as width increases


“Sharpness gain”  is lower as width increases (tends to 1?)

H

hmax/h0



Cross-Entropy Loss
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Sharpness tends to lower near the end


Authors investigate this by looking at the decomposition of H



Cross-Entropy Loss
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Gauss-Newton approximation:  (verified empirically)


Authors suggest that the classical Gauss-Newton  still 
undergoes progressive sharpening


For MSE loss , so  will experience the same sharpening 
trends as 


So maybe for Cross-Entropy, the flattening near the end is caused 
by a corresponding flattening of 

H ≈ JT
zxHzJzx

G = JT
zxJzx

Hz = I H
G

Hz



Cross-Entropy Loss
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Suppose we are using binary labels 


As the model trains, logits  adopt same sign as , and  
becomes larger


Accordingly, the second derivative  w.r.t  decreases

y ∈ {−1,1}

z y yz

l′ ′ z



Cross-Entropy Loss
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Sharpness of classical Gauss-Newton  grows throughout training


Attenuation of second derivative explains discrepancy


The analysis is similar for multi-class case

G



Cross-Entropy Loss
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Compared to MSE, sharpness seems more random (why?)



Batch Normalization
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“Effective smoothness”: maximum Lipschitz constant of gradient in 
update direction (scaled from  to )


In "How does batch normalization help optimization?” [Santurkar et 
al. 2018] argue that batch norm improves effective smoothness


Authors argue against these results, saying that effectiveness 
smoothness may behave more regularly, but isn’t improved (there’s 
a difference in interpretation of the plots, shown on next slide).

0 α



Batch Normalization
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“… there is no evidence that the use of batch normalization improves 
either the smoothness or the effective smoothness …” (p. 56) 


Is this interpretation reasonable?



Additional Architectures: Deep Linear Network
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Deep linear network:  


Objective:   

How deep does it actually need to be to show progressive sharpening?

f(x) = W20 . . . W2W1x

1
N

N

∑
i=1

∥f(xi) − yi∥2
2



Discussion
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Gradient descent (GD) optimizes loss while restraining itself from going 
into regions above a step size dependent sharpness


Convergence analyses of GD that assume bounds on sharpness (
-smoothness) don’t apply to reasonable step sizes


With practical step sizes, GD does not monotonically decrease the loss


The Edge of Stability is “non-quadratic”: GD would quickly diverge 
(Appendix D) if we run it on an quadratic approximation


The authors make no claims about sharpness and generalization, 
although this has been explored in e.g “On large-batch training for 
deep learning: Generalization gap and sharp minima” [Keskar et al. 
2017]

L


