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Warm up



Gradient Descent and Convergence to global minimum

• If cost function C (fθ) is convex with respect to parameters θ,

convergence of GD is guaranteed

• The loss function of neural networks is not convex

• Where does the gradient descent converge?

• Global or local minimum?

• If the loss function is convex in function space,

• Is it possible to converge to global minimum?

• What kind of functions are we biased towards at initialization?

How do they change during training?
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Neural Networks in Function Space

• Realization function of L-layer network F (L) : RP → F ,

mapping parameters θ to functions fθ in a space F
• Inner product:

〈f , g〉pin = Ex∼pin
[
f (x)Tg(x)

]
pin: distribution of training data

• Inner product defined by multi-dimensional kernel:

K : Rn0 × Rn0 → RnL×nL

〈f , g〉K := Ex ,x ′∼pin
[
f (x)TK (x , x ′)g(x ′)

]
.
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Kernel Gradient

• The dual form F∗: the dual space of F with respect to pin

i.e. the set of linear forms µ : F → R of the form µ = 〈d , ·〉pin
for some d ∈ F .

• Functional derivative of the cost C

• Kernel

Using the fact that partial application of the kernel Ki ,·(x , ·) is

a function in F
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Kernel Gradient

• The dual form

• Functional derivative of the cost C

• Kernel

ΦK : F∗ → F : mapping a dual element µ = 〈d , ·〉pin to the

function fµ such that:

fµ(x) = ΦK (µ)(x) = 〈d ,K (x , ·)〉pin

Using the fact that partial application of the kernel Ki ,·(x , ·)
is a function in F
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Kernel Gradient

Kernel gradient ∇KC |fθ is defined as:

∇KC |fθ = ΦK

(
∂ inf C

∣∣
fθ

)
= Ex∼pin

[
(fθ(x)− f ∗(x))T K (·, x)

]
maps the functional derivative of cost to the above function.

• a generalization of GD to function spaces

∂ inf C |fθ = 〈fθ − f ∗, ·〉pin
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Gradient Flow

∂t fθ(t)

= ∂θ(t)F (θ(t))∂tθ(t)

= −∂θ(t)F (θ(t))∂θ(t)(C ◦ F )(θ(t))

= −∂θ(t)F (θ(t))Ex∼pin
[(
fθ(t)(x)− f (x)

)T (
∂θ(t)F (θ(t))(x)

)]
= −Ex∼pin

[(
fθ(t)(x)− f (x)

)T (
∂θ(t)F (θ(t))(·)

) (
∂θ(t)F (θ(t))(x)

)]
= −Ex∼pin

[(
fθ(t)(x)− f ∗(x)

)T
K (·, x)

]
⇒ K (·, x) =

(
∂θ(t)F (θ(t))(·)

) (
∂θ(t)F (θ(t))(x)

)
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Neural Tangent Kernel



Main Idea

∂t fθ(t) = −Ex∼pin
[(
fθ(t)(x)− f ∗(x)

)T
K (·, x)

]
If the kernel remains constant, we have a linear differential

equation with solution:

ft = f ∗ + e−tΠ(f0 − f ∗)

where Π is a map of : f 7→ ΦK

(
〈f , ·〉pin

)
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Main Idea

∂t fθ(t) = −Ex∼pin
[(
fθ(t)(x)− f ∗(x)

)T
K (·, x)

]
During training, the network function fθ evolves along the

(negative) kernel gradient

∂t fθ(t) = −∇Θ(L)C |fθ(t)

with respect to the neural tangent kernel (NTK)

Θ(L)(θ)
(
x , x ′

)
=

P∑
p=1

(
∂θpF

(L)(θ)(x)
)T (

∂θpF
(L)(θ)

(
x ′
))

⇒ Θ(L)(θ) =
P∑

p=1

∂θpF
(L)(θ)⊗ ∂θpF (L)(θ)
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Neural Tangent Kernel

Θ(L)(θ) =
P∑

p=1

∂θpF
(L)(θ)⊗ ∂θpF (L)(θ)

• Depends on the parameters ⇒ random at initialization,

time-dependent

• By Theorem 1. and 2. at infinite width limit:

• Converges to a deterministic limit at initialization

• Fixed during training
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Notation

• Network function fθ(x) := α̃(L)(x ; θ), where

α(0)(x ; θ) = x

α̃(`+1)(x ; θ) =
1
√
n`
W (`)α(`)(x ; θ) + βb(`)

α(`)(x ; θ) = σ(α̃(`)(x ; θ))
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Initialization

• In the infinite width limit n1, ..., nL−1 →∞
• Initialize the parameters θ ∼ N (0, Idn)

• The output functions (pre-activations) fθ,k , for k = 1, ..., nL, is

a Gaussian processes of covariance Σ(L)

Σ(1)(x , x ′) =
1

n0
xT x ′ + β2

Σ(L+1)(x , x ′) = Ef∼N(0,Σ(L))[σ(f (x))σ(f (x ′))] + β2
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Initialization

An L-layer neural network at initialization, and when

n1, . . . , nL−1 →∞, then the NTK Θ(L) converges in probability to

a deterministic limiting kernel Θ(L) → Θ
(L)
∞ ⊗ Idn

Θ(1)
∞ (x , x ′) = Σ(1)(x , x ′)

Θ(L+1)
∞ (x , x ′) = Θ(L)

∞ (x , x ′)Σ̇(L+1)(x , x ′) + Σ(L+1)(x , x ′),

Proof by induction
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Training

Given a training direction t 7→ dt ∈ F , the parameters θp are

trained following the differential equation:

∂tθp(t) =
〈
∂θpF

(L), dt
〉
pin

If
∫ T

0 ‖dt‖pin dt is bounded for any training time T , and

n1, . . . , nL−1 →∞ then for any t ∈ [0,T ],

Θ(L) → Θ(L)
∞ ⊗ IdnL
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Dynamics of Gradient Descent in Function Space

∂t ft = ΦK

(
〈f ∗ − f , ·〉pin

)
where, K = Θ(L)

∞ ⊗ IdnL

Solution:

ft = f ∗ + e−tΠ(f0 − f ∗)

• Convergence to global minimum

if Π is positive definite, as t →∞, ft → f ∗ and then C (ft)

converges to global minimum

• Motivation for early stopping
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Dynamics of Gradient Descent in Function Space

∂t ft = ΦK

(
〈f ∗ − f , ·〉pin

)
where, K = Θ(L)

∞ ⊗ IdnL

Solution:

ft = f ∗ + e−tΠ(f0 − f ∗)

• Convergence to global minimum

• Motivation for early stopping

avoid fitting the eigenfunctions of f ∗ − f0 with lower

eigenvalues
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