Gradient-based Hyperparameter Optimization through Reversible Learning

Dougal Maclaurin, David Duvenaud, Ryan P. Adams

CSC 2541 presentation by Haoping Xu, Zhihuan Yu, Jingcheng Niu

Overview

- The bilevel hyperparameter optimization of SGD with momentum
- How to calculate the gradient of the inner SGD
- Implementation detail: precision
- Experiments
 - Dataset distillation
 - Learning rate scheduling

Hyperparameter Optimization of SGD with momentum

Inner objective:

SGD with momentum

Algorithm 1 Stochastic gradient descent with momentum

1: input: initial w_1 , decays γ , learning rates α , loss function $L(\mathbf{w}, \boldsymbol{\theta}, t)$

2: initialize
$$\mathbf{v}_1 = \mathbf{0}$$

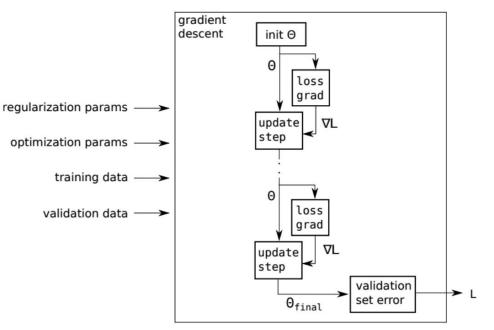
3: for
$$t = 1$$
 to T do

4:
$$\mathbf{g}_t = \nabla_{\mathbf{w}} L(\mathbf{w}_t, \boldsymbol{\theta}, t)$$

5:
$$\mathbf{v}_{t+1} = \gamma_t \mathbf{v}_t - (1 - \gamma_t) \mathbf{g}_t$$

$$6: \quad \mathbf{w}_{t+1} = \mathbf{w}_t + \alpha_t \mathbf{v}_t$$

- 7: end for
- 8: **output** trained parameters \mathbf{w}_T
- ▷ evaluate gradient
 ▷ update velocity
 ▷ update position



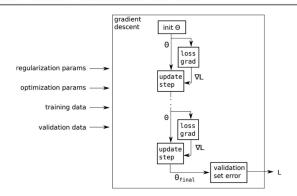
Reverse-mode differentiation (RMD) of SGD

Algorithm 2 Reverse-mode differentiation of SGD 1: input: $\mathbf{w}_T, \mathbf{v}_T, \boldsymbol{\gamma}, \boldsymbol{\alpha}$, train loss $L(\mathbf{w}, \boldsymbol{\theta}, t)$, loss $f(\mathbf{w})$ 2: initialize $d\mathbf{v} = \mathbf{0}, d\theta = \mathbf{0}, d\alpha_t = \mathbf{0}, d\gamma = \mathbf{0}$ 3: initialize $d\mathbf{w} = \nabla_{\mathbf{w}} f(\mathbf{w}_T)$ 4: for t = T counting down to 1 do $d\alpha_t = d\mathbf{w}^\mathsf{T}\mathbf{v}_t$ 5: $\begin{aligned} \mathbf{w}_{t-1} &= \mathbf{w}_t - \alpha_t \mathbf{v}_t \\ \mathbf{g}_t &= \nabla_{\mathbf{w}} L(\mathbf{w}_t, \boldsymbol{\theta}, t) \end{aligned} \right\} \text{ exactly reverse gradient descent }$ 6: 7: $\mathbf{v}_{t-1} = [\mathbf{v}_t + (1 - \gamma_t)\mathbf{g}_t]/\gamma_t$) operations 8: 9: $d\mathbf{v} = d\mathbf{v} + \alpha_t d\mathbf{w}$ $d\gamma_t = d\mathbf{v}^{\mathsf{T}}(\mathbf{v}_t + \mathbf{g}_t)$ 10: $d\mathbf{w} = d\mathbf{w} - (1 - \gamma_t) d\mathbf{v} \nabla_{\mathbf{w}} \nabla_{\mathbf{w}} L(\mathbf{w}_t, \boldsymbol{\theta}, t)$ 11: $d\boldsymbol{\theta} = d\boldsymbol{\theta} - (1 - \gamma_t) d\mathbf{v} \nabla_{\boldsymbol{\theta}} \nabla_{\mathbf{w}} L(\mathbf{w}_t, \boldsymbol{\theta}, t)$ 12: 13: $d\mathbf{v} = \gamma_t d\mathbf{v}$ 14: end for 15: output gradient of $f(\mathbf{w}_T)$ w.r.t $\mathbf{w}_1, \mathbf{v}_1, \boldsymbol{\gamma}, \boldsymbol{\alpha}$ and $\boldsymbol{\theta}$

input: initial w₁, decays γ, learning rates α, loss function L(w, θ, t)
 initialize v₁ = 0
 for t = 1 to T do
 g_t = ∇_wL(w_t, θ, t) ▷ evaluate gradient
 v_{t+1} = γ_tv_t - (1 - γ_t)g_t ▷ update velocity
 w_{t+1} = w_t + α_tv_t ▷ update position
 end for

Algorithm 1 Stochastic gradient descent with momentum

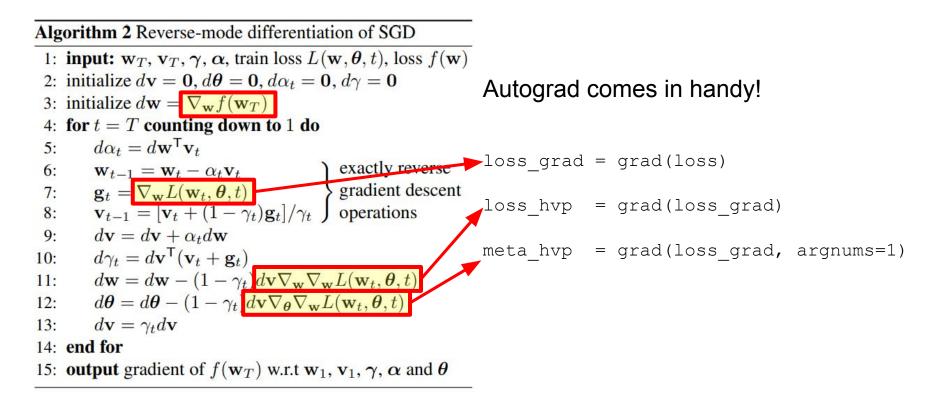
8: **output** trained parameters \mathbf{w}_T



Reverse-mode differentiation (RMD) of SGD

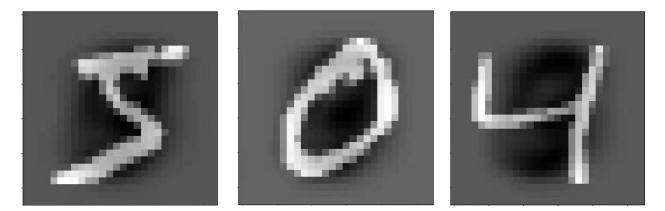
Algorithm 2 Reverse-mode differentiation of SGD 1: input: $\mathbf{w}_T, \mathbf{v}_T, \boldsymbol{\gamma}, \boldsymbol{\alpha}$, train loss $L(\mathbf{w}, \boldsymbol{\theta}, t)$, loss $f(\mathbf{w})$ 2: initialize $d\mathbf{v} = \mathbf{0}, d\boldsymbol{\theta} = \mathbf{0}, d\alpha_t = \mathbf{0}, d\gamma = \mathbf{0}$ 3: initialize $d\mathbf{w} = \nabla_{\mathbf{w}} f(\mathbf{w}_T)$ 4: for t = T counting down to 1 do $d\alpha_t = d\mathbf{w}^\mathsf{T}\mathbf{v}_t$ 5: $\mathbf{w}_{t-1} = \mathbf{w}_t - \alpha_t \mathbf{v}_t$ $\mathbf{g}_t = \nabla_{\mathbf{w}} L(\mathbf{w}_t, \boldsymbol{\theta}, t)$ exactly reverse 6: Quite a few of gradients! gradient descent 7: $\mathbf{v}_{t-1} = [\mathbf{v}_t + (1 - \gamma_t)\mathbf{g}_t]/\gamma_t$ 8: operations 9: $d\mathbf{v} = d\mathbf{v} + \alpha_t d\mathbf{w}$ $d\gamma_t = d\mathbf{v}^\mathsf{T}(\mathbf{v}_t + \mathbf{g}_t)$ 10: $d\mathbf{w} = d\mathbf{w} - (1 - \gamma_t) \frac{d\mathbf{v} \nabla_{\mathbf{w}} \nabla_{\mathbf{w}} L(\mathbf{w}_t, \boldsymbol{\theta}, t)}{d\mathbf{v} \nabla_{\mathbf{w}} \nabla_{\mathbf{w}} L(\mathbf{w}_t, \boldsymbol{\theta}, t)}$ 11: $d\boldsymbol{\theta} = d\boldsymbol{\theta} - (1 - \gamma_t \, \mathbf{d} \mathbf{v} \nabla_{\boldsymbol{\theta}} \nabla_{\mathbf{w}} L(\mathbf{w}_t, \boldsymbol{\theta}, t)$ 12: 13: $d\mathbf{v} = \gamma_t d\mathbf{v}$ 14: end for 15: output gradient of $f(\mathbf{w}_T)$ w.r.t $\mathbf{w}_1, \mathbf{v}_1, \boldsymbol{\gamma}, \boldsymbol{\alpha}$ and $\boldsymbol{\theta}$

Reverse-mode differentiation (RMD) of SGD

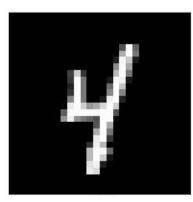


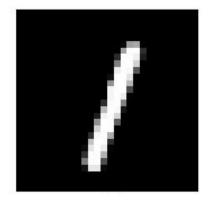
Side note: MNIST data

The paper's MNIST



Original MNIST





Numerical Precision

In practice, Algorithm 2 fails due to finite numerical precision.

5:
$$\mathbf{v}_t = \gamma \mathbf{v}_{t-1} + (1 - \gamma) \mathbf{g}_{t-1}$$

8: $\mathbf{v}_t = [\mathbf{v}_t + (1 - \gamma) \mathbf{g}_t]/\gamma_t$

8:
$$\mathbf{v}_{t-1} = [\mathbf{v}_t + (1 - \gamma_t)\mathbf{g}_t]/\gamma_t$$

The reverse process requires repeated multiplication by $1/\gamma$, causing errors

accumulate exponentially!

Exactly Reversible Multiplication

So instead, we represent v and w each with a 64-bit integer and a remainder buffer.

Using this method we have can achieve float64 precision and our computations is reversible.

Algorithm 3 Exactly reversible multiplication by a ratio	
1: Input: Information bu	ffer <i>i</i> , value <i>c</i> , ratio n/d
2: $i = i \times d$	▷ make room for new digit
3: $i = i + (c \mod d)$	▷ store digit lost by division
4: $c = c \div d$	▷ divide by denominator
5: $c = c \times n$	▷ multiply by numerator
6: $c = c + (i \mod n)$	⊳ add digit from buffer
7: $i = i \div n$	▷ shorten information buffer
8: return updated buffer	i, updated value c

Experiments

- Dataset distillation
- Learning rate scheduling

