
The Implicit and Explicit Regularization Effects of
Dropout

Bayesian Inference and Implicit Regularization

Colin Wei 1 Sham Kakade 2,3 Tengyu Ma 1

Presenters: Kelvin Wong, Siva Manivasagam and Amanjit Singh Kainth

1Stanford University 2Microsoft Research
3University of Washington

Dropout Regularization UofT CSC2541 1 / 15



Dropout1

Regularizes deep networks, especially in vision and language tasks

Sets a random subset of the activations in each network to 0:

η =

{
−1 with probability q
q

1−q with probability 1− q

hdrop = (~1 + η)� h

1Srivastava et al. (2014)
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Disentangling Explicit and Implicit Regularization
Empirical Study

Why does it work well? Wei et al. (2020) analyze two effects of
Dropout.

Explicit regularization: an explicit change in performance by
modifying the objective function (J (x) vs Jdrop(x))

Implicit regularization: an implicit change in performance due to
stochastic optimization (similar to SGD batch size)

Let’s take a look at how we can disentangle these Dropout effects
in training −→ Google Colab
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Disentangling Explicit and Implicit Regularization
Notation

Standard objective J (x) =: L ◦ F (x), decompose F (x) = Fi (hi (x))

i-th partial objective Ji (h) =: L ◦ Fi (h) (note J (x) = Ji (hi (x)))

Dropout objective (assuming on the i-th hidden layer)

Jdrop (x, η) =: L ◦ F (x, η) = L ◦ Fi (hi (x) + δ)

= Ji (hi (x) + δ) , δ , η � hi (x)
Jdrop (x) =: Eη [Jdrop (x, η)] (Expected Dropout objective)

Explicit Regularization: Discrepancy between (expected) training
(with Dropout) and standard objectives

Implicit Regularization: Stochasticity-induced, measured by the
fluctuation of stochastic gradient dropout around its mean
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Explicit Regularization
Taylor Expansion and Gauss-Newton Approximation

Second order approximation to Jdrop (x, η) = Ji (hi (x) + δ)

Ji (hi (x) + δ) ≈ J (x) + 〈∇Ji (hi (x)) , δ〉+
1

2
δ>∇2Ji (hi (x)) δ

Eη [Jdrop (x, η)]− J (x) ≈ 1

2

〈
∇2Ji (hi (x)) ,Eη

[
δδ>

]〉

Recall δ , η � hi (x), can show that Eη
[
δδ>

]
∝ diag

(
hi (x)

�2
)

Use Gauss-Newton approximation on hessian

∇2Ji (hi (x)) ≈∇Fi (hi (x))
>

Hout(x)︷ ︸︸ ︷
∇2L (F (x))

JFi
(x)︷ ︸︸ ︷

∇Fi (hi (x))

Final Form of Explicit Regularizer (multi-layer)

Rapprox (F, x) ,
∑
i

〈
JFi

(x)
>
Hout (x) JFi

(x) ,diag
(
hi (x)

�2
)〉
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Explicit Regularization
Cross-entropy for classification tasks

Rapprox (F, x) ,
∑
i

〈
JFi (x)

>
Hout (x) JFi (x) , diag

(
hi (x)

�2
)〉

Full Hout (x) ∈ Mat (|V | × |V |), |V | can be quite large!

For the cross-entropy loss Lce
y (v) = Lce (v, y) = − log softmax (v)y,

Hce
out (x) = Eŷ∼softmax(F (x))

[
∇Lce

ŷ (F (x))
>∇Lce

ŷ (F (x))
]

Memory-efficient (unbiased) estimator for Rapprox

R̂approx =
〈
∇J ŷi (hi (x))

>∇J ŷi (hi (x)) , diag
(
hi (x)

�2
)〉

where ∇J ŷi (hi (x)) =: ∇Lce
ŷ (F (x)) JFi (x) for ŷ ∼ softmax (F (x))
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ŷ (F (x))
]

Memory-efficient (unbiased) estimator for Rapprox

R̂approx =
〈
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Explicit Regularization
Cross-entropy Hessian

Hce
out (x) = ∇2Lce

y (F (x)) = diag(p)− ppT , p = softmax (F (x))

Intution: Penalize classes with plausible but lower confidence
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Implicit Regularization
Identifying the noise in Dropout and approximating it

Stochastic gradient noise due to Dropout:

ξdrop(F, x, η) , ∇WJdrop (x, η)−∇WEη′ [Jdrop (x, η
′)]

Inject noise back by taking the difference in Dropout gradient samples:

ξ̃drop(F, x, η1, η2) , ∇W [Jdrop (x, η1)− Jdrop (x, η2)]

We saw in the Colab that we can empirically use ξ̃drop to model ξdrop
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Implicit Regularization
Taylor Expansion (Linear approximation)

ξ̃drop

(
F, x, η

(1)
i , η

(2)
i

)
, ∇WJdrop

(
x, η

(1)
i

)
−∇WJdrop

(
x, η

(2)
i

)
(1)

Jdrop (x, η) = Ji (hi (x) + δ), where δ , η � hi (x) is the perturbation on
the output of the i-th hidden layer

First order approximation: Ji (hi (x) + δ) ≈
J (x)︷ ︸︸ ︷

Ji (hi (x))+〈∇Ji (hi (x)) , δ〉

Thus above simplifies to:

≈∇W

〈
∇Ji (hi (x)) , (η(1)i − η

(2)
i )� hi(x)

〉
(2)

Replace (η
(1)
i − η

(2)
i ) with

√
2ηi to maintain same noise covariance
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Implicit Regularization
Intuition

ξapprox(F, x, {ηi}) , ∇W

(∑
i

〈∇Ji (hi (x)) , (ηi � hi(x))〉
)

Intuition: provides data-dependent stability during training
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Explicit vs Implicit Regularization
Summary

Explicit (uses loss hessian and model jacobian)

Rapprox (F, x) ,
∑
i

〈
JFi (x)

>Hout (x) JFi (x) , diag
(
hi (x)

�2
)〉

Implicit (uses loss jacobian and model jacobian)

ξapprox(F, x, {ηi}) , ∇W

(∑
i

〈∇Ji (hi (x)) , (ηi � hi(x))〉
)

For the cross-entropy loss Lce, both penalize the loss and model
jacobians ∇Ji (hi (x)) = ∇Lce

y (F (x)) JFi (x) (in practice)
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Colab
Let’s take a look at these regularizers in action
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Conclusion
Some key takeaways

Dropout induces distinct regularization effects:

Explicit Regularization: Induced by change in training objective.

Ex[Eη[Jdrop(x, η)]− J (x)] (3)

Implicit Regularization: Induced by stochastic approximation of
Dropout training objective.

∇WJdrop(x, η)−∇WEη[Jdrop(x, η)] (4)

We can derive analytical forms of these regularizers, revealing:

Explicit regularization encourages output Jacobians and hidden
layers to be small according to output Hessian.

Implicit regularization penalizes loss Jacobian and hidden layers.
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Conclusion
Limitations and outlook

Interpretation of Dropout’s implicit regularizer remains opaque.

It is unclear why gradient noise helps generalization.

On larger datasets and/or other model architectures, the benefits of
Dropout’s implicit regularization effect is missing.

In fact, implicit regularization sometimes makes things worse.

The derived analytical regularizers are totally impractical.

But this work provides intuition on Dropout’s inner workings,
hopefully leading to better, more principled regularizers.
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Conclusion

Thanks for listening! Questions?
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Appendix: Explicit Regularization
Additional notes: Using the loss hessian is important

Rapprox (F, x) ,
∑
i

〈
JFi (x)

>
substitute︷ ︸︸ ︷
Hout (x) JFi (x) , diag

(
hi (x)

�2)〉

Training Method Best Val. Ppl.

`2 reg (tuned) 112.04

I 108.76
R̃approx (tuned) 84.06

Rapprox 84.52

Table: Effect of explicit regularizer only

Using identity I (classical GN matrix) removes most of Dropout benefits

Using loss Jacobian: R̃approx(F, x) ,
∑

i ∇Ji(hi(x))diag(hi(x)
�2)∇Ji(hi(x))

>

−→ differs from Rapprox implementation by using label y instead of sample ŷ
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Appendix: Implicit Regularization
Additional notes: Dataset dependent

For large datasets, k-Dropout performs the same or better than the
original Dropout.

Table: Experimental results on the full WikiText-103 dataset for QRNN
architecture.

Training Method Best Val. Ppl.
Dropout1 34.24
Dropout2 33.35
Dropout4 32.74
Dropout8 32.78

More study required to better understand implicit regularization -
different effects might be inter-connected.

Dropout Regularization UofT CSC2541 2 / 2


	Appendix
	References


