# RL Tutorial CSC2515 Fall 2019

#### Adamo Young

University of Toronto

November 17, 2019

# Markov Decision Process (MDP)



- $S_t \in S, A_t \in A, R_t \in \mathbb{R}$
- Timesteps:  $t \in \mathbb{N}$  (discrete)
- Finite: S, A both have finite number of elements (discrete)
- Fully observable:  $S_t$  is known exactly
- Trajectory: sequence of state-action-reward S<sub>0</sub>, A<sub>0</sub>, R<sub>1</sub>, S<sub>1</sub>, A<sub>1</sub>, ...

# Markov Property



- Dynamics of the MDP are completely captured in the current state and the proposed action
- States include all information about the past that make a difference for the future
- $p(s', r|s, a) \triangleq Pr\{S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a\}$

### **MDP** Generalizations

- Continuous timesteps
- Continuous states/actions
- Partially observable (POMDP): probability distribution over  $S_t$
- Don't worry about them for now



# Episodic vs. Continuing Tasks



Episodic Task:

- t = 0, 1, ..., T
- *T* (length of episode) can vary from episode to episode
- Example: Pacman



Continuing Task:

- No upper limit on t
- Example: learning to walk

# Expected Return and Unified Task Notation

•  $G_t$  is the expected return (expected sum of rewards)

• 
$$G_t \triangleq \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- $\gamma$  is the discount factor, 0  $<\gamma \leq 1$
- Episodic Tasks:
  - $R_t = 0$  for all t > T, finite sum
  - ▶ Often choose γ = 1
  - Always converges since sum is finite
- Continuing Tasks:
  - Infinite sum
  - $\gamma < 1$  (future rewards are valued less)
  - If  $\{R_t\}$  is bounded, the infinite sum converges
- Either way, we can insure that  $G_t$  is well-defined

### Policies

• Policy  $\pi$ : a mapping from state to actions

• 
$$\pi(a|s) \triangleq \Pr\{A_t = a|S_t = s\}$$

- Can be deterministic or probabilistic
- Example: deterministic wall-following maze navigation policy
  - Turn right if possible
  - If you can't turn right, go straight if possible
  - If you can't turn right or go straight, turn left if possible
  - Otherwise, turn around



#### Value Functions

- State-value function  $v_{\pi}(s) \triangleq \mathbb{E}_{\pi} \left[ G_t | S_t = s \right]$ 
  - $\blacktriangleright$  Intuitively: how "good" a state s is under policy  $\pi$

$$\blacktriangleright v_{\pi}(s) = \mathbb{E}_{\pi} \left[ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \middle| S_{t} = s \right]$$

• Action-value function  $q_{\pi}(s, a) \triangleq \mathbb{E}_{\pi} \left[ G_t | S_t = s, A_t = a \right]$ 

 $\blacktriangleright$  Intuitively: how "good" an action a is in state s under policy  $\pi$ 

• 
$$q_{\pi}(s,a) = \mathbb{E}_{\pi} \left[ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \middle| S_t = s, A_t = a \right]$$

# MDP Illustration

|      |          |      |              |               | $1, r_{wait}$               | $1 - \beta - 3$ | $\rho, r_{\texttt{search}}$ |
|------|----------|------|--------------|---------------|-----------------------------|-----------------|-----------------------------|
| s    | a        | s'   | p(s' s,a)    | r(s, a, s')   | $\frown$                    | 1 0, 0          |                             |
| high | search   | high | α            | rsearch       | wait                        |                 | search 🍑                    |
| high | search   | low  | $1 - \alpha$ | rsearch       |                             | /               |                             |
| low  | search   | high | $1 - \beta$  | -3            |                             |                 |                             |
| low  | search   | low  | β            | rsearch       |                             | 10 re           | charge                      |
| high | wait     | high | 1            | <i>r</i> wait | high                        | n 🖛 👘           | ( low )                     |
| high | wait     | low  | 0            | -             |                             |                 |                             |
| low  | wait     | high | 0            | -             | $/ \gamma$                  |                 |                             |
| low  | wait     | low  | 1            | <i>r</i> wait |                             |                 |                             |
| low  | recharge | high | 1            | 0             | s                           | earch           | • wait                      |
| low  | recharge | low  | 0            | -             | $\checkmark$                |                 | $\sim$                      |
|      |          |      |              |               | $\alpha, r_{\text{search}}$ | $1-\alpha, r_s$ | search 1, rwait             |

- Note: in this case, we are using p(s'|s, a) to model the environment instead of p(s', r|s, a)
- This is because there is no ambiguity in reward r given s, a, s' (but in general there could be)
- Even only two states and three possible actions can be pretty complicated to model

#### Some Potentially Useful Value Identities

• Recall: 
$$\pi(a|s) \triangleq Pr\{A_t = a|S_t = s\}$$
  
• Recall:  $v_{\pi}(s) \triangleq \mathbb{E}_{\pi}[G_t|S_t = s]$ 

• Recall:  $q_{\pi}(s, a) \triangleq \mathbb{E}_{\pi} \left[ G_t | S_t = s, A_t = a \right]$ 

• 
$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[ q_{\pi}(s, a) | S_t = s \right] = \sum_{a \in A(s)} \pi(a|s) q_{\pi}(s, a)$$

- $q_{\pi}(s, a) = \mathbb{E}_{\pi} [R_{t+1} + \gamma G_{t+1} | S_t = s, A_t = a]$
- $q_{\pi}(s, a) = \mathbb{E}_{p(s', r|s, a)} [R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t = a]$
- Common theme: value functions are recursive, expand one step to see a useful pattern

# Solving RL Problems

Two main classes of solutions:

- Tabular Solution Methods
  - Provide exact solutions
  - Do not scale very well with search space
- Approximate Solution Methods
  - Use function approximators (i.e. neural networks) for value and/or policy functions
  - Policy Gradient Methods fall under this category

## Introducing Policy Gradient

• Parameterize policy  $\pi(a|s;\theta) \triangleq Pr\{A_t = a|S_t = s; \theta_t = \theta\}$ 

- $\blacktriangleright$  For example,  $\pi$  could be a neural network with weights  $\theta$
- Measure policy performance with scalar performance measure  $J(\theta)$
- Maximize  $J(\theta)$  with gradient ascent on  $\theta$
- General update rule:  $\theta_{t+1} = \theta_t + \alpha \widehat{\nabla_{\theta} J(\theta_t)}$ 
  - α is step size
  - $\nabla_{\theta} J(\theta_t)$  is an approximation to  $\nabla_{\theta} J(\theta_t)$
- We are increasing the probability of trajectories with large rewards and decreasing the probability of trajectories with small rewards
- For simplicity, we'll only consider episodic tasks for the remainder of the presentation

# The Policy Gradient Theorem

- $J(\theta) \triangleq v_{\pi}(s_0)$ , where  $s_0$  is initial state of a trajectory and  $\pi$  is a policy parameterized by  $\theta$
- The Policy Gradient Theorem states that  $\nabla J(\theta) = \nabla_{\theta} v_{\pi}(s_0) \propto \sum_{s} \mu(s) \sum_{a} q_{\pi}(s, a) \nabla(\pi(a|s; \theta))$
- $\mu(s) \triangleq \frac{\eta(s)}{\sum_{s'} \eta(s')}$ , the on-policy distribution under  $\pi$ 
  - $\eta(s)$  is the expected number of visits to state s
  - ▶ µ(s) is the fraction of time spent in state s
- Constant of proportionality is the average length of an episode
- See p. 325 of Sutton RL Book (Second Edition) for concise proof

#### **REINFORCE** Update

$$\nabla J(\theta) \propto \sum_{s} \mu(s) \sum_{a} q_{\pi}(s, a) \nabla(\pi(a|s; \theta))$$

$$= \mathbb{E}_{\pi} \left[ \sum_{a} q_{\pi}(S_{t}, a) \nabla \pi(a|S_{t}, \theta) \right]$$

$$= \mathbb{E}_{\pi} \left[ \sum_{a} \pi(a|S_{t}, \theta) q_{\pi}(S_{t}, a) \frac{\nabla \pi(a|S_{t}, \theta)}{\pi(a|S_{t}, \theta)} \right]$$

$$= \mathbb{E}_{\pi} \left[ \mathbb{E}_{\pi} \left[ q_{\pi}(S_{t}, A_{t}) \frac{\nabla \pi(A_{t}|S_{t}, \theta)}{\pi(A_{t}|S_{t}, \theta)} \right] \right]$$

$$= \mathbb{E}_{\pi} \left[ q_{\pi}(S_{t}, A_{t}) \frac{\nabla \pi(A_{t}|S_{t}, \theta)}{\pi(A_{t}|S_{t}, \theta)} \right]$$

# **REINFORCE** Update (Continued)

$$\begin{aligned} \nabla J(\theta) &\propto \mathbb{E}_{\pi} \left[ q_{\pi}(S_t, A_t) \frac{\nabla \pi(A_t | S_t, \theta)}{\pi(A_t | S_t, \theta)} \right] \\ &= \mathbb{E}_{\pi} \left[ \mathbb{E}_{\pi} \left[ G_t | S_t, A_t \right] \frac{\nabla \pi(A_t | S_t, \theta)}{\pi(A_t | S_t, \theta)} \right] \\ &= \mathbb{E}_{\pi} \left[ \mathbb{E}_{\pi} \left[ G_t \frac{\nabla \pi(A_t | S_t, \theta)}{\pi(A_t | S_t, \theta)} \middle| S_t, A_t \right] \right] \\ &= \mathbb{E}_{\pi} \left[ G_t \frac{\nabla \pi(A_t | S_t, \theta)}{\pi(A_t | S_t, \theta)} \right] \end{aligned}$$
Reinforce update:  $\theta_{t+1} = \theta_t + \alpha G_t \frac{\nabla \pi(A_t | S_t, \theta)}{\pi(A_t | S_t, \theta)}$ 

#### Quick Aside: Monte Carlo

• Way of approximating an integral/expectation

• 
$$\mathbb{E}_{p(x)}[f(x)] = \int_{x \in \mathcal{X}} p(x)f(x)dx$$

- If p(x) and/or f(x) is complicated, the integral is difficult to solve analytically
- Simple idea: sample N values from the domain of the distribution  $\ensuremath{\mathcal{X}}$  and take the average

• 
$$\mathbb{E}_{p(x)}[f(x)] \approx \frac{1}{N} \sum_{i=1}^{N} p(x^{(i)}) f(x^{(i)})$$

• The larger N is, the better the estimate

# **REINFORCE** Algorithm

#### **REINFORCE:** Monte-Carlo Policy-Gradient Control (episodic) for $\pi_*$

 $\begin{array}{l} \text{Input: a differentiable policy parameterization } \pi(a|s, \boldsymbol{\theta}) \\ \text{Algorithm parameter: step size } \alpha > 0 \\ \text{Initialize policy parameter } \boldsymbol{\theta} \in \mathbb{R}^{d'} \text{ (e.g., to } \mathbf{0}) \\ \text{Loop forever (for each episode):} \\ \text{Generate an episode } S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T, \text{ following } \pi(\cdot|\cdot, \boldsymbol{\theta}) \\ \text{Loop for each step of the episode } t = 0, 1, \dots, T-1: \\ G \leftarrow \sum_{k=t+1}^T \gamma^{k-t-1} R_k \\ \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t G \nabla \ln \pi(A_t|S_t, \boldsymbol{\theta}) \end{array}$ 

- Generate entire trajectories and compute  $G_t$  from it
- Gradient estimates only need to be proportional to the true gradient since constant of proportionality can be absorbed in the step size  $\alpha$

### REINFORCE as a Score Function Gradient Estimator

• We can rewrite J( heta) in terms of an expectation over trajectories au

• 
$$J(\theta) \triangleq v_{\pi}(s_0) = \mathbb{E}_{\tau} [G_0(\tau)] = \sum_{\tau} p(\tau | \pi_{\theta}) G_0(\tau)$$

- $p(\tau|\pi_{\theta})$  is the probability of the trajectory under policy  $\pi_{\theta}$
- $G_0( au)$  is the sum of the rewards given trajectory au

• Recall: 
$$\nabla_x \log f(x) = \frac{\nabla_x f(x)}{f(x)}$$
 by chain rule

- We can use the log-derivative trick to derive an expression for  $\widehat{
  abla} J(\widehat{ heta})$
- In statistics, this estimator is called the Score Function Estimator

## **REINFORCE** as a Score Function Gradient Estimator

$$\begin{aligned} \nabla J(\theta) &= \nabla \sum_{\tau} p(\tau | \pi_{\theta}) G_0(\tau) \\ &= \sum_{\tau} \nabla p(\tau | \pi_{\theta}) G_0(\tau) \\ &= \sum_{\tau} \frac{p(\tau | \pi_{\theta})}{p(\tau | \pi_{\theta})} \nabla p(\tau | \pi_{\theta}) G_0(\tau) \\ &= \sum_{\tau} p(\tau | \pi_{\theta}) \nabla \log p(\tau | \pi_{\theta}) G_0(\tau) \\ &= \mathbb{E}_{\tau} \left[ \nabla \log p(\tau | \pi_{\theta}) G_0(\tau) \right] \\ \widehat{\nabla J(\theta)} &= \frac{1}{N} \sum_{i=1}^{N} \log p(\tau^{(i)} | \pi_{\theta}) G_0(\tau^{(i)}) \end{aligned}$$

(Monte Carlo approximation)

# Properties of REINFORCE/Score Function Gradient Estimator

- Pros:
  - Unbiased:  $\mathbb{E}\left[\widehat{\nabla J(\theta)}\right] = J(\theta)$
  - Very general (reward does not need to be continuous/differentiable)
- Cons:
  - High variance (noisy)
  - Requires many sample trajectories to estimate gradient

# Reducing REINFORCE Estimator Variance

• Recall: 
$$\nabla J(\theta) \propto \sum_{s} \mu(s) \sum_{a} q_{\pi}(s, a) \nabla(\pi(a|s; \theta))$$

• Let b(s) be a baseline (some function of s that does not depend on  $\theta$ )

• 
$$\sum_{a} b(s) \nabla \pi(a|s,\theta) = b(s) \nabla \sum_{a} \pi(a|s,\theta) = b(s) \nabla 1 = 0$$

• Thus 
$$\nabla J(\theta) \propto \sum_{s} \mu(s) \sum_{a} (q_{\pi}(s, a) - b(s)) \nabla(\pi(a|s; \theta))$$

• New update rule:  $\theta_{t+1} = \theta_t + \alpha \left( G_t - b(S_t) \right) \frac{\nabla \pi(A_t | S_t, \theta_t)}{\pi(A_t | S_t, \theta_t)}$ 

- Natural choice for b(s): an estimate of the state value  $\hat{v}(S_t, w)$  parameterized by weights w
  - Want to adjust θ based on how much better (or worse) the path is than the average score of paths starting in the current state (v̂)

# **REINFORCE** with Baseline Algorithm

#### **REINFORCE** with Baseline (episodic), for estimating $\pi_{\theta} \approx \pi_*$

- Two different step sizes:  $\alpha^{\theta}$  and  $\alpha^{w}$
- $\hat{v}$  is also estimated with Monte Carlo

#### **REINFORCE** with Baseline vs. without



#### Extensions: Actor-Critic

- Use bootstrapping to update the state-value estimate 
   *v*(s, w) for a state s from the estimated values of subsequent states
- Introduces bias but reduces variance
- Can use one-step or *n*-step return (as opposed to full returns in REINFORCE)

# One-step Actor-Critic Algorithm

One-step Actor–Critic (episodic), for estimating  $\pi_{\theta} \approx \pi_*$ 

Input: a differentiable policy parameterization  $\pi(a|s, \theta)$ Input: a differentiable state-value function parameterization  $\hat{v}(s, \mathbf{w})$ Parameters: step sizes  $\alpha^{\theta} > 0, \ \alpha^{\mathbf{w}} > 0$ Initialize policy parameter  $\boldsymbol{\theta} \in \mathbb{R}^{d'}$  and state-value weights  $\mathbf{w} \in \mathbb{R}^{d}$  (e.g., to **0**) Loop forever (for each episode): Initialize S (first state of episode)  $I \leftarrow 1$ Loop while S is not terminal (for each time step):  $A \sim \pi(\cdot | S, \theta)$ Take action A, observe S', R $\delta \leftarrow R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})$  (if S' is terminal, then  $\hat{v}(S', \mathbf{w}) \doteq 0$ )  $\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S, \mathbf{w})$  $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} I \delta \nabla \ln \pi (A|S, \boldsymbol{\theta})$  $I \leftarrow \gamma I$  $S \leftarrow S'$ 

# OpenAI Gym

- Free python library of environments for reinforcement learning
- Easy to use, good for benchmarking
- Environments include:
  - Classic control problems
  - Atari games
  - 3D simulations (Mujoco)
  - Robotics
- Check out the docs and environments



# REINFORCE bipedal walker demo

- OpenAl Gym Environment
- Train a 2D walker to navigate a landscape
- Different levels of difficulty
- Code taken from Michael Guerzhoy's CSC411 course webpage
- Uses policy gradient with REINFORCE
- Note: requires tensorflow 1.x (not 2.x)

#### References

- Sutton and Barto, "Reinforcement Learning: An Introduction (Second Edition)", 2018
- Xuchan (Jenny) Bao, Intro to RL and Policy Gradient CSC421 Tutorial, 2019 (link)
- Michael Guerzhoy, CSC411 Project 4: Reinforcement Learning with Policy Gradients, 2017 (link)