
Deep Equilibrium Models
Shaojie Bai, J. Zico Kolter, Vladlen Koltun

Presented by: Alex Wang, Gary Leung, Sasha Doubov

Agenda

1. Weight tying and infinite depth models
2. Implicit layer formulation
3. Approximation and computational considerations
4. DEQ stacking?
5. Experiments

2

Motivation

Let’s start with a typical deep NN architecture:

3Image courtesy of Deep Implicit Layers Tutorial

http://implicit-layers-tutorial.org/

Motivation

Weight-Tying: Use the same W and inject the input for each layer

4Image courtesy of Deep Implicit Layers Tutorial

Just as expressive!

http://implicit-layers-tutorial.org/

Motivation

Weight-Tying: Use the same W and inject the input for each layer

5Image courtesy of Deep Implicit Layers Tutorial

Focusing on activation iteration:

http://implicit-layers-tutorial.org/

In the infinite limit, as i -> ∞ (under nice conditions)

6

Key insight: The network’s activations z* approach a fixed point!

This is a DEQ!

Deep Equilibrium Model Overview

7

Implicit vs. Explicit Layers

Explicit Layers:
Typical Neural Network layers, which can directly
compute the output and backward pass through
backprop

Implicit Layers:
Based on solving solution to some problem, such
that x, z satisfy some condition

- Arises in naturally in some domains, such as
ODEs and fixed-points

8Image courtesy of Deep Implicit Layers Tutorial

http://implicit-layers-tutorial.org/

Forward Pass

Naive Approach: we could repeatedly apply the function until convergence

Better Way: Use a root-finding algorithm to find the fixed point

1. Reformulate fixed-point as finding the root:

2. Apply generic root-finding algorithm (ex. Newton’s method!)

9

We’ll use this notation from here on!

Backward Pass

We need to update the parameters Ө in our model, to minimize our loss function

Challenge: differentiating through fixed point

Naive Approach: Built-in Autodiff, through solver computation graph

- Memory Issues
- Floating Point Errors

Better Approach: Use Implicit Function Theorem!

10

Implicit Function Theorem (Informal)

Let be a relation with inputs
1.
2. is continuously differentiable with non-singular Jacobian

Then there exist neighborhoods (open sets)
around & and a function

1.
2.
3. is differentiable on

11

x

z

Image courtesy of Wikipedia

https://en.wikipedia.org/wiki/Implicit_function_theorem

Implicit Function Theorem

High-level Idea:

- Convert a relation to a function in a local region and
find its derivative

- Explicit function at A:

- IFT allows us to find the derivative of g, without the
explicit form

12

x

z

Implicit Function Theorem

Let and be such
that:
1.
2. is continuously differentiable with non-singular Jacobian

Then there exist open sets and
Containing and respectively, and a unique continuous
function such that

1.
2.
3. is differentiable on

13

x

z

Backwards Pass

14

By IFT

Backwards Pass - DEQ

● Backward Pass:
○ Solve using root finding (e.g. Newtons)

15

VJP easily obtained from Pytorch/Jax/etc.

Approximate Inverse Jacobian - Broyden’s Method

● Expensive to calculate the inverse Jacobian during root finding for both
forwards and backwards!

● Broyden’s Method (quasi-newton solver):
○ During root finding, approximates the inverse Jacobian using

16
Initial Guess:

DEQ Memory

● Very memory efficient because forward and backward passes just use
root-finding algorithms.

● Avoids over all the overhead from uncurling backpropagating steps.
● Storage:

○ Equilibrium Point

○ Network Input

○ Model

○ VJP (*no Jacobian construction needed!)

17

Expressivity of DEQs

Intuition:

Consider a simple function composition
Transforming this into a DEQ:

Thus, the equilibrium point is:

The output equilibrium is the output of the function!
(can be extended to arbitrary computation graph)

18

DEQ Stacking?

● Stacking DEQs don’t really work, as a single DEQ layer can model any
amount of stacked DEQ layers.

Intuition:

Consider a stack of 2 DEQ layers:

This is equivalent to the following single equilibrium problem:

19

Experiments

● Apply Deep Equilibrium Networks to sequence modelling tasks
○ Sequence empirically converge
○ Already use of weight tying over the temporal sequence (Trellis Nets & Transformer models)
○ Long-range copy-memory, Penn Treebank Language Modelling, WikiText-103

● Demonstrate the memory efficiency and expressivity of DEQ models given
similar parameter counts as well as the speed of computation

20

Convergence Caveat

● One might expect the network to diverge in the infinite limit
● In practice, many networks do not, which is explored more formally in a later

work [Kolter et. al 2020]
● In this work, the authors empirically show that the contributions of subsequent

layers diminish at very large depths

21

https://arxiv.org/abs/2006.08591

Experiments

22Not SOTA, but good at
same param size

Efficient!

Experiments - Runtime

23

● Notice DEQs are slower!

● This is a consequence of solving an inner optimization inside the
network

Conclusion

● Deep Equilibrium Models are a weight tied, approximately infinite depth neural
network

○ Output is the fixed point of some neural network function
● Computes two root finding solutions for both the forward and backwards pass

○ Uses IFT to compute the gradient updates rather than backpropagation and autodiff through
the iterative graph

● Performs comparatively to SOTA models of the same size but are
considerably more memory efficient

○ Typically slower due to the inner loop optimization both forward and backwards

24

References

Deep Implicit Layers Tutorial - http://implicit-layers-tutorial.org/

Deep Equilibrium Models [Bai 2019] - https://arxiv.org/abs/1909.01377

25

http://implicit-layers-tutorial.org/
https://arxiv.org/abs/1909.01377

