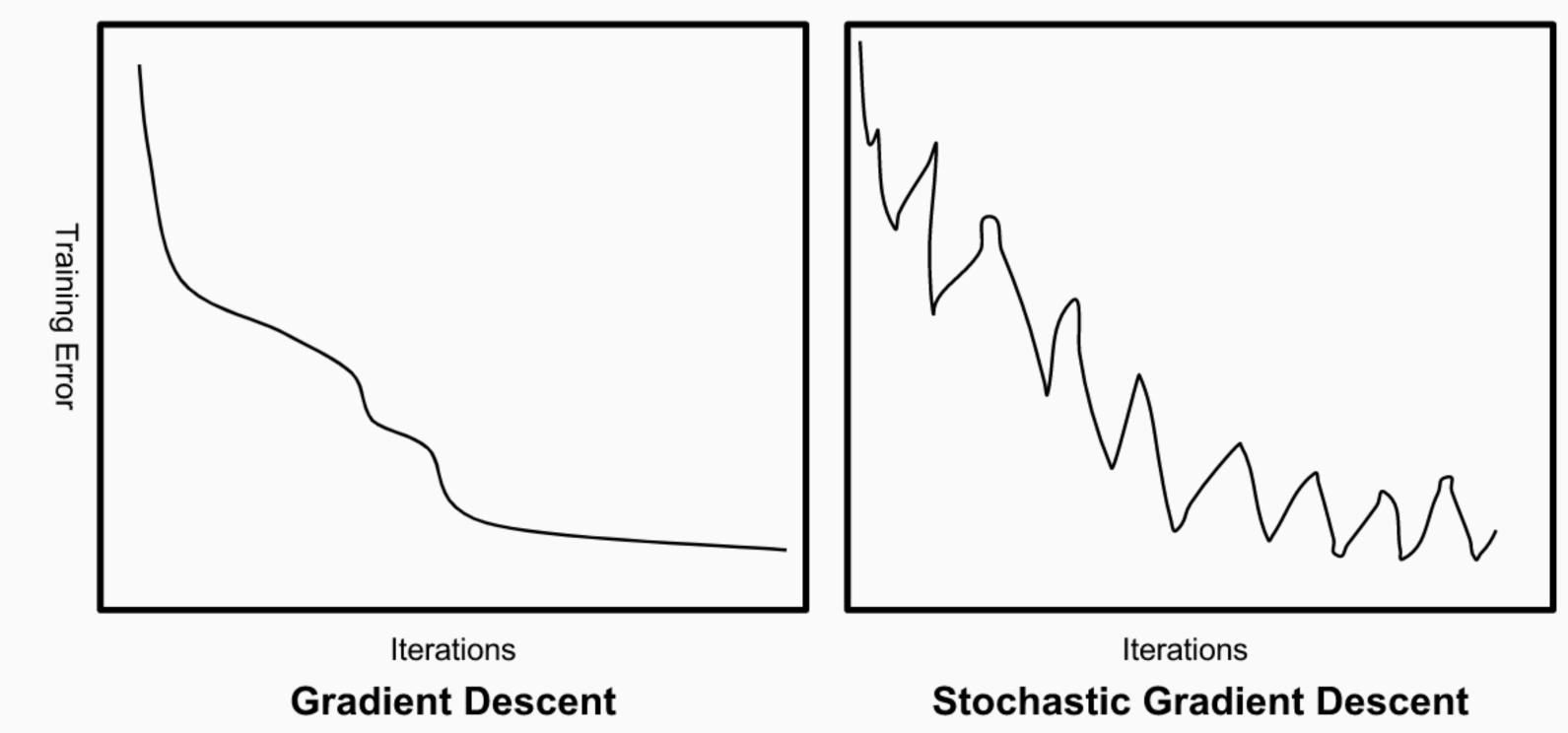
Gradient Descent on Neural Networks Typically Occurs on the Edge of Stability

Authors: Jeremy Cohen, Simran Kaur, Yuanzhi Li, J. Zico Kolter, Ameet Talwalkar

Presented by: Honghua Dong and Tianxing Li

Should full-batch gradient descent decrease training loss monotonically?



Source: http://pages.cs.wisc.edu/~spehlmann/cs760/_site//project/2017/05/04/intro.html

Stability of Gradient Descent on Quadratics • Objective: $f(x) = \frac{1}{2} \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$

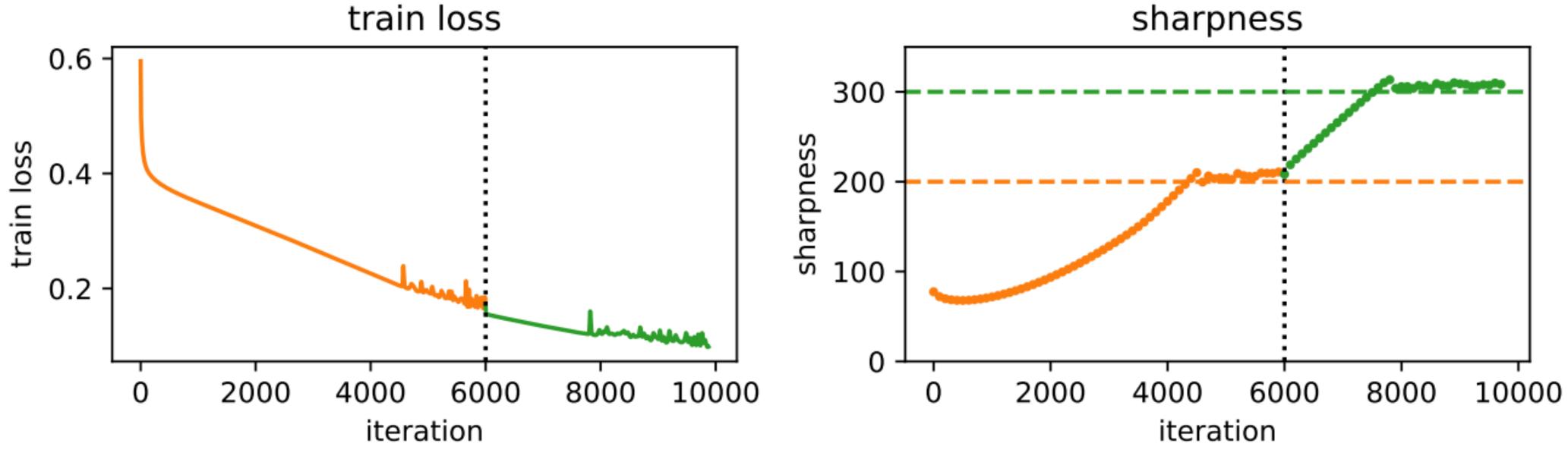
- Coordinates evolve independently along eigenvectors of \mathbf{A} . 0
- GD Update: $x_{t+1} = x_t \eta(ax_t + b)$
- Optimum: $x^* = -b/a$
- Dynamics: $x_t = (1 \eta a)^t (x_0 x^*) + x^*$
- Stability Criterion (assuming $a \ge 0$): $a \le 2/\eta$

Local Quadratic Approximation to NNs • $\mathscr{L}(\mathbf{x}) \approx \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \mathbf{H} (\mathbf{x} - \mathbf{x}_0) + \mathbf{J} (\mathbf{x} - \mathbf{x}_0) + \mathscr{L} (\mathbf{x}_0)$

- If we used GD on this approximation, coordinates evolve independently along eigenvectors of **H**.
- GD diverges along eigenvectors with negative curvature.
- GD diverges along eigenvectors with curvature $h > 2/\eta$ 0

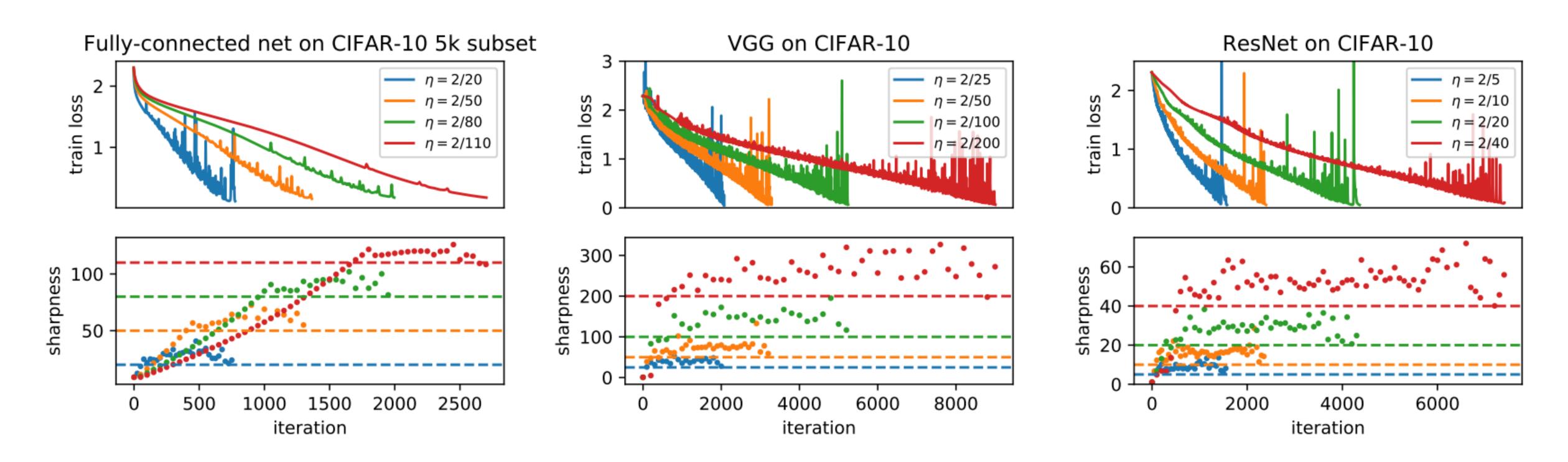
The Edge of Stability

- "Sharpness": h_{max} , the maximum eigenvalue of H
- Sharpness increases to $2/\eta$, then hovers above $2/\eta$.
- If we drop the learning rate, the sharpness will adjust itself!



The Edge of Stability

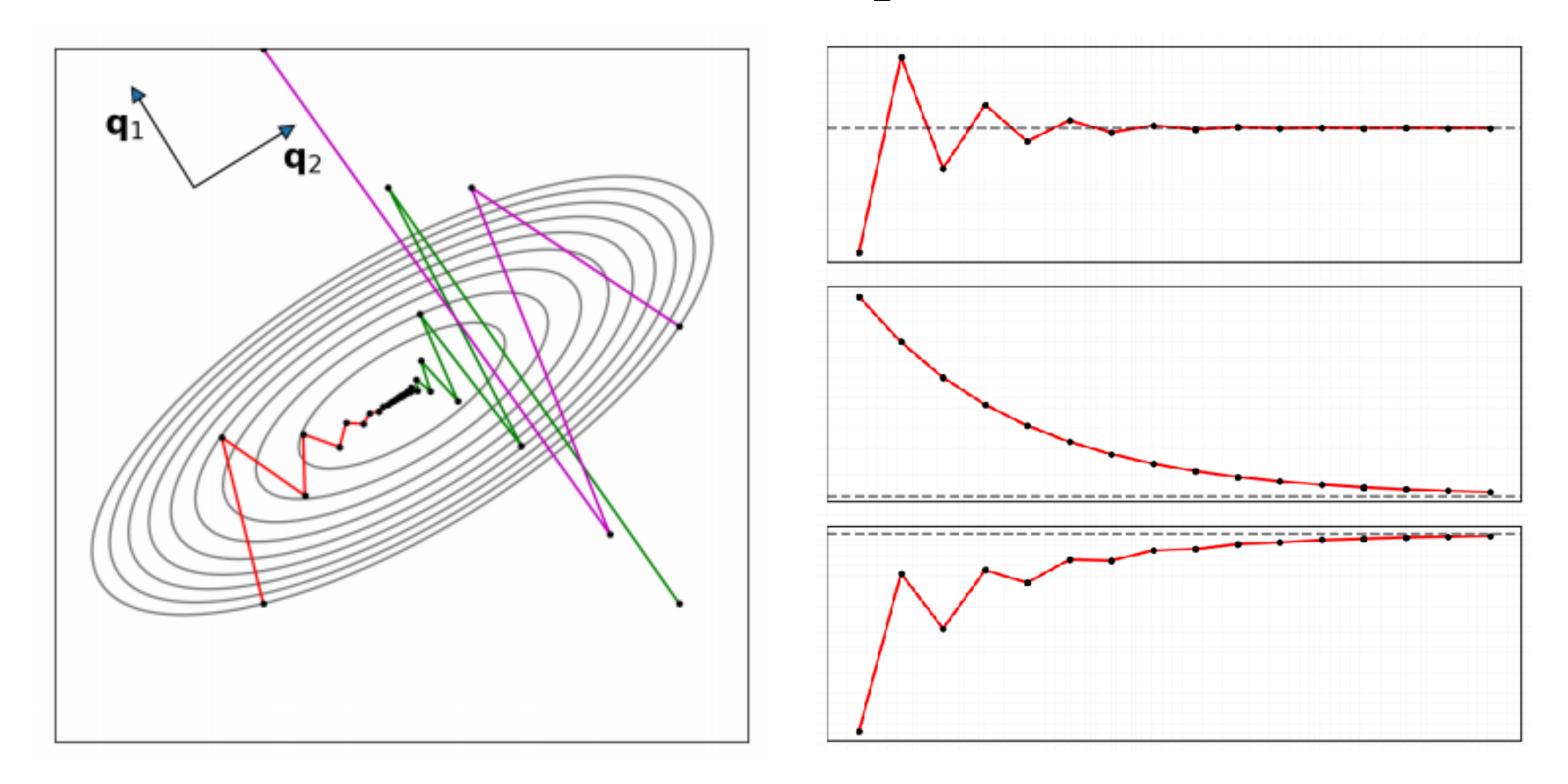
• "Edge of Stability": the regime under which the sharpness hovers near $2/\eta$



A Closer Look

Compute leading eigenvector of H at some point of training, call it \mathbf{q}_1

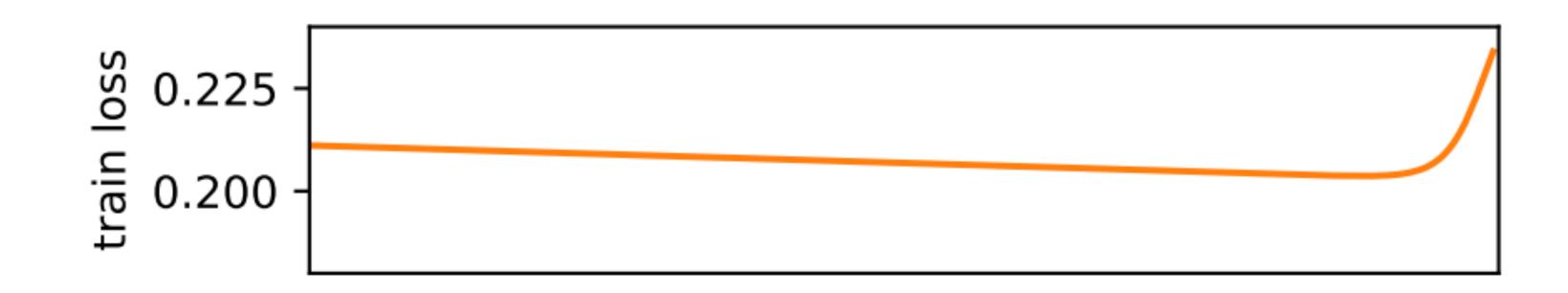
 $^{\circ}$ We can project the weights along \mathbf{q}_1 to visualize the iterates



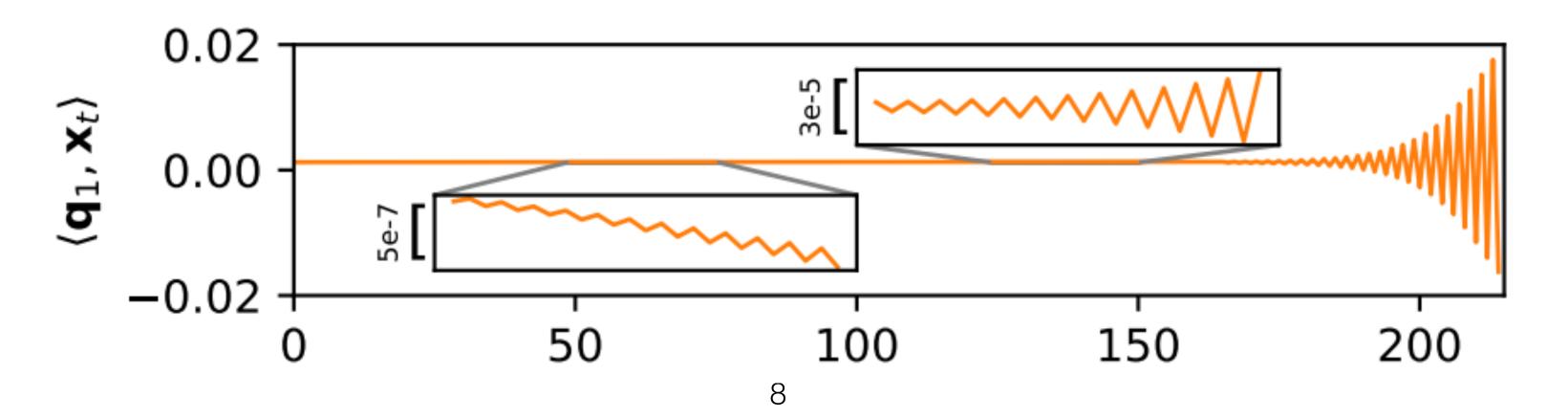
Source: https://www.cs.toronto.edu/~rgrosse/courses/csc2541_2021/readings/L01_intro.pdf

A Closer Look

0



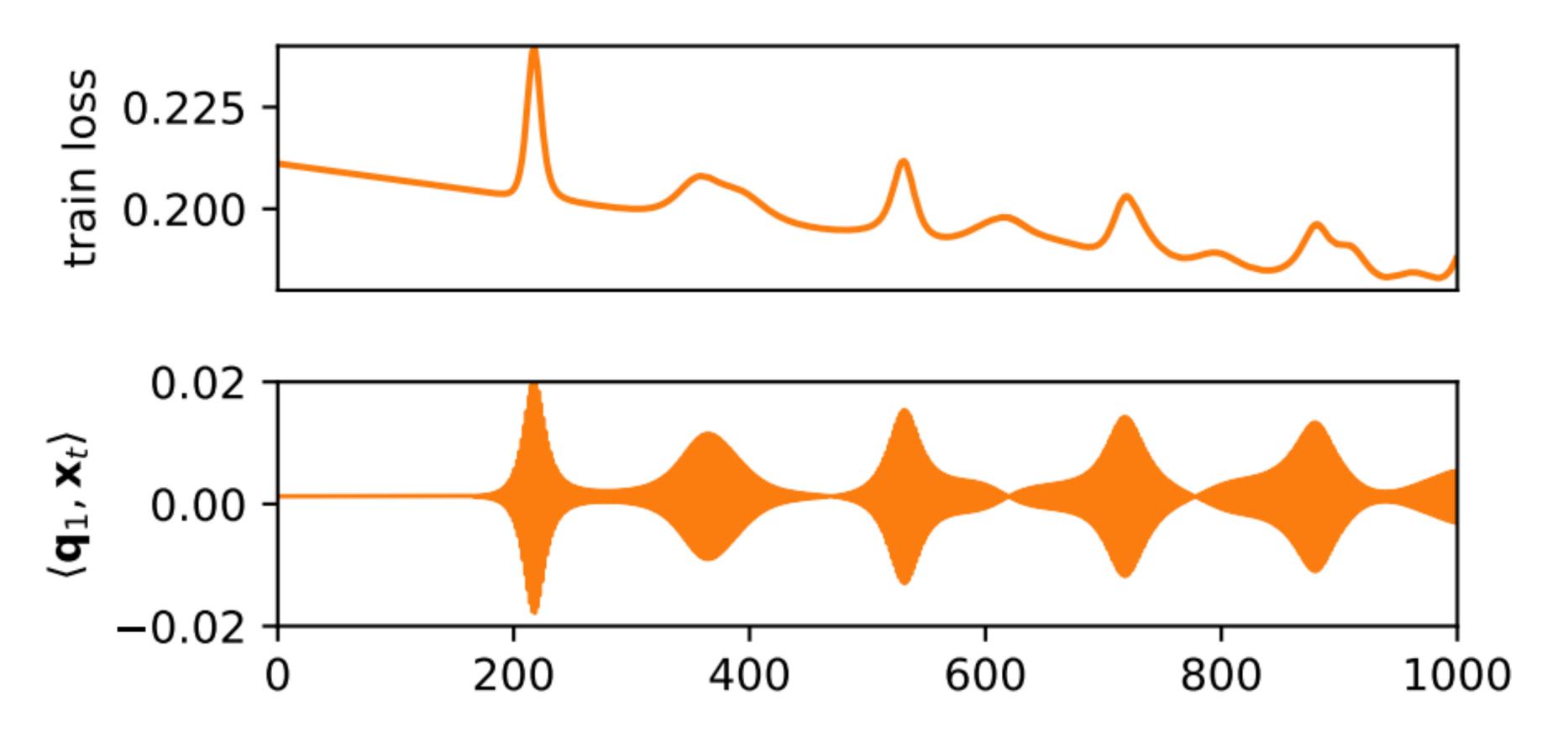
Correspondingly, weights iterate increasingly along \mathbf{q}_1 0



Upon crossing the Edge of Stability, the loss begins to spike

A Closer Look

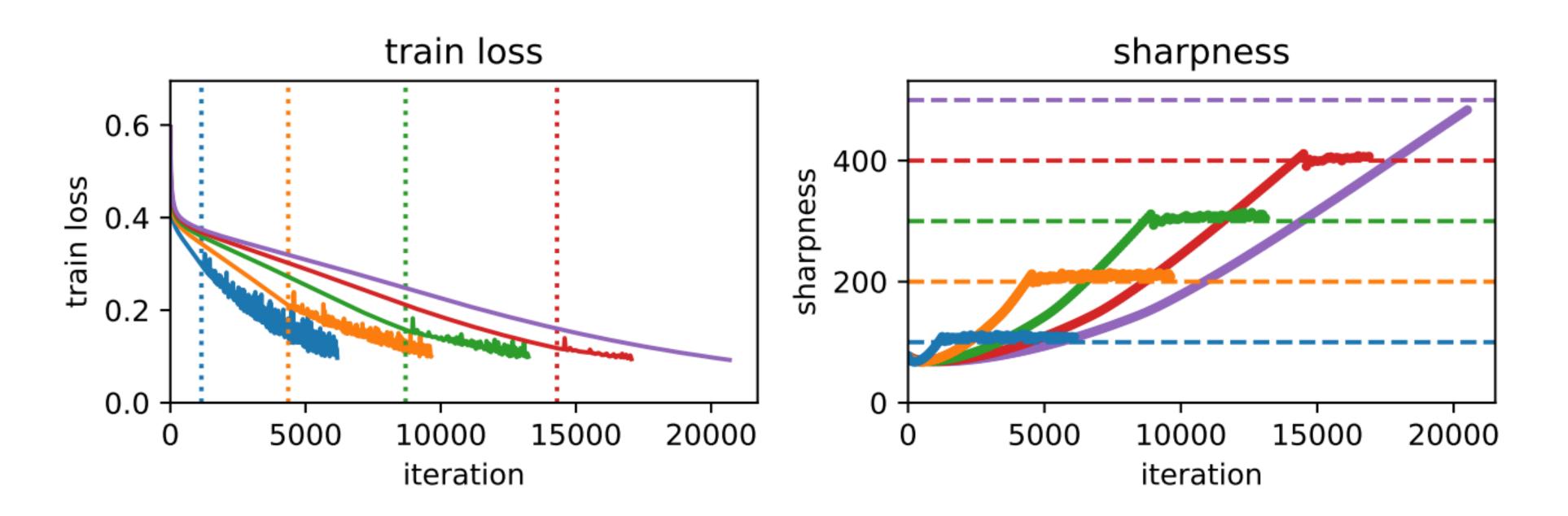
0



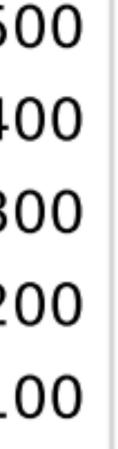
Later, things continue to descend again — non-monotonically

Stable η may be suboptimal

- Larger η trains faster despite prolonged Edge of Stability phase. 0
- 0 Avoiding the Edge of Stability requires "unreasonably" small η

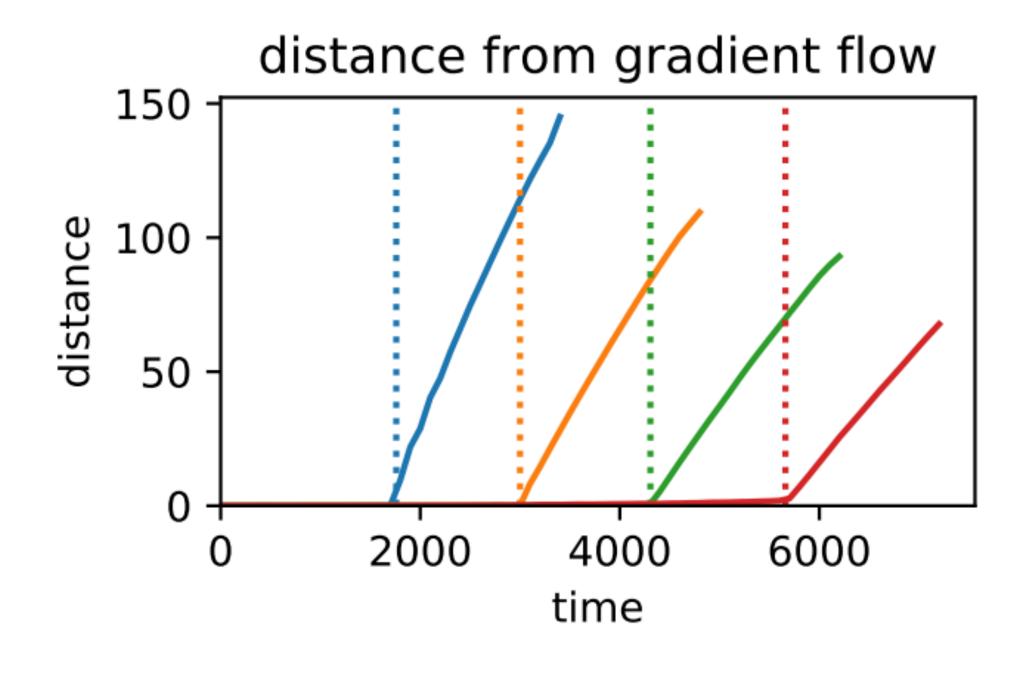


 $\eta = 2/500$ $\eta = 2/400$ $\eta = 2/300$ $\eta = 2/200$ $\eta = 2/100$

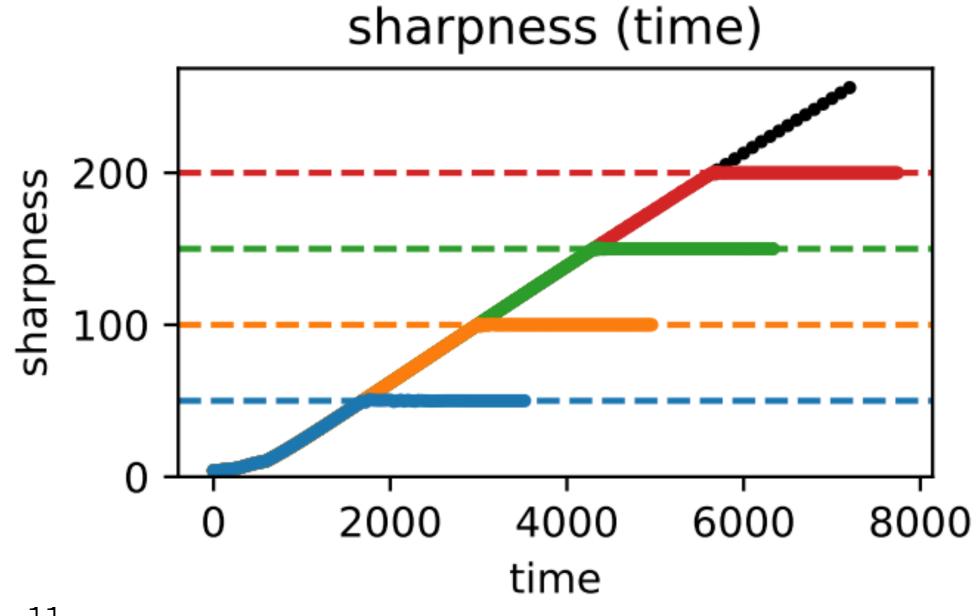


Gradient Flow

- Gradient Flow (GF) is when $\eta \rightarrow 0$ 0
- 0
- 0 In these plots, time = $\eta \times iteration$



When not in the Edge of Stability, GD tracks GF (but not for all networks)



Prior Work, and relation to SGD

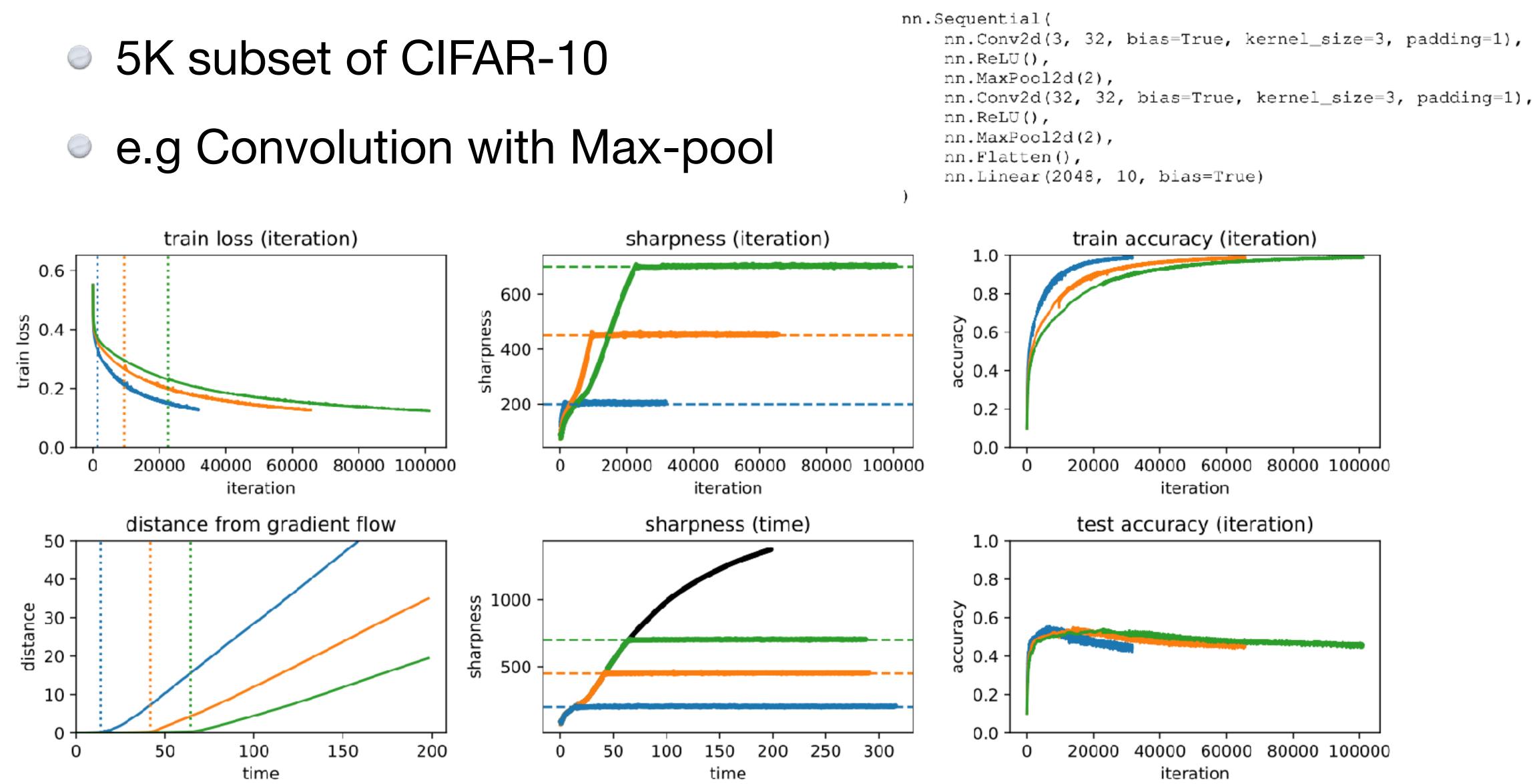
- Wu et al. 2018 "How sgd selects the global minima in overparameterized learning: A dynamical stability perspective"
 - Sharpness at end of training is $\approx 2/\eta$
- Jastrzebski et al. 2020 "The break-even point on optimization trajectories of deep neural networks."
 - Smaller step size, or larger batch size, leads SGD to end up in regions of larger sharpness
 - GD is a special case of SGD, but for SGD there may not be such a "tight" $2/\eta$ bound that the sharpness follows

Basic Experimental Setup

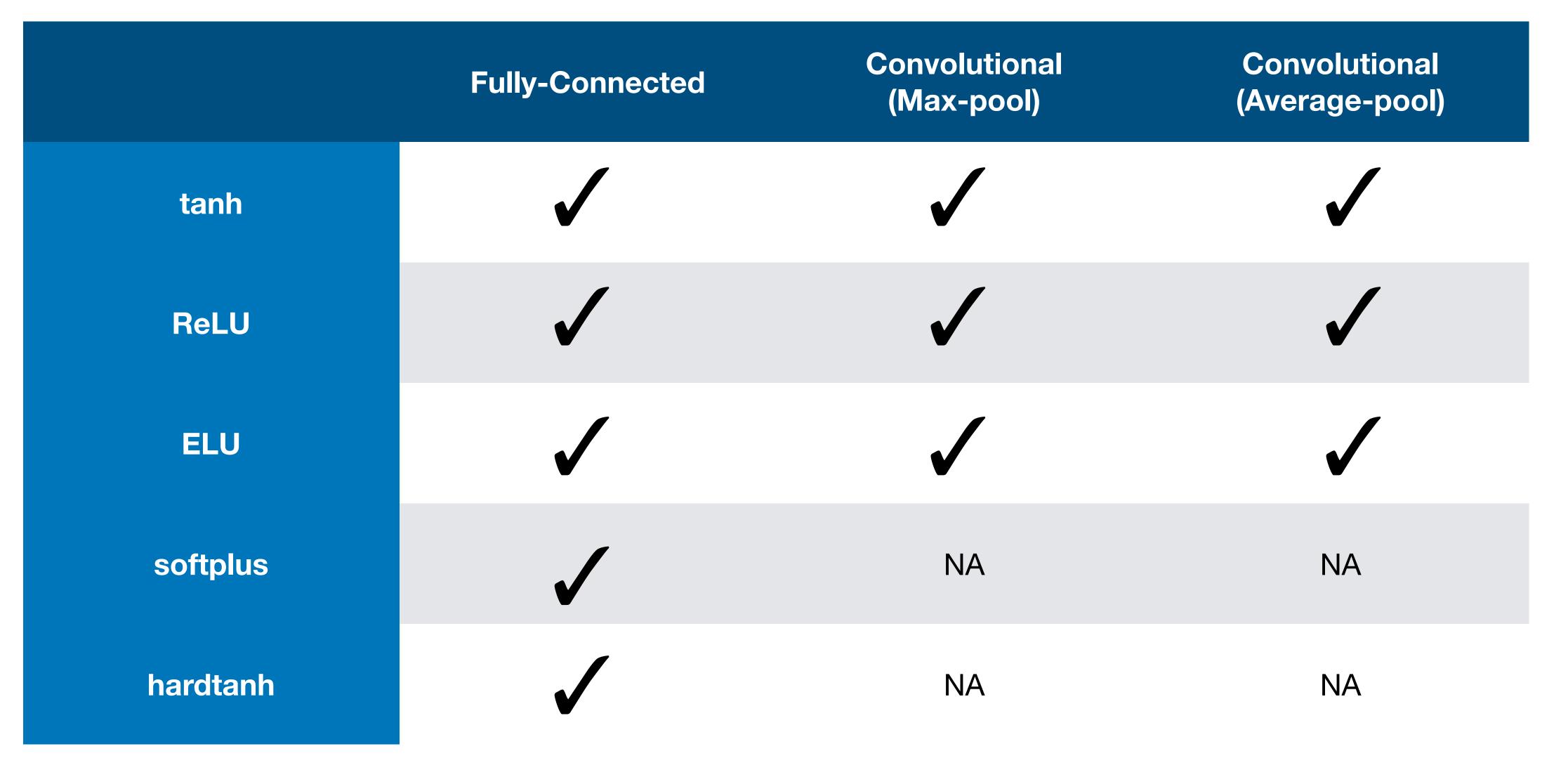
- Fully-connected network, 2 hidden layers w/ width 200, tanh activations
- Full-batch gradient descent on 5K-subset of CIFAR-10
- Mean-Squared Error (MSE), and Cross-Entropy Loss
- This is the setup used for most figures in the main paper (shown in previous slides)

Architectural Choices

5K subset of CIFAR-10 0



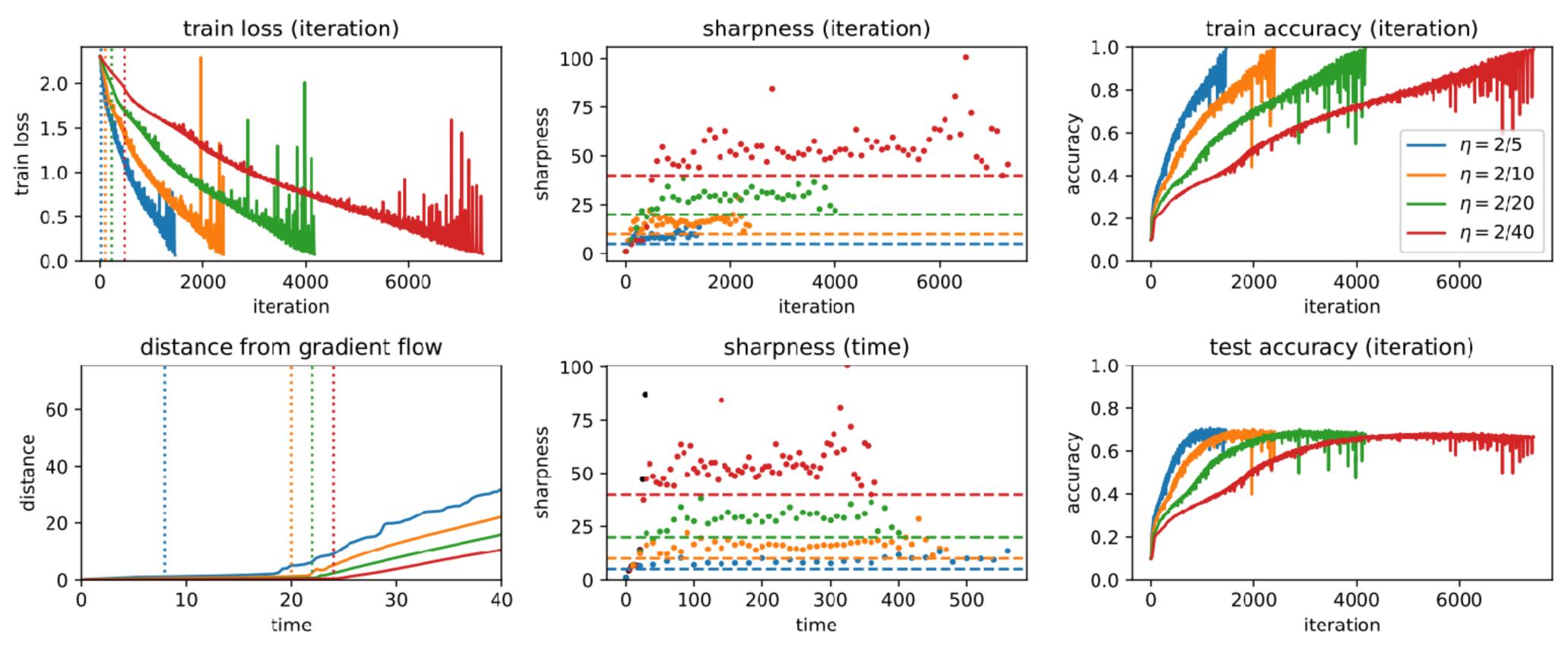
Architectural Choices



Standard Architectures

statistics over 10% of dataset at a time)

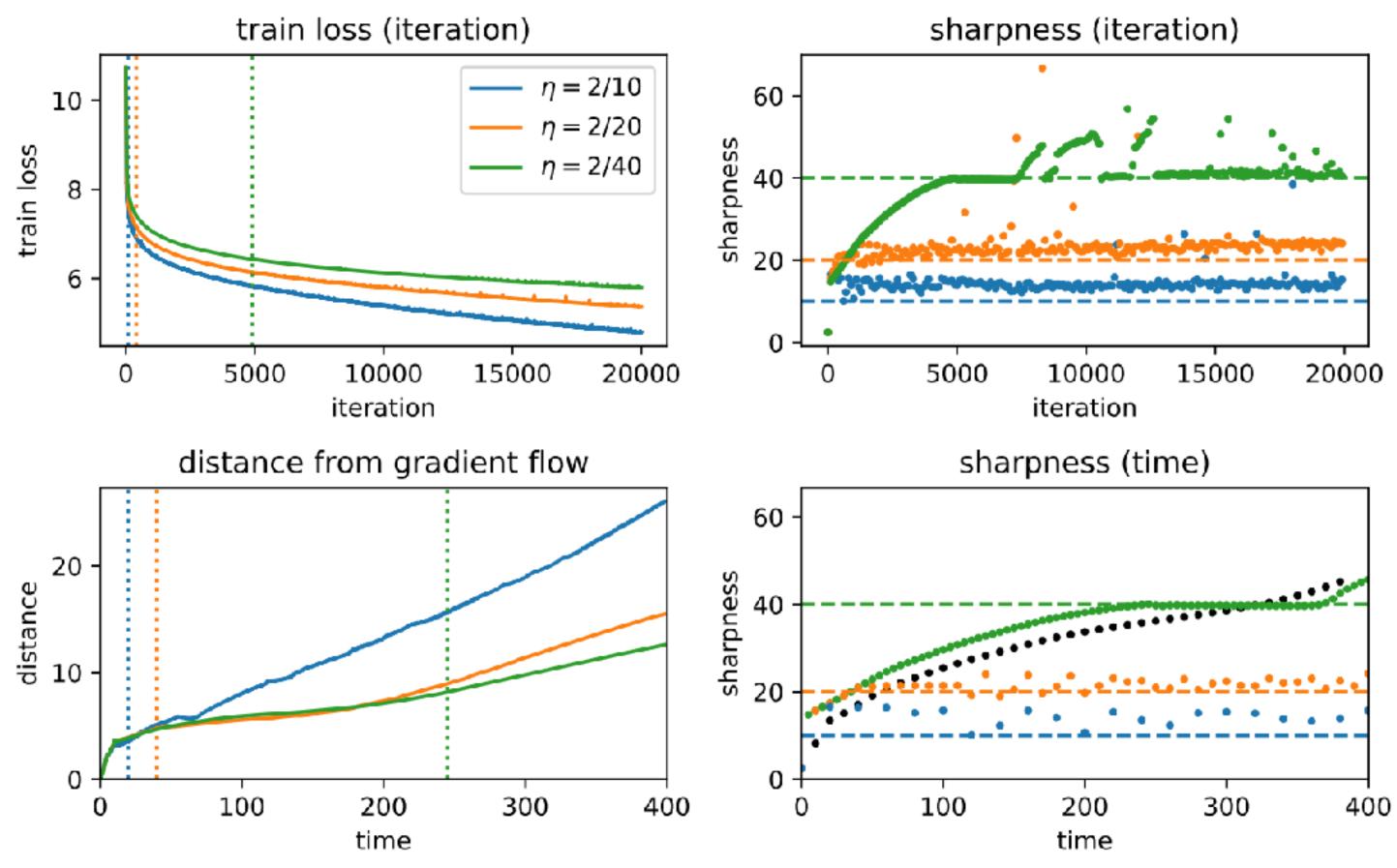
VGG-11 (with / without Batch Norm), ResNet-32 (shown below) 0



Full CIFAR-10 dataset, with some approximation (ghost batching,

Additional Architectures: Transformer

- Transformer trained on WikiText-2 language modelling
- Gradient Flow is never tracked closely



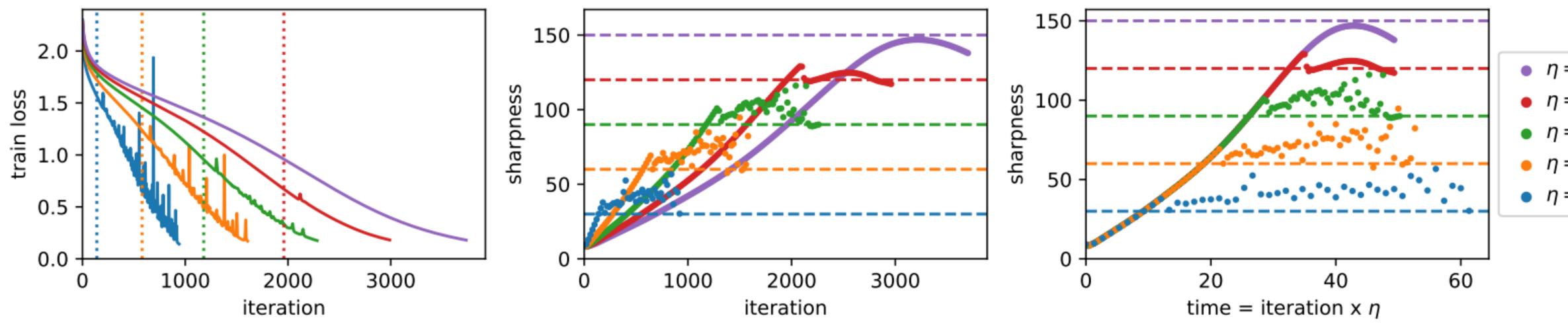
Network Width

- "Wide networks of any depth evolve as linear models under gradient descent" [Lee et al. 2020]
- H changes a vanishingly small amount as width increases
- "Sharpness gain" h_{max}/h_0 is lower as width increases (tends to 1?)



Sharpness tends to lower near the end 0

0

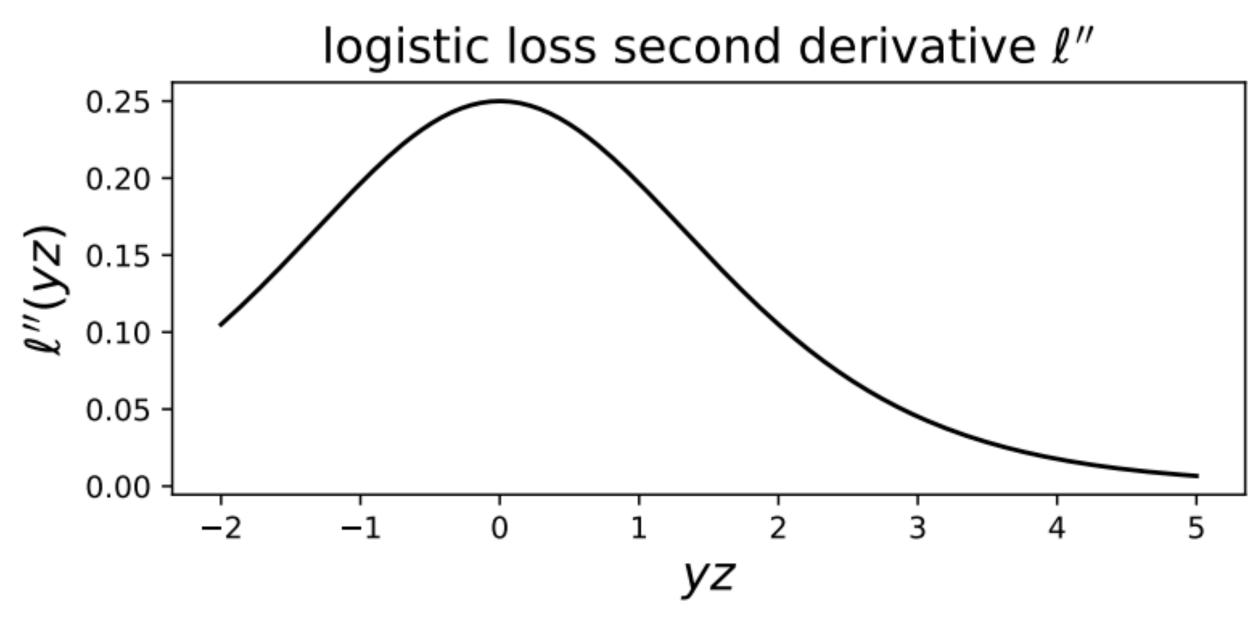


- Authors investigate this by looking at the decomposition of ${f H}$

• $\eta = 2/150$ • $\eta = 2/120$ • $\eta = 2/90$ • $\eta = 2/60$ • $\eta = 2/30$

- Gauss-Newton approximation: $\mathbf{H} \approx \mathbf{J}_{zx}^T \mathbf{H}_z \mathbf{J}_{zx}$ (verified empirically)
- Authors suggest that the *classical* Gauss-Newton $\mathbf{G} = \mathbf{J}_{zx}^T \mathbf{J}_{zx}$ still undergoes progressive sharpening
- ${}^{\circ}\,$ For MSE loss $H_z=I,$ so H will experience the same sharpening trends as G
- $\,$ So maybe for Cross-Entropy, the flattening near the end is caused by a corresponding flattening of H_z

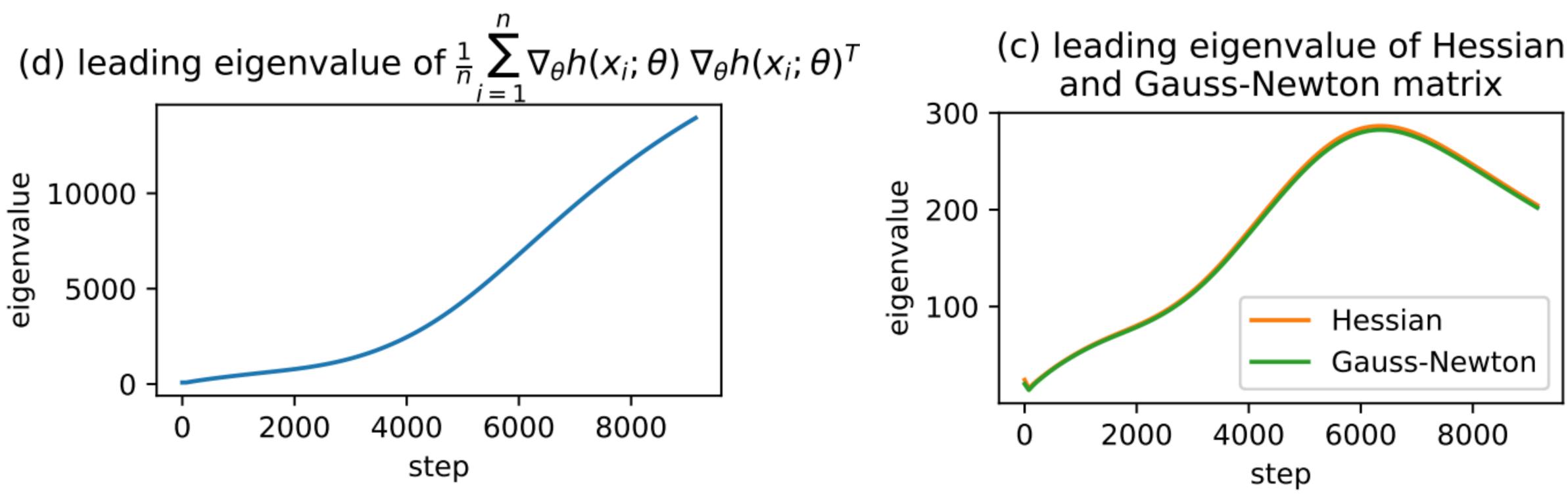
- Suppose we are using binary labels $y \in \{-1,1\}$
- As the model trains, logits z adopt same sign as y, and yz becomes larger
- Accordingly, the second derivative l'' w.r.t z decreases



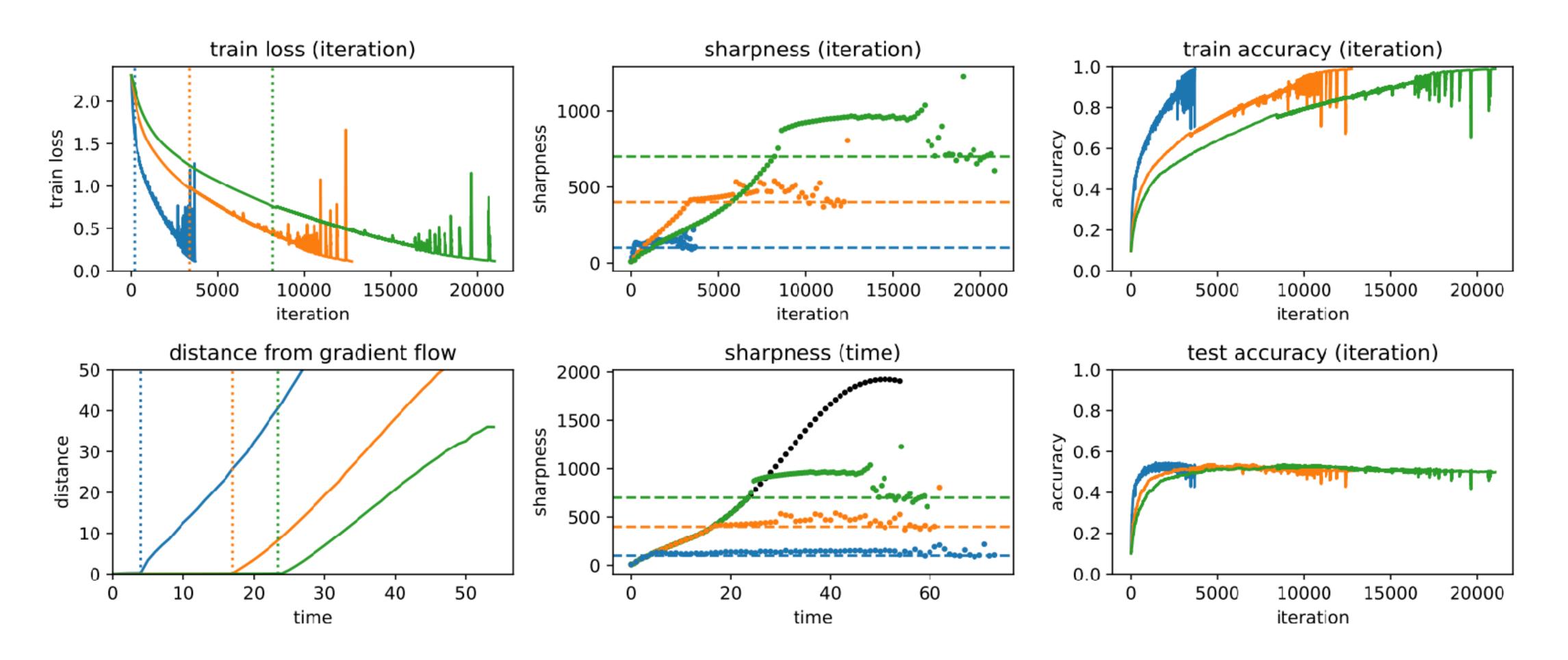
Sharpness of classical Gauss-Newton G grows throughout training

Attenuation of second derivative explains discrepancy

The analysis is similar for multi-class case



Compared to MSE, sharpness seems more random (why?)

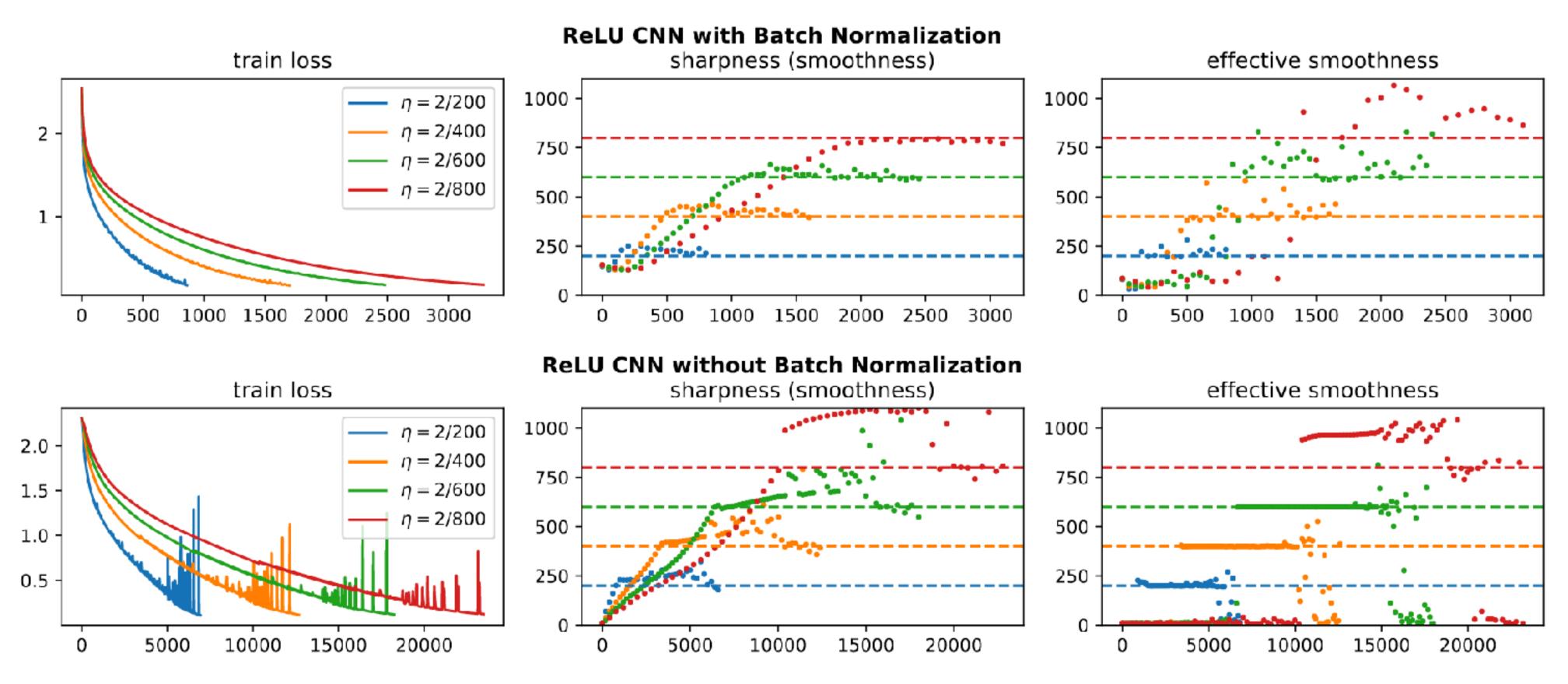


Batch Normalization

- "Effective smoothness": maximum Lipschitz constant of gradient in update direction (scaled from 0 to α)
- In "How does batch normalization help optimization?" [Santurkar et al. 2018] argue that batch norm improves effective smoothness
- Authors argue against these results, saying that effectiveness smoothness may behave more regularly, but isn't improved (there's a difference in interpretation of the plots, shown on next slide).

Batch Normalization

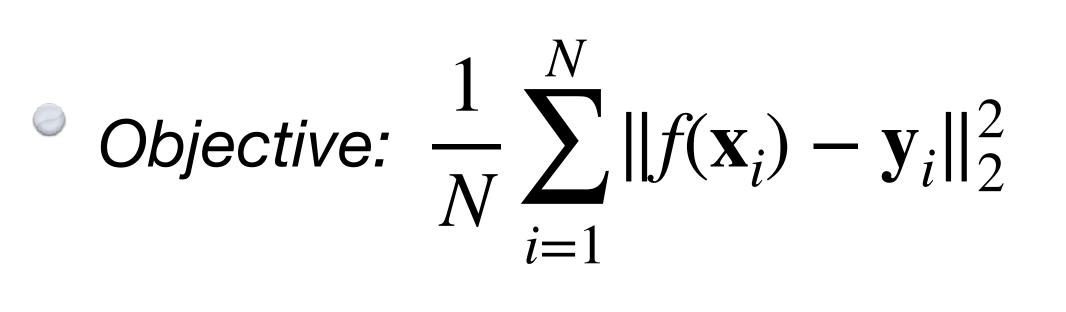
- either the smoothness or the effective smoothness" (p. 56)
- Is this interpretation reasonable?

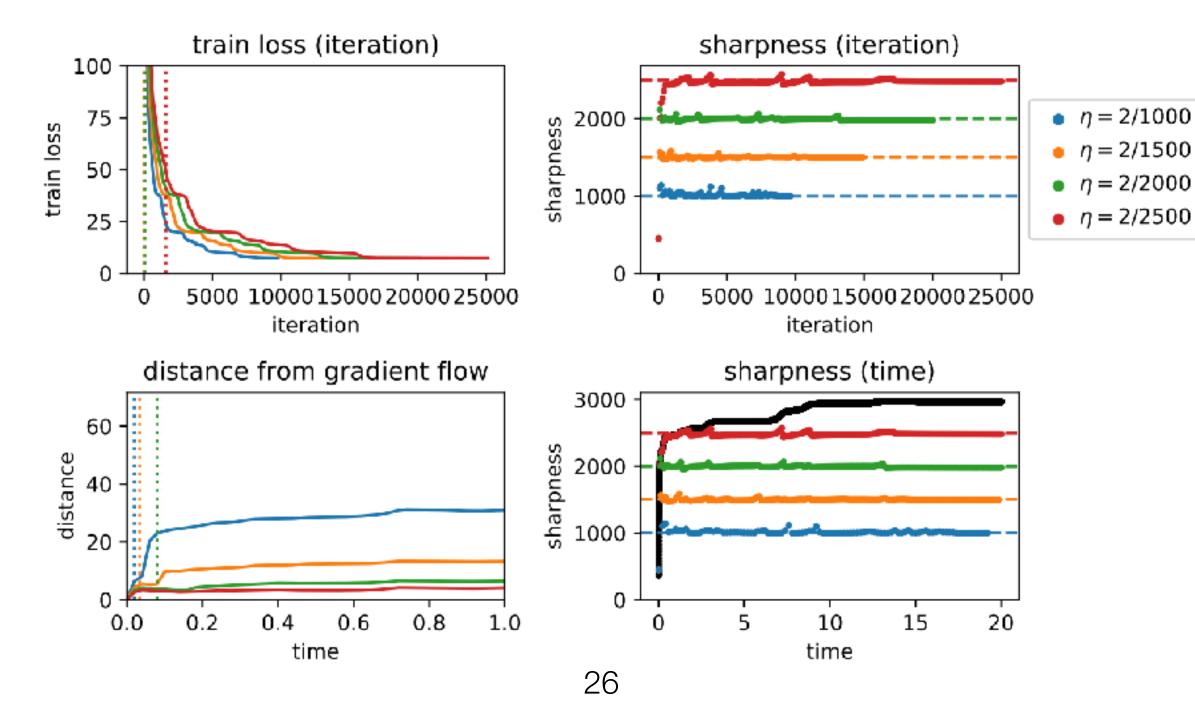


• "... there is no evidence that the use of batch normalization improves

Additional Architectures: Deep Linear Network

Deep linear network: $f(\mathbf{x}) = \mathbf{W}_{20} \dots \mathbf{W}_2 \mathbf{W}_1 \mathbf{x}$ 0





How deep does it actually need to be to show progressive sharpening?

Discussion

- Gradient descent (GD) optimizes loss while restraining itself from going into regions above a step size dependent sharpness
- Convergence analyses of GD that assume bounds on sharpness (L \bigcirc -smoothness) don't apply to reasonable step sizes
- With practical step sizes, GD does not monotonically decrease the loss
- The Edge of Stability is "non-quadratic": GD would quickly diverge (Appendix D) if we run it on an quadratic approximation
- The authors make no claims about sharpness and generalization, although this has been explored in e.g "On large-batch training for deep learning: Generalization gap and sharp minima" [Keskar et al. 2017]

