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Agenda

1. Weight tying and infinite depth models
2. Implicit layer formulation
3. Approximation and computational considerations
4. DEQ stacking?
5. Experiments
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Motivation

Let’s start with a typical deep NN architecture:

3Image courtesy of Deep Implicit Layers Tutorial

http://implicit-layers-tutorial.org/


Motivation

Weight-Tying: Use the same W and inject the input for each layer

4Image courtesy of Deep Implicit Layers Tutorial

Just as expressive!

http://implicit-layers-tutorial.org/


Motivation

Weight-Tying: Use the same W and inject the input for each layer

5Image courtesy of Deep Implicit Layers Tutorial

Focusing on activation iteration:

http://implicit-layers-tutorial.org/


In the infinite limit, as i -> ∞ (under nice conditions)

6

Key insight: The network’s activations z* approach a fixed point!

This is a DEQ!



Deep Equilibrium Model Overview
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Implicit vs. Explicit Layers

Explicit Layers: 
Typical Neural Network layers, which can directly 
compute the output and backward pass through 
backprop

Implicit Layers:
Based on solving solution to some problem, such 
that x, z satisfy some condition

- Arises in naturally in some domains, such as 
ODEs and fixed-points

8Image courtesy of Deep Implicit Layers Tutorial

http://implicit-layers-tutorial.org/


Forward Pass

Naive Approach: we could repeatedly apply the function until convergence

Better Way:  Use a root-finding algorithm to find the fixed point 

1. Reformulate fixed-point as finding the root:

 
2. Apply generic root-finding algorithm (ex. Newton’s method!)
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We’ll use this notation from here on!



Backward Pass

We need to update the parameters Ө in our model, to minimize our loss function

Challenge: differentiating through fixed point

Naive Approach: Built-in Autodiff, through solver computation graph

- Memory Issues
- Floating Point Errors

Better Approach: Use Implicit Function Theorem!
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Implicit Function Theorem (Informal)

Let    be a relation with inputs 
1. 
2.     is continuously differentiable with non-singular Jacobian 
  
Then there exist neighborhoods (open sets) 
around       &       and a function

1.
2.
3.   is differentiable on  
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Image courtesy of Wikipedia

https://en.wikipedia.org/wiki/Implicit_function_theorem


Implicit Function Theorem

High-level Idea:

- Convert a relation to a function in a local region and 
find its derivative

- Explicit function at A:

- IFT allows us to find the derivative of g, without the 
explicit form
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Implicit Function Theorem

Let and      be such 
that:
1. 
2.     is continuously differentiable with non-singular Jacobian 
  
Then there exist open sets and
Containing       and       respectively, and a unique continuous 
function                        such that

1.
2.
3.   is differentiable on  
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Backwards Pass 
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By IFT



Backwards Pass - DEQ

● Backward Pass:
○ Solve using root finding (e.g. Newtons)
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VJP easily obtained from Pytorch/Jax/etc.



Approximate Inverse Jacobian - Broyden’s Method

● Expensive to calculate the inverse Jacobian during root finding for both 
forwards and backwards!

● Broyden’s Method (quasi-newton solver):
○ During root finding, approximates the inverse Jacobian using
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Initial Guess: 



DEQ Memory

● Very memory efficient because forward and backward passes just use 
root-finding algorithms.

● Avoids over all the overhead from uncurling backpropagating steps.
● Storage:

○ Equilibrium Point

○ Network Input

○ Model

○ VJP (*no Jacobian construction needed!) 
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Expressivity of DEQs

Intuition: 

Consider a simple function composition
Transforming this into a DEQ: 

Thus, the equilibrium point is:

The output equilibrium is the output of the function! 
(can be extended to arbitrary computation graph)

18



DEQ Stacking?

● Stacking DEQs don’t really work, as a single DEQ layer can model any 
amount of stacked DEQ layers.

Intuition:

Consider a stack of 2 DEQ layers:

This is equivalent to the following single equilibrium problem:
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Experiments

● Apply Deep Equilibrium Networks to sequence modelling tasks
○ Sequence empirically converge
○ Already use of weight tying over the temporal sequence (Trellis Nets & Transformer models)
○ Long-range copy-memory, Penn Treebank Language Modelling, WikiText-103

● Demonstrate the memory efficiency and expressivity of DEQ models given 
similar parameter counts as well as the speed of computation
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Convergence Caveat

● One might expect the network to diverge in the infinite limit
● In practice, many networks do not, which is explored more formally in a later 

work [ Kolter et. al 2020] 
● In this work, the authors empirically show that the contributions of subsequent 

layers diminish at very large depths
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https://arxiv.org/abs/2006.08591


Experiments

22Not SOTA, but good at 
same param size

Efficient!



Experiments - Runtime
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● Notice DEQs are slower!

● This is a consequence of solving an inner optimization inside the 
network



Conclusion

● Deep Equilibrium Models are a weight tied, approximately infinite depth neural 
network

○ Output is the fixed point of some neural network function
● Computes two root finding solutions for both the forward and backwards pass

○ Uses IFT to compute the gradient updates rather than backpropagation and autodiff through 
the iterative graph

● Performs comparatively to SOTA models of the same size but are 
considerably more memory efficient

○ Typically slower due to the inner loop optimization both forward and backwards
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