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HW1

- Handles tabular data

- Features can be of any type (discrete, categorical, raw text, etc)

- Features can be of different types

- No need to “normalize” features

- Too many features? DTs can be efficient by looking at only a few.

- Easy to interpret

Decision Trees
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http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/homeworks/hw1/hw1.pdf


(XGBoost slides)

Decision Trees
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https://speakerd.s3.amazonaws.com/presentations/5c6dab45648344208185d2b1ab4fdc95/XGBoost-Newest.pdf


Random Forests
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Average multiple decision trees

(XGBoost slides)

https://speakerd.s3.amazonaws.com/presentations/5c6dab45648344208185d2b1ab4fdc95/XGBoost-Newest.pdf


Scikit-learn ipynb

Scikit-learn official docs

Tabular data example and ipynb

Random Forests
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https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-random-forest.ipynb
https://scikit-learn.org/stable/modules/ensemble.html#forest
https://towardsdatascience.com/random-forest-in-python-24d0893d51c0
https://github.com/WillKoehrsen/Data-Analysis/blob/master/random_forest_explained/Random%20Forest%20Explained.ipynb


One DT Overfits
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Averaging DTs in a Random Forest
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max_depth : The maximum depth of the tree.
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Each DT is trained on:

- Random subset of training data (sklearn.ensemble.RandomForestClassifier)

- Random subset of features (sklearn.ensemble.RandomForestClassifier)

- Noisy thresholds (sklearn.ensemble.ExtraTreesClassifier)

*Parallel construction and prediction

Randomization methods
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Ipython notebook example end post

Tabular Data
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https://github.com/WillKoehrsen/Data-Analysis/blob/master/random_forest_explained/Random%20Forest%20Explained.ipynb
https://towardsdatascience.com/random-forest-in-python-24d0893d51c0
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One-hot encoding:

 

Data preparation
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Why should be prepare data?

Any other encoding?

We also use one-hot encoding in cross-entropy, remember why? (Tutorial 2)

 

Data preparation

15



Feature importance is calculated as the decrease in node impurity weighted by 

the probability of reaching that node.

Feature importance
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Lecture 4 (Slides 43-70)

- Additive models

- Exponential loss

Weak-learners can be any function, e.g. decision trees and decision stumps.

AdaBoost
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http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec04-slides.pdf#page=43


Additive model with loss L:

GB approximately solves this objective iteratively and greedily:

Elements of Statistical learning (Chapter 10.10)

Gradient Boosting
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https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12.pdf#page=377


Gradient Tree Boosting with Regularization

Parallelization construction on CPU cores

Distributed training on a cluster of machines (large models)

Out-of-Core computing (large datasets that do not fit in memory)

XGBoost (A Scalable Tree Boosting System)
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XGBoost (Getting Started)
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Slides (formulation on slides 17-26)

Recorded Presentation

Official Examples

XGBoost Official Documentation

Basic walk-through

XGBoost
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https://speakerd.s3.amazonaws.com/presentations/5c6dab45648344208185d2b1ab4fdc95/XGBoost-Newest.pdf#page=17
https://www.youtube.com/watch?v=Vly8xGnNiWs
https://github.com/dmlc/xgboost/tree/master/demo
https://xgboost.readthedocs.io/en/latest/
https://github.com/dmlc/xgboost/blob/master/demo/guide-python/basic_walkthrough.py

