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Gradient Descent and Convergence to global minimum

If cost function C(fy) is convex with respect to parameters 6,

convergence of GD is guaranteed

The loss function of neural networks is not convex

e Where does the gradient descent converge?
e Global or local minimum?

If the loss function is convex in function space,

e |s it possible to converge to global minimum?

What kind of functions are we biased towards at initialization?

How do they change during training?



Neural Networks in Function Space

e Realization function of L-layer network F(1) : RP — F,

mapping parameters 6 to functions fy in a space F

e Inner product:
(F,8) i = B | F(X) T ()]

p': distribution of training data

e Inner product defined by multi-dimensional kernel:
K :R™ x R — R™XM

(F,8)k = B | F()TK(x,X)g(X)]



Kernel Gradient

e The dual form F*: the dual space of F with respect to p™
i.e. the set of linear forms i : 7 — R of the form p = (d,-) ;i
for some d € F.
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Kernel Gradient

e The dual form
e Functional derivative of the cost C

e Kernel
Pk : F* — F: mapping a dual element ;i = (d, ) ;i to the
function £, such that:

) = Pr()(x) = (d, K(x, )

Using the fact that partial application of the kernel Kj.(x, ")
is a function in F



Kernel Gradient

Kernel gradient Vk C|, is defined as:

Vi Cl = 0k (9Cl, ) = By [(fa6) = £(x))T K- 0)]
maps the functional derivative of cost to the above function.

e a generalization of GD to function spaces

OF Clg, = (fg — F*, ) pin



Gradient Flow

atﬁ)(t)
= Op(+)F(0(1))0:0(t)
= —89(t)F(9(t a@(t)(c o F)(6(t))

)

= — () F (OB | (i) — F(x)) T (On(oF(B(1))(x))]
i | (fiey(0) = £00) T (Do) FOD)() (Do FOD)(x)) ]

= —E,pin [(fé(t)( ) — f(x ))TK("X)}

= K(,%) = (Do) FOD)()) (Do F(O())())



Neural Tangent Kernel




T

Buo(t) = ~Exepin | (i) = £(x)) T K ()]

If the kernel remains constant, we have a linear differential
equation with solution:

ﬂ“ — f*‘l‘e_tn(fb o f'*)

where M is a map of : f — g ((f, ->p,-n)



Defi(t) = ~Eyepi | (fao () — F(x))T K(-, )]

During training, the network function fy evolves along the
(negative) kernel gradient

Aefor) = —Vew Clh,

with respect to the neural tangent kernel (NTK)

(20, FOO)) " (20,FO6) ()

M~

o)) (x,x") =

=1
P

:>@(L)( ) = Zaep ()( ) ® 8p, F ()( )

p
p=1



Neural Tangent Kernel

o)) = Zaep (6) ® 9y, F(M(6)

e Depends on the parameters = random at initialization,
time-dependent
e By Theorem 1. and 2. at infinite width limit:

e Converges to a deterministic limit at initialization
e Fixed during training



e Network function f3(x) := a(b(x; ), where



Initialization

e In the infinite width limit ny,...,n;_1 — o0
e Initialize the parameters 6 ~ N(0, Id},)

e The output functions (pre-activations) fy x, for k =1,...,n, is
a Gaussian processes of covariance (1)

YW (x,x) = nlOXTX/ + B
D (x,x') = Ep (o zw) o (F)a(FO)] + 52
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Initialization

An L-layer neural network at initialization, and when
ni,...,n._1 — 0o, then the NTK ©(1) converges in probability to
a deterministic limiting kernel ©(1) — @&) ® Ild,

@g)(X,X') = Z(l)(X7X/)
@(Offl)(x,xl) _ @Oé)(x7 X/)i(L+1)(X7 X/) + Z(LJrl)(X, X/)7

Proof by induction
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Given a training direction t — d; € F, the parameters 0, are
trained following the differential equation:

Bu0p(t) = {9, FV, dt>pm

If fOT ||de|| pin dt is bounded for any training time T, and
ni,...,n._1 — oo then for any t € [0, T,

o) - ol id,
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Dynamics of Gradient Descent in Function Space

Ocfe = Oxc ((F* — F)pn ) where, K = 010 @ Idy,
Solution:

f;_“ — f*_'_e—tl'l(fo o f*)

e Convergence to global minimum
if M is positive definite, as t — oo, f; — f* and then C(f;)
converges to global minimum
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Dynamics of Gradient Descent in Function Space

Oify = Ok (<f* = £ ->pf~) where, K = 0 ® Idy,

Solution:
ﬂ — f*—l—e—tn(fb o f*)

e Convergence to global minimum

e Motivation for early stopping
avoid fitting the eigenfunctions of f* — fy with lower

eigenvalues
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