Deep Equilibrium Models

Shaojie Bai, J. Zico Kolter, Vladlen Koltun

Presented by: Alex Wang, Gary Leung, Sasha Doubov

Agenda

- 1. Weight tying and infinite depth models
- 2. Implicit layer formulation
- 3. Approximation and computational considerations
- 4. DEQ stacking?
- 5. Experiments

Motivation

Let's start with a typical deep NN architecture:

 $z_1 = x$ $z_{i+1} = \sigma(W_i z_i + b_i), \ i = 1, \dots, k-1$ $h(x) = W_k z_k + b_k$

Image courtesy of <u>Deep Implicit Layers Tutorial</u>

Motivation

Weight-Tying: Use the same W and inject the input for each layer

Image courtesy of <u>Deep Implicit Layers Tutorial</u>

Motivation

Weight-Tying: Use the same W and inject the input for each layer

Focusing on activation iteration:

 $z_{i+1} = \sigma(Wz_i + Ux + b), \ i = 1, \dots, k-1$

Image courtesy of Deep Implicit Layers Tutorial

In the infinite limit, as i $\rightarrow \infty$ (under nice conditions)

Key insight: The network's activations z* approach a fixed point!

Deep Equilibrium Model Overview

Implicit vs. Explicit Layers

Explicit Layers:

Typical Neural Network layers, which can directly compute the output and backward pass through backprop

Implicit Layers:

Based on solving solution to some problem, such that **x**, **z** satisfy some condition

- Arises in naturally in some domains, such as ODEs and *fixed-points*

Forward Pass

Naive Approach: we could repeatedly apply the function until convergence

$$z^{[i+1]} = f_{\theta}(z^{[i]}, x)$$
 for $i = 0, 1, 2, ...$

Better Way: Use a root-finding algorithm to find the fixed point

1. Reformulate fixed-point as finding the root:

 $g_ heta(z^*,x) = f_ heta(z^*,x) - z^* o 0$ We'll use this notation from here on!

2. Apply generic root-finding algorithm (ex. Newton's method!)

 $\mathbf{z}^* = \operatorname{RootFind}(g_\theta; x)$

Backward Pass

We need to update the parameters Θ in our model, to minimize our loss function **Challenge:** differentiating through fixed point $\frac{\partial z^*}{\partial(\cdot)}$

Naive Approach: Built-in Autodiff, through solver computation graph

- Memory Issues
- Floating Point Errors

Better Approach: Use Implicit Function Theorem!

Implicit Function Theorem (Informal)

Let f be a relation with inputs x_0, z_0 1. $f(x_0, z_0) = 0$

2. f is continuously differentiable with non-singular Jacobian $\partial_1 f(x_0, z_0) \in \mathbb{R}^{n \times n}$

Then there exist neighborhoods (open sets) S_{x_0}, S_{z_0} around $x_0 \& z_0$ and a function $z^*: S_{x_0} \to S_{z_0}$

1.
$$z_0 = z^*(x_0)$$

2. $f(x, z^*(x)) = 0$

2. $f(x, z^*(x)) = 0 \quad \forall x \in S_{x_0}$ 3. z^* is differentiable on S_{x_0}

Implicit Function Theorem

High-level Idea:

- Convert a relation to a function in a local region and find its derivative

$$f(x,z) = x^2 + z^2 - 1 = 0$$

- Explicit function at A:

$$g_A(x) = \sqrt{1 - x^2}$$

- IFT allows us to find the derivative of *g*, *without* the explicit form

Implicit Function Theorem

Let $f: \mathbb{R}^p \times \mathbb{R}^n \to \mathbb{R}^n$ and $x_0 \in \mathbb{R}^p, z_0 \in \mathbb{R}^n$ be such $f(x, z) = x^2 + z^2 - 1 = 0$ that: $f(x_0, z_0) = 0$ 2. f is continuously differentiable with non-singular Jacobian $\partial_1 f(x_0, z_0) \in \mathbb{R}^{n \times n}$ Then there exist open sets $S_{x_0} \subset \mathbb{R}^p$ and $S_{z_0} \subset \mathbb{R}^n$ Containing x_0 and z_0 respectively, and a unique continuous function $z^*: S_{x_0} = S_{x_0} + S_{x_0}$

1.
$$z_0 = z^*(x_0)$$

2. $f(x, z^*(x)) = 0 \quad \forall x \in S_{x_0}$
3. z^* is differentiable on S_{x_0}

Backwards Pass

$$z_{0} = f(x_{0}, z_{0})$$

By IFT

$$z^{*}(x) = f(x, z^{*}(x)) \quad \forall x \in S_{x_{0}}$$

$$\partial z^{*}(x_{0}) = \partial_{0} f(x_{0}, z_{0}) + \partial_{1} f(x_{0}, z_{0}) \partial z^{*}(x_{0})$$

$$\partial z^{*}(x_{0}) = [I - \partial_{1} f(x_{0}, z_{0})]^{-1} \partial_{0} f(x_{0}, z_{0}).$$

Backwards Pass - DEQ

- Backward Pass:
 - Solve using root finding (e.g. Newtons)

VJP easily obtained from Pytorch/Jax/etc.

$$g_{\theta}(z^*;x) = f_{\theta}(z^*;x) - z^*$$

Approximate Inverse Jacobian - Broyden's Method

• Expensive to calculate the inverse Jacobian during root finding for both forwards and backwards!

• Broyden's Method (quasi-newton solver):

• During root finding, approximates the inverse Jacobian using

$$J_{g_{\theta}}^{-1}|_{z^{[i+1]}} \approx B_{g_{\theta}}^{[i+1]} = B_{g_{\theta}}^{[i]} + \frac{\Delta z^{[i+1]} - B_{g_{\theta}}^{[i]} \Delta g_{\theta}^{[i+1]}}{\Delta z^{[i+1]^{\top}} B_{g_{\theta}}^{[i]} \Delta g_{\theta}^{[i+1]}} \Delta z^{[i+1]^{\top}} B_{g_{\theta}}^{[i]}$$

Initial Guess: $B_{g_{ heta}}^{[0]} = -I$ $g_{ heta}(z^*;x) = f_{ heta}(z^*;x) - z^*$

DEQ Memory

- Very memory efficient because forward and backward passes just use root-finding algorithms.
- Avoids over all the overhead from uncurling backpropagating steps.
- Storage:
 - \circ Equilibrium Point z^{*}
 - \circ Network Input ${\mathcal X}$
 - \circ Model $f_{ heta}$
 - VJP (*no Jacobian construction needed!)

Expressivity of DEQs

Intuition:

Consider a simple function composition Transforming this into a DEQ:

$$f(z,x) = f\left(\left\lfloor \begin{array}{c} z_1 \\ z_2 \end{array} \right\rfloor, x \right) = \left\lfloor \begin{array}{c} g_1(x) \\ g_2(z_1) \\ \end{array} \right]$$

/Γ...

Thus, the equilibrium point is:

$$z^{\star} = f(z^{\star}, x) \iff z_1^{\star} = g_1(x), \ z_2^{\star} = g_2(z_1^{\star}) = g_2(g_1(x))$$

The output equilibrium is the output of the function! *(can be extended to arbitrary computation graph)*

DEQ Stacking?

• Stacking DEQs don't really work, as a single DEQ layer can model any amount of stacked DEQ layers.

Intuition:

Consider a stack of 2 DEQ layers:

$$z_1^\star = f_1(z_1^\star, x) \longrightarrow z_2^\star = f(z_2^\star, z_1^\star)$$

This is equivalent to the following single equilibrium problem:

$$z^{\star} = \begin{bmatrix} z_1^{\star} \\ z_2^{\star} \end{bmatrix} = \begin{bmatrix} f_1(z^{\star}, x) \\ f_2(z_2^{\star}, z_1^{\star}) \end{bmatrix} = f(z^{\star}, x)$$

Experiments

- Apply Deep Equilibrium Networks to sequence modelling tasks
 - Sequence empirically converge
 - Already use of weight tying over the temporal sequence (Trellis Nets & Transformer models)
 - Long-range copy-memory, Penn Treebank Language Modelling, WikiText-103
- Demonstrate the memory efficiency and expressivity of DEQ models given similar parameter counts as well as the speed of computation

Convergence Caveat

- One might expect the network to diverge in the infinite limit
- In practice, many networks do not, which is explored more formally in a later work [<u>Kolter et. al 2020</u>]
- In this work, the authors empirically show that the contributions of subsequent layers diminish at very large depths

Experiments

Word-level Language Modeling w/ WikiText-103 (WT103)					
Model	# Params	Non-Embedding Model Size	Test perplexity	Memory [†]	
Generic TCN [7]	150M	34M	45.2	-	
Gated Linear ConvNet [17]	230M	-	37.2	-	
AWD-QRNN [33]	159M	51M	33.0	7.1GB	
Relational Memory Core [40]	195M	60M	31.6	-	
Transformer-XL (X-large, adaptive embed., on TPU) [16]	257M	224M	18.7	12.0GB	
70-layer TrellisNet (+ auxiliary loss, etc.) [8]	180M	45M	29.2	24.7GB	
70-layer TrellisNet with gradient checkpointing	180M	45M	29.2	5.2GB	
DEQ-TrellisNet (ours)	180M	45M	29.0	3.3GB	
Transformer-XL (medium, 16 layers)	165M	44M	24.3	8.5GB	
DEQ-Transformer (medium, ours).	172M	43M	24.2	2.7GB	
Transformer-XL (medium, 18 layers, adaptive embed.)	110 M	72M	23.6	9.0GB	
DEQ-Transformer (medium, adaptive embed., ours)	110 M	70M	23.2	3.7GB	
Transformer-XL (small, 4 layers)	139M	4.9M	35.8	4.8GB	
Transformer-XL (small, weight-tied 16 layers)	138M	4.5M	34.9	6.8GB	
DEQ-Transformer (small, ours).	138M	4.5M	32.4	1.1GB	
		Not SOTA, but good at Efficien			

same param size

22

Experiments - Runtime

Table 4: Runtime ratios between DEQs and corresponding deep networks at training and inference $(> 1 \times \text{ implies DEQ is slower})$. The ratios are benchmarked on WikiText-103.

DEQ / 18-layer Transformer		DEQ / 70-layer TrellisNet		
Training	Inference	Training	Inference	
$2.82 \times$	1.76×	$2.40 \times$	1.64×	

- Notice DEQs are slower!
- This is a consequence of solving an inner optimization inside the network

Conclusion

- Deep Equilibrium Models are a weight tied, approximately infinite depth neural network
 - Output is the fixed point of some neural network function
- Computes two root finding solutions for both the forward and backwards pass
 - Uses IFT to compute the gradient updates rather than backpropagation and autodiff through the iterative graph
- Performs comparatively to SOTA models of the same size but are considerably more memory efficient
 - Typically slower due to the inner loop optimization both forward and backwards

References

Deep Implicit Layers Tutorial - <u>http://implicit-layers-tutorial.org/</u>

Deep Equilibrium Models [Bai 2019] - https://arxiv.org/abs/1909.01377