Deep Equilibrium Models

Shaojie Bai, J. Zico Kolter, Vladlen Koltun

Presented by: Alex Wang, Gary Leung, Sasha Doubov

Agenda

Weight tying and infinite depth models

Implicit layer formulation

Approximation and computational considerations
DEQ stacking?

Experiments

abkrowbh-~

Motivation

Let’s start with a typical deep NN architecture:

Wi W

-[000)

0000)]

@ @1@ O)
l

e OlO O)

Image courtesy of Deep Implicit Layers Tutorial

http://implicit-layers-tutorial.org/

Motivation

Weight-Tying: Use the sgme W and inject the input for each layer

<
J

6 Q CV) Q Just as expressive!
- EACRACILANA & Ld

O Ol 1O O

<> © O O

<1

2’1:0

Zi_|_1=O'(WZi—|——|—b), 1=1,....k—1
h(ZIZ‘) = Wiz + by

2k

Image courtesy of Deep Implicit Layers Tutorial

http://implicit-layers-tutorial.org/

Motivation

Weight-Tying: Use the sgme W and inject the input for each layer

<
<
<
e %
|4

h

(000
l
l

O
O
0000

<1) 2k
Focusing on activation iteration:

Zi_|_1=O'(WZi—|—U$—|—b), 1=1,....k—1

Image courtesy of Deep Implicit Layers Tutorial

http://implicit-layers-tutorial.org/

In the infinite limit, as i -> « (under nice conditions)

Key insight: The network’s activations z* approach a fixed point!
w

This is a DEQ!

-[000)
000 0]
=

O
O
hz)

25| =ao(Wz*|+Ux +b),1 — o0

Deep Equilibrium Model Overview

D = Memory storage needed at training time

z[L] — z*

Depth as L — oo
(L]

i x L layers

= fo(z!;x)

[z
Forward 1
i

History (or zero) padding | 1 (0]

(i.e., previous equilibrium) > VA
Input injection B
i X

Fixed

Typical Deep Neural Network

at which

fo(x;...)=x

Forward T l

.Equlhbrlum Solver forE
z" = = fo(z*;x)

............

Deep Equilibrium Model

Implicit vs. Explicit Layers

Explicit Layers: Explicit Layer

Typical Neural Network layers, which can directly Compute
compute the output and backward pass through _[J_ >

backprop

Implicit Layers:
Based on solving solution to some problem, such

that x, z satisfy some condition Compute st
- Arises in naturally in some domains, such as 9

ODEs and fixed-points

Implicit Layer

Image courtesy of Deep Implicit Layers Tutorial 8

http://implicit-layers-tutorial.org/

Forward Pass

Naive Approach: we could repeatedly apply the function until convergence
A = £l 2) fori=0,1,2,..

Better Way: Use a root-finding algorithm to find the fixed point

1. Reformulate fixed-point as finding the root:
99(2*7 ,CB) — fg(zj*7 ;C) — z* —> O We’'ll use this notation from here on!

2. Apply generic root-finding algorithm (ex. Newton’s method!)

z* = RootFind(gg; x)

Backward Pass

We need to update the parameters © in our model, to minimize our loss function

0z*
Challenge: differentiating through fixed point ——

a(-)

Naive Approach: Built-in Autodiff, through solver computation graph

- Memory Issues
- Floating Point Errors

Better Approach: Use Implicit Function Theorem!

10

Implicit Function Theorem (Informal)

Let f be a relation with inputs Zg, 29

1. f(zo,20) =0

2. [is continuously differentiable with non-singular Jacobian
(91f($€0, Zo) c Rxn

Then there exist neighborhoods (open sets) Sxo, SZO

around 0 & 20 and a function 2 : Sz, — S5,

1 20 = 2" (7o)
2. f(z,2"(z)) =0 Vz € S,
3.2" is differentiable on S,

Image courtesy of Wikipedia

11

https://en.wikipedia.org/wiki/Implicit_function_theorem

Implicit Function Theorem

flr,2) =22 +22-1=0
z

High-level Idea:

- Convert a relation to a function in a local region and A
find its derivative
flz,2) =2 +22—-1=0

- Explicit function at A:

ga(x) =V 1—2x?

- IFT allows us to find the derivative of g, without the
explicit form

Implicit Function Theorem

Let f:RP x R" —» R" and g € RP, 2z, € R" be such
that:

1 f(zo,20) =0

2. [is continuously differentiable with non-singular Jacobian
01 f (w0, z0) € R™*"

Then there exist open sets Sz, CR” and §,, ¢ R"
Containing xoand Zorespectively, and a unique continuous

function 2% Sxosughggoat

1. 20 = Z*(Zl?())

2. f(z,27(x)) =0 Vo e b
3.2" is differentiable on S,

13

Backwards Pass

Backwards Pass - DEQ

e Backward Pass:
o Solve using root finding (e.g. Newtons)

o _ o

50 = gz Pao =)

O0fg(2*; 1)

T

o

-
(‘]99)T A

o

VJP easily obtained from Pytorch/Jax/etc.

(82*)

go(

o)
=0

AR

) = fo(z"5x) — 27

15

Approximate Inverse Jacobian - Broyden’s Method

e Expensive to calculate the inverse Jacobian during root finding for both
forwards and backwards!

e Broyden’s Method (quasi-newton solver):
o During root finding, approximates the inverse Jacobian using

A1) _ Bg[;ngggH]

4 T 11T [] [i4-1]
Azl BgyAgy

ge

— 0 i+1]) " i
J901|Z[i+1] ~ B,§[79+1] = B Az[—I_l] ng

Initial Guess: Bl — 99(2*; ZC) — fH(Z*; :C) — 27 16

DEQ Memory

e Very memory efficient because forward and backward passes just use
root-finding algorithms.

e Avoids over all the overhead from uncurling backpropagating steps.
e Storage:
o Equilibrium Point >

o Network Input

o Model f@

o VJP (*no Jacobian construction needed!)

17

Expressivity of DEQs

Intuition:

Consider a simple function composition Yy = g9 (gl (CE))
Transforming this into a DEQ:

feo =1 (|2 |a)=| 2
Thus, the equilibrium point is: ? 92(1)

7= f(,a) = 2= gi(@), 2 = ga(2) = 9291 ()

The output equilibrium is the output of the function!
(can be extended to arbitrary computation graph)

18

DEQ Stacking?

e Stacking DEQs don’t really work, as a single DEQ layer can model any
amount of stacked DEQ layers.

Intuition:

Consider a stack of 2 DEQ layers:

z; = fi(z], x) — 25 = f(23,2])

This is equivalent to the following single equilibrium problem:

o {Zf] _ [fl(z*,w)] _ (2 2)

2 f2(25:27)

19

Experiments

e Apply Deep Equilibrium Networks to sequence modelling tasks

o Sequence empirically converge
o Already use of weight tying over the temporal sequence (Trellis Nets & Transformer models)
o Long-range copy-memory, Penn Treebank Language Modelling, WikiText-103

e Demonstrate the memory efficiency and expressivity of DEQ models given
similar parameter counts as well as the speed of computation

20

Convergence Caveat

e One might expect the network to diverge in the infinite limit

e In practice, many networks do not, which is explored more formally in a later
work [Kolter et. al 2020]

e |n this work, the authors empirically show that the contributions of subsequent
layers diminish at very large depths

Trellis Network Weight-Tied/Universal Transformer
_ 102 == TrellisNet (Seq. Length=800) _ == \Neight-tied Transformer (Seq. Length=800)
? TrellisNet (Seq. Length=400) ? Weight-tied Transformer (Seq. Length=400)
x 10! ~— TrellisNet (Seq. Length=200) x 10? = \Weight-tied Transformer (Seq. Length=200)
= 100 w TrellisNet (Seq. Length=100) = == Weight-tied Transformer (Seq. Length=100)
E ~ E
o -1 - s
2 10 A 3
3 10- \ g
5 5
g 10° o
£ £
0 10~ \ (@}
. 10!
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500

Layers Layers

21

https://arxiv.org/abs/2006.08591

Experiments

Word-level Language Modeling w/ WikiText-103 (WT103)

Non-Embedding

i T

Model # Params Model Size Test perplexity Memory

Generic TCN 150M 34M 45.2 -

Gated Linear ConvNet [[17] 230M - 37.2 -
AWD-QRNN [33] 159M 51M 33.0 7.1GB

Relational Memory Core [40] 195M 60M 31.6 -
Transformer-XL (X-large, adaptive embed., on TPU) [[16] 257TM 224M 18.7 12.0GB
70-layer TrellisNet (+ auxiliary loss, etc.) 180M 45M 29.2 24.7GB
70-layer TrellisNet with gradient checkpointing 180M 45M 29.2 5.2GB
DEQ-TrellisNet (ours) 180M 45M 29.0 3.3GB
Transformer-XL (medium, 16 layers) 165M 44M 24.3 8.5GB
DEQ-Transformer (medium, ours). 172M 43M 24.2 2.7GB
Transformer-XL (medium, 18 layers, adaptive embed.) 110M 72M 23.6 9.0GB
DEQ-Transformer (medium, adaptive embed., ours) 110M 70M 23.2 3.7GB
Transformer-XL (small, 4 layers) 139M 4.9M 35.8 4.8GB
Transformer-XL (small, weight-tied 16 layers) 138M 4.5M 349 6.8GB
DEQ-Transformer (small, ours). 138M 4.5M 324 1.1GB

same param Ssize

Not SOTA, but good at

Efficient!

22

Experiments - Runtime

Table 4: Runtime ratios between DEQs and corresponding deep networks at training and inference
(> 1x implies DEQ is slower). The ratios are benchmarked on WikiText-103.

DEQ / 18-layer Transformer DEQ / 70-layer TrellisNet
Training Inference Training Inference

2.82x 1.76 x 2.40x 1.64x

e Notice DEQs are slower!

e This is a consequence of solving an inner optimization inside the
network

23

Conclusion

e Deep Equilibrium Models are a weight tied, approximately infinite depth neural
network
o Output is the fixed point of some neural network function

e Computes two root finding solutions for both the forward and backwards pass
o Uses IFT to compute the gradient updates rather than backpropagation and autodiff through
the iterative graph

e Performs comparatively to SOTA models of the same size but are

considerably more memory efficient
o Typically slower due to the inner loop optimization both forward and backwards

24

References

Deep Implicit Layers Tutorial - http://implicit-layers-tutorial.org/

Deep Equilibrium Models [Bai 2019] - https://arxiv.org/abs/1909.01377

25

http://implicit-layers-tutorial.org/
https://arxiv.org/abs/1909.01377

