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Midterm Test

I Time: Wednesday, Oct. 30, from 4:10-5:40pm
I Location: Health Sciences building, room 610
I Office Hours: Fri 10/25, 12-1pm,6-7pm in BA3201

Mon 10/28, 11am-noon, in BA3201
Tue 10/29, 2-4pm, in BA3201
Wed 10/30, noon-1pm, in BA1190



Agenda

1. A brief overview
2. Some sample questions



Basic ML Terminology

I Regression
I Overfitting
I Generalization
I Bias–Variance
I Bayes Optimal

I Classification
I Underfitting
I Regularization
I Bayes Error
I Stochastic Gradient Descent

(SGD)



Basic ML Terminology

I Model
I Linear classifier
I Training Data

I Optimization
I 0-1 Loss
I Validation Data

I Convexity
I Features
I Test Data



Some Questions

Question 1

Given {(xi , ti )} = S ∼ D. Let hS be the predictor for dataset S .
Given x ,
1. Bias of the predictor is (EShS(x)− E[t|x ])2

2. Bayes error is Var[t|x ]

Question2

Take labelled data (X, y).
1. Why should you use a validation set?
2. How do you know if your model is overfitting?
3. How do you know if your model is underfitting?



Topics covered so far...

1. Nearest Neighbours
2. Decision Trees
3. Ensembles
4. Linear Regression
5. Linear Classification
6. SVMs
7. Neural Networks



Nearest Neighbours

1. Decision Boundaries
2. Choice of ‘k’ vs.

Generalization
3. Curse of

dimensionality



Decision Trees

1. Entropy/Information Gain
2. Decision Boundaries



Ensemble Methods

Bagging

1. Bias-Variance tradeoff
2. Average the predictions of m models trained on bootstrapped

datasets.
3. Random Forest

Boosting

1. Sequentially train weak classifiers.
2. Additive model with exponential

loss



Linear Regression

1. Model: y = wx + b
2. Objective: Minimize squared

loss
3. Direct Solution
4. (Stochastic) Gradient

Descent
5. Regularization



Linear Classification

Binary Linear Classification

1. Model: z = wx + b,
y = I(z ≥ 0)

2. Objective: Minimize 0-1 loss
3. Surrogate loss

Logistic Regression

1. Model: z = wx + b,
y = σ(z)

2. Objective: Minimize
cross-entropy

3. Multi-class classification
with softmax function



Linear Classification: SVMs

1. Model: y = sign(wx + b)

2. Objective: Maximize margin.
3. Soft-margin SVM: Linear

classifier with hinge loss and
`2-regularization.



Neural Networks

1. Model: y = f (L) ◦ · · · ◦ f (1)(x)
2. Weights and activation functions
3. Depth and expressive power
4. Backpropagation
5. Non-convex problem

from slides by James Lucas and David Madras



Convolutional Neural Networks

1. Convolutional Neural Networks (CNN) Architecture
2. Local connections/convolutions/pooling
3. Feature Learning

from slides by James Lucas and David Madras



Sample Question 1

Assume we are preprocessing our data using an invertible linear
transformation on the features of our training data. The
transformation can either be some orthogonal (i.e. rotations)
matrix or some diagonal matrix.
Say if this can have any effect on the performance of the following
algorithms, and explain in no more than two sentences.
I Orthogonal preprocessing on decision tree classification.
I Diagonal preprocessing on decision tree classification.
I Orthogonal preprocessing on nearest neighbor classification.
I Diagonal preprocessing on nearest neighbor classification.



Q1 Solution

I Orthogonal preprocessing on decision tree classification.
Will have an effect. Rotation changes the axis.

I Diagonal preprocessing on decision tree classification.
Will not have an effect. Rescaling along axis will shift split
criteria but wont change decision.

I Orthogonal preprocessing on nearest neighbor classification.
Will not have an effect. Orthogonal linear transformations will
preserve distances.

I Diagonal preprocessing on nearest neighbor classification.
Will have an effect. Will change distances between data points.



Sample Question 2

Given input x ∈ Rd and target y ∈ R, define x̂ = x + ε to be a
noisy pertubation of x where we assume
I E[εi ] = 0
I for i 6= j : E[εiεj ] = 0
I E[ε2i ] = λ

We define the following objective that tries to be robust to noise

w∗ = argminEε[(wT x̂− y)2] (1)

Show that it is equivalent to minimizing L2 regularized linear
regression, i.e.

w∗ = argmin
[
(wTx− y)2 + λ||w||2

]
(2)



Q2 Solution

We can write the inner term as,

(wT x̂− y)2 = (wTx + wTε− y)2 (3)

= (wTx− y)2 + 2wTε(wTx− y) + (wTε)2 (4)

= (wTx− y)2 + 2wTε(wTx− y) + (wTεTεw) (5)

Under the expectation the second term will be zero as it is a linear
combination of the elements of ε. The final term will be the
quadratic form of w with the covariance of ε. The covariance is
simply λI . Thus we are minimizing,

(wTx− y)2 + λ||w||2

which is exactly the objective of L2-regularized linear regression.


